1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 #include <linux/sizes.h> 24 25 #include <test_util.h> 26 #include <kvm_util.h> 27 #include <processor.h> 28 29 #define MEM_EXTRA_SIZE SZ_64K 30 31 #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE) 32 #define MEM_GPA SZ_256M 33 #define MEM_AUX_GPA MEM_GPA 34 #define MEM_SYNC_GPA MEM_AUX_GPA 35 #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE) 36 #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE) 37 38 /* 39 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 40 * Considering that each slot needs to have at least one page up to 41 * 8194 slots in use can then be tested (although with slightly 42 * limited resolution). 43 */ 44 #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE) 45 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE) 46 47 /* 48 * 128 MiB is min size that fills 32k slots with at least one page in each 49 * while at the same time gets 100+ iterations in such test 50 * 51 * 2 MiB chunk size like a typical huge page 52 */ 53 #define MEM_TEST_UNMAP_SIZE SZ_128M 54 #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M 55 56 /* 57 * For the move active test the middle of the test area is placed on 58 * a memslot boundary: half lies in the memslot being moved, half in 59 * other memslot(s). 60 * 61 * We have different number of memory slots, excluding the reserved 62 * memory slot 0, on various architectures and configurations. The 63 * memory size in this test is calculated by picking the maximal 64 * last memory slot's memory size, with alignment to the largest 65 * supported page size (64KB). In this way, the selected memory 66 * size for this test is compatible with test_memslot_move_prepare(). 67 * 68 * architecture slots memory-per-slot memory-on-last-slot 69 * -------------------------------------------------------------- 70 * x86-4KB 32763 16KB 160KB 71 * arm64-4KB 32766 16KB 112KB 72 * arm64-16KB 32766 16KB 112KB 73 * arm64-64KB 8192 64KB 128KB 74 */ 75 #define MEM_TEST_MOVE_SIZE (3 * SZ_64K) 76 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 77 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 78 "invalid move test region size"); 79 80 #define MEM_TEST_VAL_1 0x1122334455667788 81 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 82 83 struct vm_data { 84 struct kvm_vm *vm; 85 struct kvm_vcpu *vcpu; 86 pthread_t vcpu_thread; 87 uint32_t nslots; 88 uint64_t npages; 89 uint64_t pages_per_slot; 90 void **hva_slots; 91 bool mmio_ok; 92 uint64_t mmio_gpa_min; 93 uint64_t mmio_gpa_max; 94 }; 95 96 struct sync_area { 97 uint32_t guest_page_size; 98 atomic_bool start_flag; 99 atomic_bool exit_flag; 100 atomic_bool sync_flag; 101 void *move_area_ptr; 102 }; 103 104 /* 105 * Technically, we need also for the atomic bool to be address-free, which 106 * is recommended, but not strictly required, by C11 for lockless 107 * implementations. 108 * However, in practice both GCC and Clang fulfill this requirement on 109 * all KVM-supported platforms. 110 */ 111 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 112 113 static sem_t vcpu_ready; 114 115 static bool map_unmap_verify; 116 static bool disable_slot_zap_quirk; 117 118 static bool verbose; 119 #define pr_info_v(...) \ 120 do { \ 121 if (verbose) \ 122 pr_info(__VA_ARGS__); \ 123 } while (0) 124 125 static void check_mmio_access(struct vm_data *data, struct kvm_run *run) 126 { 127 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); 128 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 129 TEST_ASSERT(run->mmio.len == 8, 130 "Unexpected exit mmio size = %u", run->mmio.len); 131 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && 132 run->mmio.phys_addr <= data->mmio_gpa_max, 133 "Unexpected exit mmio address = 0x%llx", 134 run->mmio.phys_addr); 135 } 136 137 static void *vcpu_worker(void *__data) 138 { 139 struct vm_data *data = __data; 140 struct kvm_vcpu *vcpu = data->vcpu; 141 struct kvm_run *run = vcpu->run; 142 struct ucall uc; 143 144 while (1) { 145 vcpu_run(vcpu); 146 147 switch (get_ucall(vcpu, &uc)) { 148 case UCALL_SYNC: 149 TEST_ASSERT(uc.args[1] == 0, 150 "Unexpected sync ucall, got %lx", 151 (ulong)uc.args[1]); 152 sem_post(&vcpu_ready); 153 continue; 154 case UCALL_NONE: 155 if (run->exit_reason == KVM_EXIT_MMIO) 156 check_mmio_access(data, run); 157 else 158 goto done; 159 break; 160 case UCALL_ABORT: 161 REPORT_GUEST_ASSERT(uc); 162 break; 163 case UCALL_DONE: 164 goto done; 165 default: 166 TEST_FAIL("Unknown ucall %lu", uc.cmd); 167 } 168 } 169 170 done: 171 return NULL; 172 } 173 174 static void wait_for_vcpu(void) 175 { 176 struct timespec ts; 177 178 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 179 "clock_gettime() failed: %d", errno); 180 181 ts.tv_sec += 2; 182 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 183 "sem_timedwait() failed: %d", errno); 184 } 185 186 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 187 { 188 uint64_t gpage, pgoffs; 189 uint32_t slot, slotoffs; 190 void *base; 191 uint32_t guest_page_size = data->vm->page_size; 192 193 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 194 TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size, 195 "Too high gpa to translate"); 196 gpa -= MEM_GPA; 197 198 gpage = gpa / guest_page_size; 199 pgoffs = gpa % guest_page_size; 200 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 201 slotoffs = gpage - (slot * data->pages_per_slot); 202 203 if (rempages) { 204 uint64_t slotpages; 205 206 if (slot == data->nslots - 1) 207 slotpages = data->npages - slot * data->pages_per_slot; 208 else 209 slotpages = data->pages_per_slot; 210 211 TEST_ASSERT(!pgoffs, 212 "Asking for remaining pages in slot but gpa not page aligned"); 213 *rempages = slotpages - slotoffs; 214 } 215 216 base = data->hva_slots[slot]; 217 return (uint8_t *)base + slotoffs * guest_page_size + pgoffs; 218 } 219 220 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 221 { 222 uint32_t guest_page_size = data->vm->page_size; 223 224 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 225 226 return MEM_GPA + slot * data->pages_per_slot * guest_page_size; 227 } 228 229 static struct vm_data *alloc_vm(void) 230 { 231 struct vm_data *data; 232 233 data = malloc(sizeof(*data)); 234 TEST_ASSERT(data, "malloc(vmdata) failed"); 235 236 data->vm = NULL; 237 data->vcpu = NULL; 238 data->hva_slots = NULL; 239 240 return data; 241 } 242 243 static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size, 244 uint64_t pages_per_slot, uint64_t rempages) 245 { 246 if (!pages_per_slot) 247 return false; 248 249 if ((pages_per_slot * guest_page_size) % host_page_size) 250 return false; 251 252 if ((rempages * guest_page_size) % host_page_size) 253 return false; 254 255 return true; 256 } 257 258 259 static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size) 260 { 261 uint32_t guest_page_size = data->vm->page_size; 262 uint64_t mempages, pages_per_slot, rempages; 263 uint64_t slots; 264 265 mempages = data->npages; 266 slots = data->nslots; 267 while (--slots > 1) { 268 pages_per_slot = mempages / slots; 269 if (!pages_per_slot) 270 continue; 271 272 rempages = mempages % pages_per_slot; 273 if (check_slot_pages(host_page_size, guest_page_size, 274 pages_per_slot, rempages)) 275 return slots + 1; /* slot 0 is reserved */ 276 } 277 278 return 0; 279 } 280 281 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 282 void *guest_code, uint64_t mem_size, 283 struct timespec *slot_runtime) 284 { 285 uint64_t mempages, rempages; 286 uint64_t guest_addr; 287 uint32_t slot, host_page_size, guest_page_size; 288 struct timespec tstart; 289 struct sync_area *sync; 290 291 host_page_size = getpagesize(); 292 guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 293 mempages = mem_size / guest_page_size; 294 295 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 296 TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size"); 297 298 data->npages = mempages; 299 TEST_ASSERT(data->npages > 1, "Can't test without any memory"); 300 data->nslots = nslots; 301 data->pages_per_slot = data->npages / data->nslots; 302 rempages = data->npages % data->nslots; 303 if (!check_slot_pages(host_page_size, guest_page_size, 304 data->pages_per_slot, rempages)) { 305 *maxslots = get_max_slots(data, host_page_size); 306 return false; 307 } 308 309 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 310 TEST_ASSERT(data->hva_slots, "malloc() fail"); 311 312 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 313 data->nslots, data->pages_per_slot, rempages); 314 315 clock_gettime(CLOCK_MONOTONIC, &tstart); 316 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 317 uint64_t npages; 318 319 npages = data->pages_per_slot; 320 if (slot == data->nslots) 321 npages += rempages; 322 323 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 324 guest_addr, slot, npages, 325 0); 326 guest_addr += npages * guest_page_size; 327 } 328 *slot_runtime = timespec_elapsed(tstart); 329 330 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 331 uint64_t npages; 332 uint64_t gpa; 333 334 npages = data->pages_per_slot; 335 if (slot == data->nslots) 336 npages += rempages; 337 338 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot); 339 TEST_ASSERT(gpa == guest_addr, 340 "vm_phy_pages_alloc() failed"); 341 342 data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr); 343 memset(data->hva_slots[slot - 1], 0, npages * guest_page_size); 344 345 guest_addr += npages * guest_page_size; 346 } 347 348 virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages); 349 350 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 351 sync->guest_page_size = data->vm->page_size; 352 atomic_init(&sync->start_flag, false); 353 atomic_init(&sync->exit_flag, false); 354 atomic_init(&sync->sync_flag, false); 355 356 data->mmio_ok = false; 357 358 return true; 359 } 360 361 static void launch_vm(struct vm_data *data) 362 { 363 pr_info_v("Launching the test VM\n"); 364 365 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 366 367 /* Ensure the guest thread is spun up. */ 368 wait_for_vcpu(); 369 } 370 371 static void free_vm(struct vm_data *data) 372 { 373 kvm_vm_free(data->vm); 374 free(data->hva_slots); 375 free(data); 376 } 377 378 static void wait_guest_exit(struct vm_data *data) 379 { 380 pthread_join(data->vcpu_thread, NULL); 381 } 382 383 static void let_guest_run(struct sync_area *sync) 384 { 385 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 386 } 387 388 static void guest_spin_until_start(void) 389 { 390 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 391 392 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 393 ; 394 } 395 396 static void make_guest_exit(struct sync_area *sync) 397 { 398 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 399 } 400 401 static bool _guest_should_exit(void) 402 { 403 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 404 405 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 406 } 407 408 #define guest_should_exit() unlikely(_guest_should_exit()) 409 410 /* 411 * noinline so we can easily see how much time the host spends waiting 412 * for the guest. 413 * For the same reason use alarm() instead of polling clock_gettime() 414 * to implement a wait timeout. 415 */ 416 static noinline void host_perform_sync(struct sync_area *sync) 417 { 418 alarm(2); 419 420 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 421 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 422 ; 423 424 alarm(0); 425 } 426 427 static bool guest_perform_sync(void) 428 { 429 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 430 bool expected; 431 432 do { 433 if (guest_should_exit()) 434 return false; 435 436 expected = true; 437 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 438 &expected, false, 439 memory_order_acq_rel, 440 memory_order_relaxed)); 441 442 return true; 443 } 444 445 static void guest_code_test_memslot_move(void) 446 { 447 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 448 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 449 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 450 451 GUEST_SYNC(0); 452 453 guest_spin_until_start(); 454 455 while (!guest_should_exit()) { 456 uintptr_t ptr; 457 458 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 459 ptr += page_size) 460 *(uint64_t *)ptr = MEM_TEST_VAL_1; 461 462 /* 463 * No host sync here since the MMIO exits are so expensive 464 * that the host would spend most of its time waiting for 465 * the guest and so instead of measuring memslot move 466 * performance we would measure the performance and 467 * likelihood of MMIO exits 468 */ 469 } 470 471 GUEST_DONE(); 472 } 473 474 static void guest_code_test_memslot_map(void) 475 { 476 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 477 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 478 479 GUEST_SYNC(0); 480 481 guest_spin_until_start(); 482 483 while (1) { 484 uintptr_t ptr; 485 486 for (ptr = MEM_TEST_GPA; 487 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 488 ptr += page_size) 489 *(uint64_t *)ptr = MEM_TEST_VAL_1; 490 491 if (!guest_perform_sync()) 492 break; 493 494 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 495 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; 496 ptr += page_size) 497 *(uint64_t *)ptr = MEM_TEST_VAL_2; 498 499 if (!guest_perform_sync()) 500 break; 501 } 502 503 GUEST_DONE(); 504 } 505 506 static void guest_code_test_memslot_unmap(void) 507 { 508 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 509 510 GUEST_SYNC(0); 511 512 guest_spin_until_start(); 513 514 while (1) { 515 uintptr_t ptr = MEM_TEST_GPA; 516 517 /* 518 * We can afford to access (map) just a small number of pages 519 * per host sync as otherwise the host will spend 520 * a significant amount of its time waiting for the guest 521 * (instead of doing unmap operations), so this will 522 * effectively turn this test into a map performance test. 523 * 524 * Just access a single page to be on the safe side. 525 */ 526 *(uint64_t *)ptr = MEM_TEST_VAL_1; 527 528 if (!guest_perform_sync()) 529 break; 530 531 ptr += MEM_TEST_UNMAP_SIZE / 2; 532 *(uint64_t *)ptr = MEM_TEST_VAL_2; 533 534 if (!guest_perform_sync()) 535 break; 536 } 537 538 GUEST_DONE(); 539 } 540 541 static void guest_code_test_memslot_rw(void) 542 { 543 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 544 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 545 546 GUEST_SYNC(0); 547 548 guest_spin_until_start(); 549 550 while (1) { 551 uintptr_t ptr; 552 553 for (ptr = MEM_TEST_GPA; 554 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) 555 *(uint64_t *)ptr = MEM_TEST_VAL_1; 556 557 if (!guest_perform_sync()) 558 break; 559 560 for (ptr = MEM_TEST_GPA + page_size / 2; 561 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) { 562 uint64_t val = *(uint64_t *)ptr; 563 564 GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2); 565 *(uint64_t *)ptr = 0; 566 } 567 568 if (!guest_perform_sync()) 569 break; 570 } 571 572 GUEST_DONE(); 573 } 574 575 static bool test_memslot_move_prepare(struct vm_data *data, 576 struct sync_area *sync, 577 uint64_t *maxslots, bool isactive) 578 { 579 uint32_t guest_page_size = data->vm->page_size; 580 uint64_t movesrcgpa, movetestgpa; 581 582 if (disable_slot_zap_quirk) 583 vm_enable_cap(data->vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL); 584 585 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 586 587 if (isactive) { 588 uint64_t lastpages; 589 590 vm_gpa2hva(data, movesrcgpa, &lastpages); 591 if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) { 592 *maxslots = 0; 593 return false; 594 } 595 } 596 597 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 598 sync->move_area_ptr = (void *)movetestgpa; 599 600 if (isactive) { 601 data->mmio_ok = true; 602 data->mmio_gpa_min = movesrcgpa; 603 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 604 } 605 606 return true; 607 } 608 609 static bool test_memslot_move_prepare_active(struct vm_data *data, 610 struct sync_area *sync, 611 uint64_t *maxslots) 612 { 613 return test_memslot_move_prepare(data, sync, maxslots, true); 614 } 615 616 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 617 struct sync_area *sync, 618 uint64_t *maxslots) 619 { 620 return test_memslot_move_prepare(data, sync, maxslots, false); 621 } 622 623 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 624 { 625 uint64_t movesrcgpa; 626 627 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 628 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 629 MEM_TEST_MOVE_GPA_DEST); 630 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 631 } 632 633 static void test_memslot_do_unmap(struct vm_data *data, 634 uint64_t offsp, uint64_t count) 635 { 636 uint64_t gpa, ctr; 637 uint32_t guest_page_size = data->vm->page_size; 638 639 for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) { 640 uint64_t npages; 641 void *hva; 642 int ret; 643 644 hva = vm_gpa2hva(data, gpa, &npages); 645 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 646 npages = min(npages, count - ctr); 647 ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED); 648 TEST_ASSERT(!ret, 649 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 650 hva, gpa); 651 ctr += npages; 652 gpa += npages * guest_page_size; 653 } 654 TEST_ASSERT(ctr == count, 655 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 656 } 657 658 static void test_memslot_map_unmap_check(struct vm_data *data, 659 uint64_t offsp, uint64_t valexp) 660 { 661 uint64_t gpa; 662 uint64_t *val; 663 uint32_t guest_page_size = data->vm->page_size; 664 665 if (!map_unmap_verify) 666 return; 667 668 gpa = MEM_TEST_GPA + offsp * guest_page_size; 669 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 670 TEST_ASSERT(*val == valexp, 671 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 672 *val, valexp, gpa); 673 *val = 0; 674 } 675 676 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 677 { 678 uint32_t guest_page_size = data->vm->page_size; 679 uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size; 680 681 /* 682 * Unmap the second half of the test area while guest writes to (maps) 683 * the first half. 684 */ 685 test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2); 686 687 /* 688 * Wait for the guest to finish writing the first half of the test 689 * area, verify the written value on the first and the last page of 690 * this area and then unmap it. 691 * Meanwhile, the guest is writing to (mapping) the second half of 692 * the test area. 693 */ 694 host_perform_sync(sync); 695 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 696 test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1); 697 test_memslot_do_unmap(data, 0, guest_pages / 2); 698 699 700 /* 701 * Wait for the guest to finish writing the second half of the test 702 * area and verify the written value on the first and the last page 703 * of this area. 704 * The area will be unmapped at the beginning of the next loop 705 * iteration. 706 * Meanwhile, the guest is writing to (mapping) the first half of 707 * the test area. 708 */ 709 host_perform_sync(sync); 710 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 711 test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2); 712 } 713 714 static void test_memslot_unmap_loop_common(struct vm_data *data, 715 struct sync_area *sync, 716 uint64_t chunk) 717 { 718 uint32_t guest_page_size = data->vm->page_size; 719 uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size; 720 uint64_t ctr; 721 722 /* 723 * Wait for the guest to finish mapping page(s) in the first half 724 * of the test area, verify the written value and then perform unmap 725 * of this area. 726 * Meanwhile, the guest is writing to (mapping) page(s) in the second 727 * half of the test area. 728 */ 729 host_perform_sync(sync); 730 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 731 for (ctr = 0; ctr < guest_pages / 2; ctr += chunk) 732 test_memslot_do_unmap(data, ctr, chunk); 733 734 /* Likewise, but for the opposite host / guest areas */ 735 host_perform_sync(sync); 736 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 737 for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk) 738 test_memslot_do_unmap(data, ctr, chunk); 739 } 740 741 static void test_memslot_unmap_loop(struct vm_data *data, 742 struct sync_area *sync) 743 { 744 uint32_t host_page_size = getpagesize(); 745 uint32_t guest_page_size = data->vm->page_size; 746 uint64_t guest_chunk_pages = guest_page_size >= host_page_size ? 747 1 : host_page_size / guest_page_size; 748 749 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 750 } 751 752 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 753 struct sync_area *sync) 754 { 755 uint32_t guest_page_size = data->vm->page_size; 756 uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size; 757 758 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 759 } 760 761 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 762 { 763 uint64_t gptr; 764 uint32_t guest_page_size = data->vm->page_size; 765 766 for (gptr = MEM_TEST_GPA + guest_page_size / 2; 767 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) 768 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 769 770 host_perform_sync(sync); 771 772 for (gptr = MEM_TEST_GPA; 773 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) { 774 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 775 uint64_t val = *vptr; 776 777 TEST_ASSERT(val == MEM_TEST_VAL_1, 778 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 779 val, gptr); 780 *vptr = 0; 781 } 782 783 host_perform_sync(sync); 784 } 785 786 struct test_data { 787 const char *name; 788 uint64_t mem_size; 789 void (*guest_code)(void); 790 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 791 uint64_t *maxslots); 792 void (*loop)(struct vm_data *data, struct sync_area *sync); 793 }; 794 795 static bool test_execute(int nslots, uint64_t *maxslots, 796 unsigned int maxtime, 797 const struct test_data *tdata, 798 uint64_t *nloops, 799 struct timespec *slot_runtime, 800 struct timespec *guest_runtime) 801 { 802 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE; 803 struct vm_data *data; 804 struct sync_area *sync; 805 struct timespec tstart; 806 bool ret = true; 807 808 data = alloc_vm(); 809 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 810 mem_size, slot_runtime)) { 811 ret = false; 812 goto exit_free; 813 } 814 815 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 816 if (tdata->prepare && 817 !tdata->prepare(data, sync, maxslots)) { 818 ret = false; 819 goto exit_free; 820 } 821 822 launch_vm(data); 823 824 clock_gettime(CLOCK_MONOTONIC, &tstart); 825 let_guest_run(sync); 826 827 while (1) { 828 *guest_runtime = timespec_elapsed(tstart); 829 if (guest_runtime->tv_sec >= maxtime) 830 break; 831 832 tdata->loop(data, sync); 833 834 (*nloops)++; 835 } 836 837 make_guest_exit(sync); 838 wait_guest_exit(data); 839 840 exit_free: 841 free_vm(data); 842 843 return ret; 844 } 845 846 static const struct test_data tests[] = { 847 { 848 .name = "map", 849 .mem_size = MEM_SIZE_MAP, 850 .guest_code = guest_code_test_memslot_map, 851 .loop = test_memslot_map_loop, 852 }, 853 { 854 .name = "unmap", 855 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 856 .guest_code = guest_code_test_memslot_unmap, 857 .loop = test_memslot_unmap_loop, 858 }, 859 { 860 .name = "unmap chunked", 861 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 862 .guest_code = guest_code_test_memslot_unmap, 863 .loop = test_memslot_unmap_loop_chunked, 864 }, 865 { 866 .name = "move active area", 867 .guest_code = guest_code_test_memslot_move, 868 .prepare = test_memslot_move_prepare_active, 869 .loop = test_memslot_move_loop, 870 }, 871 { 872 .name = "move inactive area", 873 .guest_code = guest_code_test_memslot_move, 874 .prepare = test_memslot_move_prepare_inactive, 875 .loop = test_memslot_move_loop, 876 }, 877 { 878 .name = "RW", 879 .guest_code = guest_code_test_memslot_rw, 880 .loop = test_memslot_rw_loop 881 }, 882 }; 883 884 #define NTESTS ARRAY_SIZE(tests) 885 886 struct test_args { 887 int tfirst; 888 int tlast; 889 int nslots; 890 int seconds; 891 int runs; 892 }; 893 894 static void help(char *name, struct test_args *targs) 895 { 896 int ctr; 897 898 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 899 name); 900 pr_info(" -h: print this help screen.\n"); 901 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 902 pr_info(" -d: enable extra debug checks.\n"); 903 pr_info(" -q: Disable memslot zap quirk during memslot move.\n"); 904 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 905 targs->nslots); 906 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 907 targs->tfirst, NTESTS - 1); 908 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 909 targs->tlast, NTESTS - 1); 910 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 911 targs->seconds); 912 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 913 targs->runs); 914 915 pr_info("\nAvailable tests:\n"); 916 for (ctr = 0; ctr < NTESTS; ctr++) 917 pr_info("%d: %s\n", ctr, tests[ctr].name); 918 } 919 920 static bool check_memory_sizes(void) 921 { 922 uint32_t host_page_size = getpagesize(); 923 uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 924 925 if (host_page_size > SZ_64K || guest_page_size > SZ_64K) { 926 pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n", 927 host_page_size, guest_page_size); 928 return false; 929 } 930 931 if (MEM_SIZE % guest_page_size || 932 MEM_TEST_SIZE % guest_page_size) { 933 pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n"); 934 return false; 935 } 936 937 if (MEM_SIZE_MAP % guest_page_size || 938 MEM_TEST_MAP_SIZE % guest_page_size || 939 (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 || 940 (MEM_TEST_MAP_SIZE / guest_page_size) % 2) { 941 pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n"); 942 return false; 943 } 944 945 if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE || 946 MEM_TEST_UNMAP_SIZE % guest_page_size || 947 (MEM_TEST_UNMAP_SIZE / guest_page_size) % 948 (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) { 949 pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n"); 950 return false; 951 } 952 953 return true; 954 } 955 956 static bool parse_args(int argc, char *argv[], 957 struct test_args *targs) 958 { 959 uint32_t max_mem_slots; 960 int opt; 961 962 while ((opt = getopt(argc, argv, "hvdqs:f:e:l:r:")) != -1) { 963 switch (opt) { 964 case 'h': 965 default: 966 help(argv[0], targs); 967 return false; 968 case 'v': 969 verbose = true; 970 break; 971 case 'd': 972 map_unmap_verify = true; 973 break; 974 case 'q': 975 disable_slot_zap_quirk = true; 976 TEST_REQUIRE(kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) & 977 KVM_X86_QUIRK_SLOT_ZAP_ALL); 978 break; 979 case 's': 980 targs->nslots = atoi_paranoid(optarg); 981 if (targs->nslots <= 1 && targs->nslots != -1) { 982 pr_info("Slot count cap must be larger than 1 or -1 for no cap\n"); 983 return false; 984 } 985 break; 986 case 'f': 987 targs->tfirst = atoi_non_negative("First test", optarg); 988 break; 989 case 'e': 990 targs->tlast = atoi_non_negative("Last test", optarg); 991 if (targs->tlast >= NTESTS) { 992 pr_info("Last test to run has to be non-negative and less than %zu\n", 993 NTESTS); 994 return false; 995 } 996 break; 997 case 'l': 998 targs->seconds = atoi_non_negative("Test length", optarg); 999 break; 1000 case 'r': 1001 targs->runs = atoi_positive("Runs per test", optarg); 1002 break; 1003 } 1004 } 1005 1006 if (optind < argc) { 1007 help(argv[0], targs); 1008 return false; 1009 } 1010 1011 if (targs->tfirst > targs->tlast) { 1012 pr_info("First test to run cannot be greater than the last test to run\n"); 1013 return false; 1014 } 1015 1016 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 1017 if (max_mem_slots <= 1) { 1018 pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n"); 1019 return false; 1020 } 1021 1022 /* Memory slot 0 is reserved */ 1023 if (targs->nslots == -1) 1024 targs->nslots = max_mem_slots - 1; 1025 else 1026 targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1; 1027 1028 pr_info_v("Allowed Number of memory slots: %"PRIu32"\n", 1029 targs->nslots + 1); 1030 1031 return true; 1032 } 1033 1034 struct test_result { 1035 struct timespec slot_runtime, guest_runtime, iter_runtime; 1036 int64_t slottimens, runtimens; 1037 uint64_t nloops; 1038 }; 1039 1040 static bool test_loop(const struct test_data *data, 1041 const struct test_args *targs, 1042 struct test_result *rbestslottime, 1043 struct test_result *rbestruntime) 1044 { 1045 uint64_t maxslots; 1046 struct test_result result = {}; 1047 1048 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 1049 &result.nloops, 1050 &result.slot_runtime, &result.guest_runtime)) { 1051 if (maxslots) 1052 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 1053 maxslots); 1054 else 1055 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 1056 1057 return false; 1058 } 1059 1060 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 1061 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 1062 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 1063 if (!result.nloops) { 1064 pr_info("No full loops done - too short test time or system too loaded?\n"); 1065 return true; 1066 } 1067 1068 result.iter_runtime = timespec_div(result.guest_runtime, 1069 result.nloops); 1070 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 1071 result.nloops, 1072 result.iter_runtime.tv_sec, 1073 result.iter_runtime.tv_nsec); 1074 result.slottimens = timespec_to_ns(result.slot_runtime); 1075 result.runtimens = timespec_to_ns(result.iter_runtime); 1076 1077 /* 1078 * Only rank the slot setup time for tests using the whole test memory 1079 * area so they are comparable 1080 */ 1081 if (!data->mem_size && 1082 (!rbestslottime->slottimens || 1083 result.slottimens < rbestslottime->slottimens)) 1084 *rbestslottime = result; 1085 if (!rbestruntime->runtimens || 1086 result.runtimens < rbestruntime->runtimens) 1087 *rbestruntime = result; 1088 1089 return true; 1090 } 1091 1092 int main(int argc, char *argv[]) 1093 { 1094 struct test_args targs = { 1095 .tfirst = 0, 1096 .tlast = NTESTS - 1, 1097 .nslots = -1, 1098 .seconds = 5, 1099 .runs = 1, 1100 }; 1101 struct test_result rbestslottime = {}; 1102 int tctr; 1103 1104 if (!check_memory_sizes()) 1105 return -1; 1106 1107 if (!parse_args(argc, argv, &targs)) 1108 return -1; 1109 1110 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1111 const struct test_data *data = &tests[tctr]; 1112 unsigned int runctr; 1113 struct test_result rbestruntime = {}; 1114 1115 if (tctr > targs.tfirst) 1116 pr_info("\n"); 1117 1118 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1119 data->name, targs.runs, targs.seconds); 1120 1121 for (runctr = 0; runctr < targs.runs; runctr++) 1122 if (!test_loop(data, &targs, 1123 &rbestslottime, &rbestruntime)) 1124 break; 1125 1126 if (rbestruntime.runtimens) 1127 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1128 rbestruntime.iter_runtime.tv_sec, 1129 rbestruntime.iter_runtime.tv_nsec, 1130 rbestruntime.nloops); 1131 } 1132 1133 if (rbestslottime.slottimens) 1134 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1135 rbestslottime.slot_runtime.tv_sec, 1136 rbestslottime.slot_runtime.tv_nsec); 1137 1138 return 0; 1139 } 1140