xref: /linux/tools/testing/selftests/kvm/lib/x86_64/vmx.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include <asm/msr-index.h>
9 
10 #include "test_util.h"
11 #include "kvm_util.h"
12 #include "processor.h"
13 #include "vmx.h"
14 
15 #define PAGE_SHIFT_4K  12
16 
17 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
18 
19 bool enable_evmcs;
20 
21 struct hv_enlightened_vmcs *current_evmcs;
22 struct hv_vp_assist_page *current_vp_assist;
23 
24 struct eptPageTableEntry {
25 	uint64_t readable:1;
26 	uint64_t writable:1;
27 	uint64_t executable:1;
28 	uint64_t memory_type:3;
29 	uint64_t ignore_pat:1;
30 	uint64_t page_size:1;
31 	uint64_t accessed:1;
32 	uint64_t dirty:1;
33 	uint64_t ignored_11_10:2;
34 	uint64_t address:40;
35 	uint64_t ignored_62_52:11;
36 	uint64_t suppress_ve:1;
37 };
38 
39 struct eptPageTablePointer {
40 	uint64_t memory_type:3;
41 	uint64_t page_walk_length:3;
42 	uint64_t ad_enabled:1;
43 	uint64_t reserved_11_07:5;
44 	uint64_t address:40;
45 	uint64_t reserved_63_52:12;
46 };
47 int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
48 {
49 	uint16_t evmcs_ver;
50 
51 	vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
52 			(unsigned long)&evmcs_ver);
53 
54 	/* KVM should return supported EVMCS version range */
55 	TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
56 		    (evmcs_ver & 0xff) > 0,
57 		    "Incorrect EVMCS version range: %x:%x",
58 		    evmcs_ver & 0xff, evmcs_ver >> 8);
59 
60 	return evmcs_ver;
61 }
62 
63 /* Allocate memory regions for nested VMX tests.
64  *
65  * Input Args:
66  *   vm - The VM to allocate guest-virtual addresses in.
67  *
68  * Output Args:
69  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
70  *
71  * Return:
72  *   Pointer to structure with the addresses of the VMX areas.
73  */
74 struct vmx_pages *
75 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
76 {
77 	vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
78 	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
79 
80 	/* Setup of a region of guest memory for the vmxon region. */
81 	vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
82 	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
83 	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
84 
85 	/* Setup of a region of guest memory for a vmcs. */
86 	vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
87 	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
88 	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
89 
90 	/* Setup of a region of guest memory for the MSR bitmap. */
91 	vmx->msr = (void *)vm_vaddr_alloc_page(vm);
92 	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
93 	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
94 	memset(vmx->msr_hva, 0, getpagesize());
95 
96 	/* Setup of a region of guest memory for the shadow VMCS. */
97 	vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
98 	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
99 	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
100 
101 	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
102 	vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
103 	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
104 	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
105 	memset(vmx->vmread_hva, 0, getpagesize());
106 
107 	vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
108 	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
109 	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
110 	memset(vmx->vmwrite_hva, 0, getpagesize());
111 
112 	*p_vmx_gva = vmx_gva;
113 	return vmx;
114 }
115 
116 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
117 {
118 	uint64_t feature_control;
119 	uint64_t required;
120 	unsigned long cr0;
121 	unsigned long cr4;
122 
123 	/*
124 	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
125 	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
126 	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
127 	 */
128 	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
129 	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
130 	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
131 	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
132 
133 	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
134 	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
135 	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
136 	/* Enable VMX operation */
137 	cr4 |= X86_CR4_VMXE;
138 	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
139 
140 	/*
141 	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
142 	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
143 	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
144 	 *    outside of SMX causes a #GP.
145 	 */
146 	required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
147 	required |= FEAT_CTL_LOCKED;
148 	feature_control = rdmsr(MSR_IA32_FEAT_CTL);
149 	if ((feature_control & required) != required)
150 		wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
151 
152 	/* Enter VMX root operation. */
153 	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
154 	if (vmxon(vmx->vmxon_gpa))
155 		return false;
156 
157 	return true;
158 }
159 
160 bool load_vmcs(struct vmx_pages *vmx)
161 {
162 	/* Load a VMCS. */
163 	*(uint32_t *)(vmx->vmcs) = vmcs_revision();
164 	if (vmclear(vmx->vmcs_gpa))
165 		return false;
166 
167 	if (vmptrld(vmx->vmcs_gpa))
168 		return false;
169 
170 	/* Setup shadow VMCS, do not load it yet. */
171 	*(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
172 	if (vmclear(vmx->shadow_vmcs_gpa))
173 		return false;
174 
175 	return true;
176 }
177 
178 static bool ept_vpid_cap_supported(uint64_t mask)
179 {
180 	return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
181 }
182 
183 bool ept_1g_pages_supported(void)
184 {
185 	return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
186 }
187 
188 /*
189  * Initialize the control fields to the most basic settings possible.
190  */
191 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
192 {
193 	uint32_t sec_exec_ctl = 0;
194 
195 	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
196 	vmwrite(POSTED_INTR_NV, 0);
197 
198 	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
199 
200 	if (vmx->eptp_gpa) {
201 		uint64_t ept_paddr;
202 		struct eptPageTablePointer eptp = {
203 			.memory_type = VMX_BASIC_MEM_TYPE_WB,
204 			.page_walk_length = 3, /* + 1 */
205 			.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
206 			.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
207 		};
208 
209 		memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
210 		vmwrite(EPT_POINTER, ept_paddr);
211 		sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
212 	}
213 
214 	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
215 		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
216 			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
217 	else {
218 		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
219 		GUEST_ASSERT(!sec_exec_ctl);
220 	}
221 
222 	vmwrite(EXCEPTION_BITMAP, 0);
223 	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
224 	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
225 	vmwrite(CR3_TARGET_COUNT, 0);
226 	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
227 		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
228 	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
229 	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
230 	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
231 		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
232 	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
233 	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
234 	vmwrite(TPR_THRESHOLD, 0);
235 
236 	vmwrite(CR0_GUEST_HOST_MASK, 0);
237 	vmwrite(CR4_GUEST_HOST_MASK, 0);
238 	vmwrite(CR0_READ_SHADOW, get_cr0());
239 	vmwrite(CR4_READ_SHADOW, get_cr4());
240 
241 	vmwrite(MSR_BITMAP, vmx->msr_gpa);
242 	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
243 	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
244 }
245 
246 /*
247  * Initialize the host state fields based on the current host state, with
248  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
249  * or vmresume.
250  */
251 static inline void init_vmcs_host_state(void)
252 {
253 	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
254 
255 	vmwrite(HOST_ES_SELECTOR, get_es());
256 	vmwrite(HOST_CS_SELECTOR, get_cs());
257 	vmwrite(HOST_SS_SELECTOR, get_ss());
258 	vmwrite(HOST_DS_SELECTOR, get_ds());
259 	vmwrite(HOST_FS_SELECTOR, get_fs());
260 	vmwrite(HOST_GS_SELECTOR, get_gs());
261 	vmwrite(HOST_TR_SELECTOR, get_tr());
262 
263 	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
264 		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
265 	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
266 		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
267 	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
268 		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
269 			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
270 
271 	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
272 
273 	vmwrite(HOST_CR0, get_cr0());
274 	vmwrite(HOST_CR3, get_cr3());
275 	vmwrite(HOST_CR4, get_cr4());
276 	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
277 	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
278 	vmwrite(HOST_TR_BASE,
279 		get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
280 	vmwrite(HOST_GDTR_BASE, get_gdt().address);
281 	vmwrite(HOST_IDTR_BASE, get_idt().address);
282 	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
283 	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
284 }
285 
286 /*
287  * Initialize the guest state fields essentially as a clone of
288  * the host state fields. Some host state fields have fixed
289  * values, and we set the corresponding guest state fields accordingly.
290  */
291 static inline void init_vmcs_guest_state(void *rip, void *rsp)
292 {
293 	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
294 	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
295 	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
296 	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
297 	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
298 	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
299 	vmwrite(GUEST_LDTR_SELECTOR, 0);
300 	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
301 	vmwrite(GUEST_INTR_STATUS, 0);
302 	vmwrite(GUEST_PML_INDEX, 0);
303 
304 	vmwrite(VMCS_LINK_POINTER, -1ll);
305 	vmwrite(GUEST_IA32_DEBUGCTL, 0);
306 	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
307 	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
308 	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
309 		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
310 
311 	vmwrite(GUEST_ES_LIMIT, -1);
312 	vmwrite(GUEST_CS_LIMIT, -1);
313 	vmwrite(GUEST_SS_LIMIT, -1);
314 	vmwrite(GUEST_DS_LIMIT, -1);
315 	vmwrite(GUEST_FS_LIMIT, -1);
316 	vmwrite(GUEST_GS_LIMIT, -1);
317 	vmwrite(GUEST_LDTR_LIMIT, -1);
318 	vmwrite(GUEST_TR_LIMIT, 0x67);
319 	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
320 	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
321 	vmwrite(GUEST_ES_AR_BYTES,
322 		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
323 	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
324 	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
325 	vmwrite(GUEST_DS_AR_BYTES,
326 		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
327 	vmwrite(GUEST_FS_AR_BYTES,
328 		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
329 	vmwrite(GUEST_GS_AR_BYTES,
330 		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
331 	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
332 	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
333 	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
334 	vmwrite(GUEST_ACTIVITY_STATE, 0);
335 	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
336 	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
337 
338 	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
339 	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
340 	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
341 	vmwrite(GUEST_ES_BASE, 0);
342 	vmwrite(GUEST_CS_BASE, 0);
343 	vmwrite(GUEST_SS_BASE, 0);
344 	vmwrite(GUEST_DS_BASE, 0);
345 	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
346 	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
347 	vmwrite(GUEST_LDTR_BASE, 0);
348 	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
349 	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
350 	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
351 	vmwrite(GUEST_DR7, 0x400);
352 	vmwrite(GUEST_RSP, (uint64_t)rsp);
353 	vmwrite(GUEST_RIP, (uint64_t)rip);
354 	vmwrite(GUEST_RFLAGS, 2);
355 	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
356 	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
357 	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
358 }
359 
360 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
361 {
362 	init_vmcs_control_fields(vmx);
363 	init_vmcs_host_state();
364 	init_vmcs_guest_state(guest_rip, guest_rsp);
365 }
366 
367 static void nested_create_pte(struct kvm_vm *vm,
368 			      struct eptPageTableEntry *pte,
369 			      uint64_t nested_paddr,
370 			      uint64_t paddr,
371 			      int current_level,
372 			      int target_level)
373 {
374 	if (!pte->readable) {
375 		pte->writable = true;
376 		pte->readable = true;
377 		pte->executable = true;
378 		pte->page_size = (current_level == target_level);
379 		if (pte->page_size)
380 			pte->address = paddr >> vm->page_shift;
381 		else
382 			pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
383 	} else {
384 		/*
385 		 * Entry already present.  Assert that the caller doesn't want
386 		 * a hugepage at this level, and that there isn't a hugepage at
387 		 * this level.
388 		 */
389 		TEST_ASSERT(current_level != target_level,
390 			    "Cannot create hugepage at level: %u, nested_paddr: 0x%lx",
391 			    current_level, nested_paddr);
392 		TEST_ASSERT(!pte->page_size,
393 			    "Cannot create page table at level: %u, nested_paddr: 0x%lx",
394 			    current_level, nested_paddr);
395 	}
396 }
397 
398 
399 void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
400 		     uint64_t nested_paddr, uint64_t paddr, int target_level)
401 {
402 	const uint64_t page_size = PG_LEVEL_SIZE(target_level);
403 	struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
404 	uint16_t index;
405 
406 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
407 		    "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
408 
409 	TEST_ASSERT((nested_paddr >> 48) == 0,
410 		    "Nested physical address 0x%lx requires 5-level paging",
411 		    nested_paddr);
412 	TEST_ASSERT((nested_paddr % page_size) == 0,
413 		    "Nested physical address not on page boundary,\n"
414 		    "  nested_paddr: 0x%lx page_size: 0x%lx",
415 		    nested_paddr, page_size);
416 	TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
417 		    "Physical address beyond beyond maximum supported,\n"
418 		    "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
419 		    paddr, vm->max_gfn, vm->page_size);
420 	TEST_ASSERT((paddr % page_size) == 0,
421 		    "Physical address not on page boundary,\n"
422 		    "  paddr: 0x%lx page_size: 0x%lx",
423 		    paddr, page_size);
424 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
425 		    "Physical address beyond beyond maximum supported,\n"
426 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
427 		    paddr, vm->max_gfn, vm->page_size);
428 
429 	for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
430 		index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
431 		pte = &pt[index];
432 
433 		nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
434 
435 		if (pte->page_size)
436 			break;
437 
438 		pt = addr_gpa2hva(vm, pte->address * vm->page_size);
439 	}
440 
441 	/*
442 	 * For now mark these as accessed and dirty because the only
443 	 * testcase we have needs that.  Can be reconsidered later.
444 	 */
445 	pte->accessed = true;
446 	pte->dirty = true;
447 
448 }
449 
450 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
451 		   uint64_t nested_paddr, uint64_t paddr)
452 {
453 	__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
454 }
455 
456 /*
457  * Map a range of EPT guest physical addresses to the VM's physical address
458  *
459  * Input Args:
460  *   vm - Virtual Machine
461  *   nested_paddr - Nested guest physical address to map
462  *   paddr - VM Physical Address
463  *   size - The size of the range to map
464  *   level - The level at which to map the range
465  *
466  * Output Args: None
467  *
468  * Return: None
469  *
470  * Within the VM given by vm, creates a nested guest translation for the
471  * page range starting at nested_paddr to the page range starting at paddr.
472  */
473 void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
474 		  uint64_t nested_paddr, uint64_t paddr, uint64_t size,
475 		  int level)
476 {
477 	size_t page_size = PG_LEVEL_SIZE(level);
478 	size_t npages = size / page_size;
479 
480 	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
481 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
482 
483 	while (npages--) {
484 		__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
485 		nested_paddr += page_size;
486 		paddr += page_size;
487 	}
488 }
489 
490 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
491 		uint64_t nested_paddr, uint64_t paddr, uint64_t size)
492 {
493 	__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
494 }
495 
496 /* Prepare an identity extended page table that maps all the
497  * physical pages in VM.
498  */
499 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
500 			uint32_t memslot)
501 {
502 	sparsebit_idx_t i, last;
503 	struct userspace_mem_region *region =
504 		memslot2region(vm, memslot);
505 
506 	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
507 	last = i + (region->region.memory_size >> vm->page_shift);
508 	for (;;) {
509 		i = sparsebit_next_clear(region->unused_phy_pages, i);
510 		if (i > last)
511 			break;
512 
513 		nested_map(vmx, vm,
514 			   (uint64_t)i << vm->page_shift,
515 			   (uint64_t)i << vm->page_shift,
516 			   1 << vm->page_shift);
517 	}
518 }
519 
520 /* Identity map a region with 1GiB Pages. */
521 void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
522 			    uint64_t addr, uint64_t size)
523 {
524 	__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
525 }
526 
527 bool kvm_cpu_has_ept(void)
528 {
529 	uint64_t ctrl;
530 
531 	ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
532 	if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
533 		return false;
534 
535 	ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
536 	return ctrl & SECONDARY_EXEC_ENABLE_EPT;
537 }
538 
539 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
540 		  uint32_t eptp_memslot)
541 {
542 	TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT");
543 
544 	vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
545 	vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
546 	vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
547 }
548 
549 void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
550 {
551 	vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
552 	vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
553 	vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
554 }
555