1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 #include <linux/sizes.h> 24 25 #include <test_util.h> 26 #include <kvm_util.h> 27 #include <processor.h> 28 29 #define MEM_EXTRA_SIZE SZ_64K 30 31 #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE) 32 #define MEM_GPA SZ_256M 33 #define MEM_AUX_GPA MEM_GPA 34 #define MEM_SYNC_GPA MEM_AUX_GPA 35 #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE) 36 #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE) 37 38 /* 39 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 40 * Considering that each slot needs to have at least one page up to 41 * 8194 slots in use can then be tested (although with slightly 42 * limited resolution). 43 */ 44 #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE) 45 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE) 46 47 /* 48 * 128 MiB is min size that fills 32k slots with at least one page in each 49 * while at the same time gets 100+ iterations in such test 50 * 51 * 2 MiB chunk size like a typical huge page 52 */ 53 #define MEM_TEST_UNMAP_SIZE SZ_128M 54 #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M 55 56 /* 57 * For the move active test the middle of the test area is placed on 58 * a memslot boundary: half lies in the memslot being moved, half in 59 * other memslot(s). 60 * 61 * We have different number of memory slots, excluding the reserved 62 * memory slot 0, on various architectures and configurations. The 63 * memory size in this test is calculated by picking the maximal 64 * last memory slot's memory size, with alignment to the largest 65 * supported page size (64KB). In this way, the selected memory 66 * size for this test is compatible with test_memslot_move_prepare(). 67 * 68 * architecture slots memory-per-slot memory-on-last-slot 69 * -------------------------------------------------------------- 70 * x86-4KB 32763 16KB 160KB 71 * arm64-4KB 32766 16KB 112KB 72 * arm64-16KB 32766 16KB 112KB 73 * arm64-64KB 8192 64KB 128KB 74 */ 75 #define MEM_TEST_MOVE_SIZE (3 * SZ_64K) 76 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 77 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 78 "invalid move test region size"); 79 80 #define MEM_TEST_VAL_1 0x1122334455667788 81 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 82 83 struct vm_data { 84 struct kvm_vm *vm; 85 struct kvm_vcpu *vcpu; 86 pthread_t vcpu_thread; 87 uint32_t nslots; 88 uint64_t npages; 89 uint64_t pages_per_slot; 90 void **hva_slots; 91 bool mmio_ok; 92 uint64_t mmio_gpa_min; 93 uint64_t mmio_gpa_max; 94 }; 95 96 struct sync_area { 97 uint32_t guest_page_size; 98 atomic_bool start_flag; 99 atomic_bool exit_flag; 100 atomic_bool sync_flag; 101 void *move_area_ptr; 102 }; 103 104 /* 105 * Technically, we need also for the atomic bool to be address-free, which 106 * is recommended, but not strictly required, by C11 for lockless 107 * implementations. 108 * However, in practice both GCC and Clang fulfill this requirement on 109 * all KVM-supported platforms. 110 */ 111 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 112 113 static sem_t vcpu_ready; 114 115 static bool map_unmap_verify; 116 #ifdef __x86_64__ 117 static bool disable_slot_zap_quirk; 118 #endif 119 120 static bool verbose; 121 #define pr_info_v(...) \ 122 do { \ 123 if (verbose) \ 124 pr_info(__VA_ARGS__); \ 125 } while (0) 126 127 static void check_mmio_access(struct vm_data *data, struct kvm_run *run) 128 { 129 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); 130 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 131 TEST_ASSERT(run->mmio.len == 8, 132 "Unexpected exit mmio size = %u", run->mmio.len); 133 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && 134 run->mmio.phys_addr <= data->mmio_gpa_max, 135 "Unexpected exit mmio address = 0x%llx", 136 run->mmio.phys_addr); 137 } 138 139 static void *vcpu_worker(void *__data) 140 { 141 struct vm_data *data = __data; 142 struct kvm_vcpu *vcpu = data->vcpu; 143 struct kvm_run *run = vcpu->run; 144 struct ucall uc; 145 146 while (1) { 147 vcpu_run(vcpu); 148 149 switch (get_ucall(vcpu, &uc)) { 150 case UCALL_SYNC: 151 TEST_ASSERT(uc.args[1] == 0, 152 "Unexpected sync ucall, got %lx", 153 (ulong)uc.args[1]); 154 sem_post(&vcpu_ready); 155 continue; 156 case UCALL_NONE: 157 if (run->exit_reason == KVM_EXIT_MMIO) 158 check_mmio_access(data, run); 159 else 160 goto done; 161 break; 162 case UCALL_ABORT: 163 REPORT_GUEST_ASSERT(uc); 164 break; 165 case UCALL_DONE: 166 goto done; 167 default: 168 TEST_FAIL("Unknown ucall %lu", uc.cmd); 169 } 170 } 171 172 done: 173 return NULL; 174 } 175 176 static void wait_for_vcpu(void) 177 { 178 struct timespec ts; 179 180 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 181 "clock_gettime() failed: %d", errno); 182 183 ts.tv_sec += 2; 184 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 185 "sem_timedwait() failed: %d", errno); 186 } 187 188 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 189 { 190 uint64_t gpage, pgoffs; 191 uint32_t slot, slotoffs; 192 void *base; 193 uint32_t guest_page_size = data->vm->page_size; 194 195 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 196 TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size, 197 "Too high gpa to translate"); 198 gpa -= MEM_GPA; 199 200 gpage = gpa / guest_page_size; 201 pgoffs = gpa % guest_page_size; 202 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 203 slotoffs = gpage - (slot * data->pages_per_slot); 204 205 if (rempages) { 206 uint64_t slotpages; 207 208 if (slot == data->nslots - 1) 209 slotpages = data->npages - slot * data->pages_per_slot; 210 else 211 slotpages = data->pages_per_slot; 212 213 TEST_ASSERT(!pgoffs, 214 "Asking for remaining pages in slot but gpa not page aligned"); 215 *rempages = slotpages - slotoffs; 216 } 217 218 base = data->hva_slots[slot]; 219 return (uint8_t *)base + slotoffs * guest_page_size + pgoffs; 220 } 221 222 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 223 { 224 uint32_t guest_page_size = data->vm->page_size; 225 226 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 227 228 return MEM_GPA + slot * data->pages_per_slot * guest_page_size; 229 } 230 231 static struct vm_data *alloc_vm(void) 232 { 233 struct vm_data *data; 234 235 data = malloc(sizeof(*data)); 236 TEST_ASSERT(data, "malloc(vmdata) failed"); 237 238 data->vm = NULL; 239 data->vcpu = NULL; 240 data->hva_slots = NULL; 241 242 return data; 243 } 244 245 static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size, 246 uint64_t pages_per_slot, uint64_t rempages) 247 { 248 if (!pages_per_slot) 249 return false; 250 251 if ((pages_per_slot * guest_page_size) % host_page_size) 252 return false; 253 254 if ((rempages * guest_page_size) % host_page_size) 255 return false; 256 257 return true; 258 } 259 260 261 static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size) 262 { 263 uint32_t guest_page_size = data->vm->page_size; 264 uint64_t mempages, pages_per_slot, rempages; 265 uint64_t slots; 266 267 mempages = data->npages; 268 slots = data->nslots; 269 while (--slots > 1) { 270 pages_per_slot = mempages / slots; 271 if (!pages_per_slot) 272 continue; 273 274 rempages = mempages % pages_per_slot; 275 if (check_slot_pages(host_page_size, guest_page_size, 276 pages_per_slot, rempages)) 277 return slots + 1; /* slot 0 is reserved */ 278 } 279 280 return 0; 281 } 282 283 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 284 void *guest_code, uint64_t mem_size, 285 struct timespec *slot_runtime) 286 { 287 uint64_t mempages, rempages; 288 uint64_t guest_addr; 289 uint32_t slot, host_page_size, guest_page_size; 290 struct timespec tstart; 291 struct sync_area *sync; 292 293 host_page_size = getpagesize(); 294 guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 295 mempages = mem_size / guest_page_size; 296 297 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 298 TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size"); 299 300 data->npages = mempages; 301 TEST_ASSERT(data->npages > 1, "Can't test without any memory"); 302 data->nslots = nslots; 303 data->pages_per_slot = data->npages / data->nslots; 304 rempages = data->npages % data->nslots; 305 if (!check_slot_pages(host_page_size, guest_page_size, 306 data->pages_per_slot, rempages)) { 307 *maxslots = get_max_slots(data, host_page_size); 308 return false; 309 } 310 311 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 312 TEST_ASSERT(data->hva_slots, "malloc() fail"); 313 314 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 315 data->nslots, data->pages_per_slot, rempages); 316 317 clock_gettime(CLOCK_MONOTONIC, &tstart); 318 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 319 uint64_t npages; 320 321 npages = data->pages_per_slot; 322 if (slot == data->nslots) 323 npages += rempages; 324 325 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 326 guest_addr, slot, npages, 327 0); 328 guest_addr += npages * guest_page_size; 329 } 330 *slot_runtime = timespec_elapsed(tstart); 331 332 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 333 uint64_t npages; 334 uint64_t gpa; 335 336 npages = data->pages_per_slot; 337 if (slot == data->nslots) 338 npages += rempages; 339 340 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot); 341 TEST_ASSERT(gpa == guest_addr, 342 "vm_phy_pages_alloc() failed"); 343 344 data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr); 345 memset(data->hva_slots[slot - 1], 0, npages * guest_page_size); 346 347 guest_addr += npages * guest_page_size; 348 } 349 350 virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages); 351 352 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 353 sync->guest_page_size = data->vm->page_size; 354 atomic_init(&sync->start_flag, false); 355 atomic_init(&sync->exit_flag, false); 356 atomic_init(&sync->sync_flag, false); 357 358 data->mmio_ok = false; 359 360 return true; 361 } 362 363 static void launch_vm(struct vm_data *data) 364 { 365 pr_info_v("Launching the test VM\n"); 366 367 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 368 369 /* Ensure the guest thread is spun up. */ 370 wait_for_vcpu(); 371 } 372 373 static void free_vm(struct vm_data *data) 374 { 375 kvm_vm_free(data->vm); 376 free(data->hva_slots); 377 free(data); 378 } 379 380 static void wait_guest_exit(struct vm_data *data) 381 { 382 pthread_join(data->vcpu_thread, NULL); 383 } 384 385 static void let_guest_run(struct sync_area *sync) 386 { 387 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 388 } 389 390 static void guest_spin_until_start(void) 391 { 392 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 393 394 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 395 ; 396 } 397 398 static void make_guest_exit(struct sync_area *sync) 399 { 400 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 401 } 402 403 static bool _guest_should_exit(void) 404 { 405 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 406 407 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 408 } 409 410 #define guest_should_exit() unlikely(_guest_should_exit()) 411 412 /* 413 * noinline so we can easily see how much time the host spends waiting 414 * for the guest. 415 * For the same reason use alarm() instead of polling clock_gettime() 416 * to implement a wait timeout. 417 */ 418 static noinline void host_perform_sync(struct sync_area *sync) 419 { 420 alarm(10); 421 422 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 423 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 424 ; 425 426 alarm(0); 427 } 428 429 static bool guest_perform_sync(void) 430 { 431 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 432 bool expected; 433 434 do { 435 if (guest_should_exit()) 436 return false; 437 438 expected = true; 439 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 440 &expected, false, 441 memory_order_acq_rel, 442 memory_order_relaxed)); 443 444 return true; 445 } 446 447 static void guest_code_test_memslot_move(void) 448 { 449 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 450 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 451 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 452 453 GUEST_SYNC(0); 454 455 guest_spin_until_start(); 456 457 while (!guest_should_exit()) { 458 uintptr_t ptr; 459 460 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 461 ptr += page_size) 462 *(uint64_t *)ptr = MEM_TEST_VAL_1; 463 464 /* 465 * No host sync here since the MMIO exits are so expensive 466 * that the host would spend most of its time waiting for 467 * the guest and so instead of measuring memslot move 468 * performance we would measure the performance and 469 * likelihood of MMIO exits 470 */ 471 } 472 473 GUEST_DONE(); 474 } 475 476 static void guest_code_test_memslot_map(void) 477 { 478 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 479 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 480 481 GUEST_SYNC(0); 482 483 guest_spin_until_start(); 484 485 while (1) { 486 uintptr_t ptr; 487 488 for (ptr = MEM_TEST_GPA; 489 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 490 ptr += page_size) 491 *(uint64_t *)ptr = MEM_TEST_VAL_1; 492 493 if (!guest_perform_sync()) 494 break; 495 496 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 497 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; 498 ptr += page_size) 499 *(uint64_t *)ptr = MEM_TEST_VAL_2; 500 501 if (!guest_perform_sync()) 502 break; 503 } 504 505 GUEST_DONE(); 506 } 507 508 static void guest_code_test_memslot_unmap(void) 509 { 510 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 511 512 GUEST_SYNC(0); 513 514 guest_spin_until_start(); 515 516 while (1) { 517 uintptr_t ptr = MEM_TEST_GPA; 518 519 /* 520 * We can afford to access (map) just a small number of pages 521 * per host sync as otherwise the host will spend 522 * a significant amount of its time waiting for the guest 523 * (instead of doing unmap operations), so this will 524 * effectively turn this test into a map performance test. 525 * 526 * Just access a single page to be on the safe side. 527 */ 528 *(uint64_t *)ptr = MEM_TEST_VAL_1; 529 530 if (!guest_perform_sync()) 531 break; 532 533 ptr += MEM_TEST_UNMAP_SIZE / 2; 534 *(uint64_t *)ptr = MEM_TEST_VAL_2; 535 536 if (!guest_perform_sync()) 537 break; 538 } 539 540 GUEST_DONE(); 541 } 542 543 static void guest_code_test_memslot_rw(void) 544 { 545 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 546 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 547 548 GUEST_SYNC(0); 549 550 guest_spin_until_start(); 551 552 while (1) { 553 uintptr_t ptr; 554 555 for (ptr = MEM_TEST_GPA; 556 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) 557 *(uint64_t *)ptr = MEM_TEST_VAL_1; 558 559 if (!guest_perform_sync()) 560 break; 561 562 for (ptr = MEM_TEST_GPA + page_size / 2; 563 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) { 564 uint64_t val = *(uint64_t *)ptr; 565 566 GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2); 567 *(uint64_t *)ptr = 0; 568 } 569 570 if (!guest_perform_sync()) 571 break; 572 } 573 574 GUEST_DONE(); 575 } 576 577 static bool test_memslot_move_prepare(struct vm_data *data, 578 struct sync_area *sync, 579 uint64_t *maxslots, bool isactive) 580 { 581 uint32_t guest_page_size = data->vm->page_size; 582 uint64_t movesrcgpa, movetestgpa; 583 584 #ifdef __x86_64__ 585 if (disable_slot_zap_quirk) 586 vm_enable_cap(data->vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL); 587 #endif 588 589 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 590 591 if (isactive) { 592 uint64_t lastpages; 593 594 vm_gpa2hva(data, movesrcgpa, &lastpages); 595 if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) { 596 *maxslots = 0; 597 return false; 598 } 599 } 600 601 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 602 sync->move_area_ptr = (void *)movetestgpa; 603 604 if (isactive) { 605 data->mmio_ok = true; 606 data->mmio_gpa_min = movesrcgpa; 607 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 608 } 609 610 return true; 611 } 612 613 static bool test_memslot_move_prepare_active(struct vm_data *data, 614 struct sync_area *sync, 615 uint64_t *maxslots) 616 { 617 return test_memslot_move_prepare(data, sync, maxslots, true); 618 } 619 620 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 621 struct sync_area *sync, 622 uint64_t *maxslots) 623 { 624 return test_memslot_move_prepare(data, sync, maxslots, false); 625 } 626 627 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 628 { 629 uint64_t movesrcgpa; 630 631 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 632 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 633 MEM_TEST_MOVE_GPA_DEST); 634 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 635 } 636 637 static void test_memslot_do_unmap(struct vm_data *data, 638 uint64_t offsp, uint64_t count) 639 { 640 uint64_t gpa, ctr; 641 uint32_t guest_page_size = data->vm->page_size; 642 643 for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) { 644 uint64_t npages; 645 void *hva; 646 int ret; 647 648 hva = vm_gpa2hva(data, gpa, &npages); 649 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 650 npages = min(npages, count - ctr); 651 ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED); 652 TEST_ASSERT(!ret, 653 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 654 hva, gpa); 655 ctr += npages; 656 gpa += npages * guest_page_size; 657 } 658 TEST_ASSERT(ctr == count, 659 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 660 } 661 662 static void test_memslot_map_unmap_check(struct vm_data *data, 663 uint64_t offsp, uint64_t valexp) 664 { 665 uint64_t gpa; 666 uint64_t *val; 667 uint32_t guest_page_size = data->vm->page_size; 668 669 if (!map_unmap_verify) 670 return; 671 672 gpa = MEM_TEST_GPA + offsp * guest_page_size; 673 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 674 TEST_ASSERT(*val == valexp, 675 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 676 *val, valexp, gpa); 677 *val = 0; 678 } 679 680 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 681 { 682 uint32_t guest_page_size = data->vm->page_size; 683 uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size; 684 685 /* 686 * Unmap the second half of the test area while guest writes to (maps) 687 * the first half. 688 */ 689 test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2); 690 691 /* 692 * Wait for the guest to finish writing the first half of the test 693 * area, verify the written value on the first and the last page of 694 * this area and then unmap it. 695 * Meanwhile, the guest is writing to (mapping) the second half of 696 * the test area. 697 */ 698 host_perform_sync(sync); 699 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 700 test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1); 701 test_memslot_do_unmap(data, 0, guest_pages / 2); 702 703 704 /* 705 * Wait for the guest to finish writing the second half of the test 706 * area and verify the written value on the first and the last page 707 * of this area. 708 * The area will be unmapped at the beginning of the next loop 709 * iteration. 710 * Meanwhile, the guest is writing to (mapping) the first half of 711 * the test area. 712 */ 713 host_perform_sync(sync); 714 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 715 test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2); 716 } 717 718 static void test_memslot_unmap_loop_common(struct vm_data *data, 719 struct sync_area *sync, 720 uint64_t chunk) 721 { 722 uint32_t guest_page_size = data->vm->page_size; 723 uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size; 724 uint64_t ctr; 725 726 /* 727 * Wait for the guest to finish mapping page(s) in the first half 728 * of the test area, verify the written value and then perform unmap 729 * of this area. 730 * Meanwhile, the guest is writing to (mapping) page(s) in the second 731 * half of the test area. 732 */ 733 host_perform_sync(sync); 734 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 735 for (ctr = 0; ctr < guest_pages / 2; ctr += chunk) 736 test_memslot_do_unmap(data, ctr, chunk); 737 738 /* Likewise, but for the opposite host / guest areas */ 739 host_perform_sync(sync); 740 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 741 for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk) 742 test_memslot_do_unmap(data, ctr, chunk); 743 } 744 745 static void test_memslot_unmap_loop(struct vm_data *data, 746 struct sync_area *sync) 747 { 748 uint32_t host_page_size = getpagesize(); 749 uint32_t guest_page_size = data->vm->page_size; 750 uint64_t guest_chunk_pages = guest_page_size >= host_page_size ? 751 1 : host_page_size / guest_page_size; 752 753 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 754 } 755 756 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 757 struct sync_area *sync) 758 { 759 uint32_t guest_page_size = data->vm->page_size; 760 uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size; 761 762 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 763 } 764 765 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 766 { 767 uint64_t gptr; 768 uint32_t guest_page_size = data->vm->page_size; 769 770 for (gptr = MEM_TEST_GPA + guest_page_size / 2; 771 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) 772 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 773 774 host_perform_sync(sync); 775 776 for (gptr = MEM_TEST_GPA; 777 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) { 778 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 779 uint64_t val = *vptr; 780 781 TEST_ASSERT(val == MEM_TEST_VAL_1, 782 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 783 val, gptr); 784 *vptr = 0; 785 } 786 787 host_perform_sync(sync); 788 } 789 790 struct test_data { 791 const char *name; 792 uint64_t mem_size; 793 void (*guest_code)(void); 794 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 795 uint64_t *maxslots); 796 void (*loop)(struct vm_data *data, struct sync_area *sync); 797 }; 798 799 static bool test_execute(int nslots, uint64_t *maxslots, 800 unsigned int maxtime, 801 const struct test_data *tdata, 802 uint64_t *nloops, 803 struct timespec *slot_runtime, 804 struct timespec *guest_runtime) 805 { 806 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE; 807 struct vm_data *data; 808 struct sync_area *sync; 809 struct timespec tstart; 810 bool ret = true; 811 812 data = alloc_vm(); 813 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 814 mem_size, slot_runtime)) { 815 ret = false; 816 goto exit_free; 817 } 818 819 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 820 if (tdata->prepare && 821 !tdata->prepare(data, sync, maxslots)) { 822 ret = false; 823 goto exit_free; 824 } 825 826 launch_vm(data); 827 828 clock_gettime(CLOCK_MONOTONIC, &tstart); 829 let_guest_run(sync); 830 831 while (1) { 832 *guest_runtime = timespec_elapsed(tstart); 833 if (guest_runtime->tv_sec >= maxtime) 834 break; 835 836 tdata->loop(data, sync); 837 838 (*nloops)++; 839 } 840 841 make_guest_exit(sync); 842 wait_guest_exit(data); 843 844 exit_free: 845 free_vm(data); 846 847 return ret; 848 } 849 850 static const struct test_data tests[] = { 851 { 852 .name = "map", 853 .mem_size = MEM_SIZE_MAP, 854 .guest_code = guest_code_test_memslot_map, 855 .loop = test_memslot_map_loop, 856 }, 857 { 858 .name = "unmap", 859 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 860 .guest_code = guest_code_test_memslot_unmap, 861 .loop = test_memslot_unmap_loop, 862 }, 863 { 864 .name = "unmap chunked", 865 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 866 .guest_code = guest_code_test_memslot_unmap, 867 .loop = test_memslot_unmap_loop_chunked, 868 }, 869 { 870 .name = "move active area", 871 .guest_code = guest_code_test_memslot_move, 872 .prepare = test_memslot_move_prepare_active, 873 .loop = test_memslot_move_loop, 874 }, 875 { 876 .name = "move inactive area", 877 .guest_code = guest_code_test_memslot_move, 878 .prepare = test_memslot_move_prepare_inactive, 879 .loop = test_memslot_move_loop, 880 }, 881 { 882 .name = "RW", 883 .guest_code = guest_code_test_memslot_rw, 884 .loop = test_memslot_rw_loop 885 }, 886 }; 887 888 #define NTESTS ARRAY_SIZE(tests) 889 890 struct test_args { 891 int tfirst; 892 int tlast; 893 int nslots; 894 int seconds; 895 int runs; 896 }; 897 898 static void help(char *name, struct test_args *targs) 899 { 900 int ctr; 901 902 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 903 name); 904 pr_info(" -h: print this help screen.\n"); 905 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 906 pr_info(" -d: enable extra debug checks.\n"); 907 pr_info(" -q: Disable memslot zap quirk during memslot move.\n"); 908 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 909 targs->nslots); 910 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 911 targs->tfirst, NTESTS - 1); 912 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 913 targs->tlast, NTESTS - 1); 914 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 915 targs->seconds); 916 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 917 targs->runs); 918 919 pr_info("\nAvailable tests:\n"); 920 for (ctr = 0; ctr < NTESTS; ctr++) 921 pr_info("%d: %s\n", ctr, tests[ctr].name); 922 } 923 924 static bool check_memory_sizes(void) 925 { 926 uint32_t host_page_size = getpagesize(); 927 uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 928 929 if (host_page_size > SZ_64K || guest_page_size > SZ_64K) { 930 pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n", 931 host_page_size, guest_page_size); 932 return false; 933 } 934 935 if (MEM_SIZE % guest_page_size || 936 MEM_TEST_SIZE % guest_page_size) { 937 pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n"); 938 return false; 939 } 940 941 if (MEM_SIZE_MAP % guest_page_size || 942 MEM_TEST_MAP_SIZE % guest_page_size || 943 (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 || 944 (MEM_TEST_MAP_SIZE / guest_page_size) % 2) { 945 pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n"); 946 return false; 947 } 948 949 if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE || 950 MEM_TEST_UNMAP_SIZE % guest_page_size || 951 (MEM_TEST_UNMAP_SIZE / guest_page_size) % 952 (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) { 953 pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n"); 954 return false; 955 } 956 957 return true; 958 } 959 960 static bool parse_args(int argc, char *argv[], 961 struct test_args *targs) 962 { 963 uint32_t max_mem_slots; 964 int opt; 965 966 while ((opt = getopt(argc, argv, "hvdqs:f:e:l:r:")) != -1) { 967 switch (opt) { 968 case 'h': 969 default: 970 help(argv[0], targs); 971 return false; 972 case 'v': 973 verbose = true; 974 break; 975 case 'd': 976 map_unmap_verify = true; 977 break; 978 #ifdef __x86_64__ 979 case 'q': 980 disable_slot_zap_quirk = true; 981 TEST_REQUIRE(kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) & 982 KVM_X86_QUIRK_SLOT_ZAP_ALL); 983 break; 984 #endif 985 case 's': 986 targs->nslots = atoi_paranoid(optarg); 987 if (targs->nslots <= 1 && targs->nslots != -1) { 988 pr_info("Slot count cap must be larger than 1 or -1 for no cap\n"); 989 return false; 990 } 991 break; 992 case 'f': 993 targs->tfirst = atoi_non_negative("First test", optarg); 994 break; 995 case 'e': 996 targs->tlast = atoi_non_negative("Last test", optarg); 997 if (targs->tlast >= NTESTS) { 998 pr_info("Last test to run has to be non-negative and less than %zu\n", 999 NTESTS); 1000 return false; 1001 } 1002 break; 1003 case 'l': 1004 targs->seconds = atoi_non_negative("Test length", optarg); 1005 break; 1006 case 'r': 1007 targs->runs = atoi_positive("Runs per test", optarg); 1008 break; 1009 } 1010 } 1011 1012 if (optind < argc) { 1013 help(argv[0], targs); 1014 return false; 1015 } 1016 1017 if (targs->tfirst > targs->tlast) { 1018 pr_info("First test to run cannot be greater than the last test to run\n"); 1019 return false; 1020 } 1021 1022 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 1023 if (max_mem_slots <= 1) { 1024 pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n"); 1025 return false; 1026 } 1027 1028 /* Memory slot 0 is reserved */ 1029 if (targs->nslots == -1) 1030 targs->nslots = max_mem_slots - 1; 1031 else 1032 targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1; 1033 1034 pr_info_v("Allowed Number of memory slots: %"PRIu32"\n", 1035 targs->nslots + 1); 1036 1037 return true; 1038 } 1039 1040 struct test_result { 1041 struct timespec slot_runtime, guest_runtime, iter_runtime; 1042 int64_t slottimens, runtimens; 1043 uint64_t nloops; 1044 }; 1045 1046 static bool test_loop(const struct test_data *data, 1047 const struct test_args *targs, 1048 struct test_result *rbestslottime, 1049 struct test_result *rbestruntime) 1050 { 1051 uint64_t maxslots; 1052 struct test_result result = {}; 1053 1054 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 1055 &result.nloops, 1056 &result.slot_runtime, &result.guest_runtime)) { 1057 if (maxslots) 1058 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 1059 maxslots); 1060 else 1061 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 1062 1063 return false; 1064 } 1065 1066 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 1067 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 1068 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 1069 if (!result.nloops) { 1070 pr_info("No full loops done - too short test time or system too loaded?\n"); 1071 return true; 1072 } 1073 1074 result.iter_runtime = timespec_div(result.guest_runtime, 1075 result.nloops); 1076 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 1077 result.nloops, 1078 result.iter_runtime.tv_sec, 1079 result.iter_runtime.tv_nsec); 1080 result.slottimens = timespec_to_ns(result.slot_runtime); 1081 result.runtimens = timespec_to_ns(result.iter_runtime); 1082 1083 /* 1084 * Only rank the slot setup time for tests using the whole test memory 1085 * area so they are comparable 1086 */ 1087 if (!data->mem_size && 1088 (!rbestslottime->slottimens || 1089 result.slottimens < rbestslottime->slottimens)) 1090 *rbestslottime = result; 1091 if (!rbestruntime->runtimens || 1092 result.runtimens < rbestruntime->runtimens) 1093 *rbestruntime = result; 1094 1095 return true; 1096 } 1097 1098 int main(int argc, char *argv[]) 1099 { 1100 struct test_args targs = { 1101 .tfirst = 0, 1102 .tlast = NTESTS - 1, 1103 .nslots = -1, 1104 .seconds = 5, 1105 .runs = 1, 1106 }; 1107 struct test_result rbestslottime = {}; 1108 int tctr; 1109 1110 if (!check_memory_sizes()) 1111 return -1; 1112 1113 if (!parse_args(argc, argv, &targs)) 1114 return -1; 1115 1116 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1117 const struct test_data *data = &tests[tctr]; 1118 unsigned int runctr; 1119 struct test_result rbestruntime = {}; 1120 1121 if (tctr > targs.tfirst) 1122 pr_info("\n"); 1123 1124 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1125 data->name, targs.runs, targs.seconds); 1126 1127 for (runctr = 0; runctr < targs.runs; runctr++) 1128 if (!test_loop(data, &targs, 1129 &rbestslottime, &rbestruntime)) 1130 break; 1131 1132 if (rbestruntime.runtimens) 1133 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1134 rbestruntime.iter_runtime.tv_sec, 1135 rbestruntime.iter_runtime.tv_nsec, 1136 rbestruntime.nloops); 1137 } 1138 1139 if (rbestslottime.slottimens) 1140 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1141 rbestslottime.slot_runtime.tv_sec, 1142 rbestslottime.slot_runtime.tv_nsec); 1143 1144 return 0; 1145 } 1146