xref: /linux/tools/testing/selftests/kvm/lib/x86_64/processor.c (revision c2a96b7f187fb6a455836d4a6e113947ff11de97)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "linux/bitmap.h"
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 #include "sev.h"
13 
14 #ifndef NUM_INTERRUPTS
15 #define NUM_INTERRUPTS 256
16 #endif
17 
18 #define KERNEL_CS	0x8
19 #define KERNEL_DS	0x10
20 #define KERNEL_TSS	0x18
21 
22 #define MAX_NR_CPUID_ENTRIES 100
23 
24 vm_vaddr_t exception_handlers;
25 bool host_cpu_is_amd;
26 bool host_cpu_is_intel;
27 bool is_forced_emulation_enabled;
28 uint64_t guest_tsc_khz;
29 
30 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
31 {
32 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
33 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
34 		indent, "",
35 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
36 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
37 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
38 		indent, "",
39 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
40 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
41 		"r10: 0x%.16llx r11: 0x%.16llx\n",
42 		indent, "",
43 		regs->r8, regs->r9, regs->r10, regs->r11);
44 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
45 		"r14: 0x%.16llx r15: 0x%.16llx\n",
46 		indent, "",
47 		regs->r12, regs->r13, regs->r14, regs->r15);
48 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
49 		indent, "",
50 		regs->rip, regs->rflags);
51 }
52 
53 static void segment_dump(FILE *stream, struct kvm_segment *segment,
54 			 uint8_t indent)
55 {
56 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
57 		"selector: 0x%.4x type: 0x%.2x\n",
58 		indent, "", segment->base, segment->limit,
59 		segment->selector, segment->type);
60 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
61 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
62 		indent, "", segment->present, segment->dpl,
63 		segment->db, segment->s, segment->l);
64 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
65 		"unusable: 0x%.2x padding: 0x%.2x\n",
66 		indent, "", segment->g, segment->avl,
67 		segment->unusable, segment->padding);
68 }
69 
70 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
71 			uint8_t indent)
72 {
73 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
74 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
75 		indent, "", dtable->base, dtable->limit,
76 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
77 }
78 
79 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
80 {
81 	unsigned int i;
82 
83 	fprintf(stream, "%*scs:\n", indent, "");
84 	segment_dump(stream, &sregs->cs, indent + 2);
85 	fprintf(stream, "%*sds:\n", indent, "");
86 	segment_dump(stream, &sregs->ds, indent + 2);
87 	fprintf(stream, "%*ses:\n", indent, "");
88 	segment_dump(stream, &sregs->es, indent + 2);
89 	fprintf(stream, "%*sfs:\n", indent, "");
90 	segment_dump(stream, &sregs->fs, indent + 2);
91 	fprintf(stream, "%*sgs:\n", indent, "");
92 	segment_dump(stream, &sregs->gs, indent + 2);
93 	fprintf(stream, "%*sss:\n", indent, "");
94 	segment_dump(stream, &sregs->ss, indent + 2);
95 	fprintf(stream, "%*str:\n", indent, "");
96 	segment_dump(stream, &sregs->tr, indent + 2);
97 	fprintf(stream, "%*sldt:\n", indent, "");
98 	segment_dump(stream, &sregs->ldt, indent + 2);
99 
100 	fprintf(stream, "%*sgdt:\n", indent, "");
101 	dtable_dump(stream, &sregs->gdt, indent + 2);
102 	fprintf(stream, "%*sidt:\n", indent, "");
103 	dtable_dump(stream, &sregs->idt, indent + 2);
104 
105 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
106 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
107 		indent, "",
108 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
109 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
110 		"apic_base: 0x%.16llx\n",
111 		indent, "",
112 		sregs->cr8, sregs->efer, sregs->apic_base);
113 
114 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
115 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
116 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
117 			sregs->interrupt_bitmap[i]);
118 	}
119 }
120 
121 bool kvm_is_tdp_enabled(void)
122 {
123 	if (host_cpu_is_intel)
124 		return get_kvm_intel_param_bool("ept");
125 	else
126 		return get_kvm_amd_param_bool("npt");
127 }
128 
129 void virt_arch_pgd_alloc(struct kvm_vm *vm)
130 {
131 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
132 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
133 
134 	/* If needed, create page map l4 table. */
135 	if (!vm->pgd_created) {
136 		vm->pgd = vm_alloc_page_table(vm);
137 		vm->pgd_created = true;
138 	}
139 }
140 
141 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
142 			  uint64_t vaddr, int level)
143 {
144 	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
145 	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
146 	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
147 
148 	TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
149 		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
150 		    level + 1, vaddr);
151 
152 	return &page_table[index];
153 }
154 
155 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
156 				       uint64_t *parent_pte,
157 				       uint64_t vaddr,
158 				       uint64_t paddr,
159 				       int current_level,
160 				       int target_level)
161 {
162 	uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
163 
164 	paddr = vm_untag_gpa(vm, paddr);
165 
166 	if (!(*pte & PTE_PRESENT_MASK)) {
167 		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
168 		if (current_level == target_level)
169 			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
170 		else
171 			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
172 	} else {
173 		/*
174 		 * Entry already present.  Assert that the caller doesn't want
175 		 * a hugepage at this level, and that there isn't a hugepage at
176 		 * this level.
177 		 */
178 		TEST_ASSERT(current_level != target_level,
179 			    "Cannot create hugepage at level: %u, vaddr: 0x%lx",
180 			    current_level, vaddr);
181 		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
182 			    "Cannot create page table at level: %u, vaddr: 0x%lx",
183 			    current_level, vaddr);
184 	}
185 	return pte;
186 }
187 
188 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
189 {
190 	const uint64_t pg_size = PG_LEVEL_SIZE(level);
191 	uint64_t *pml4e, *pdpe, *pde;
192 	uint64_t *pte;
193 
194 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
195 		    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
196 
197 	TEST_ASSERT((vaddr % pg_size) == 0,
198 		    "Virtual address not aligned,\n"
199 		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
200 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
201 		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
202 	TEST_ASSERT((paddr % pg_size) == 0,
203 		    "Physical address not aligned,\n"
204 		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
205 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
206 		    "Physical address beyond maximum supported,\n"
207 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
208 		    paddr, vm->max_gfn, vm->page_size);
209 	TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
210 		    "Unexpected bits in paddr: %lx", paddr);
211 
212 	/*
213 	 * Allocate upper level page tables, if not already present.  Return
214 	 * early if a hugepage was created.
215 	 */
216 	pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
217 	if (*pml4e & PTE_LARGE_MASK)
218 		return;
219 
220 	pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
221 	if (*pdpe & PTE_LARGE_MASK)
222 		return;
223 
224 	pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
225 	if (*pde & PTE_LARGE_MASK)
226 		return;
227 
228 	/* Fill in page table entry. */
229 	pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
230 	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
231 		    "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
232 	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
233 
234 	/*
235 	 * Neither SEV nor TDX supports shared page tables, so only the final
236 	 * leaf PTE needs manually set the C/S-bit.
237 	 */
238 	if (vm_is_gpa_protected(vm, paddr))
239 		*pte |= vm->arch.c_bit;
240 	else
241 		*pte |= vm->arch.s_bit;
242 }
243 
244 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
245 {
246 	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
247 }
248 
249 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
250 		    uint64_t nr_bytes, int level)
251 {
252 	uint64_t pg_size = PG_LEVEL_SIZE(level);
253 	uint64_t nr_pages = nr_bytes / pg_size;
254 	int i;
255 
256 	TEST_ASSERT(nr_bytes % pg_size == 0,
257 		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
258 		    nr_bytes, pg_size);
259 
260 	for (i = 0; i < nr_pages; i++) {
261 		__virt_pg_map(vm, vaddr, paddr, level);
262 
263 		vaddr += pg_size;
264 		paddr += pg_size;
265 	}
266 }
267 
268 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
269 {
270 	if (*pte & PTE_LARGE_MASK) {
271 		TEST_ASSERT(*level == PG_LEVEL_NONE ||
272 			    *level == current_level,
273 			    "Unexpected hugepage at level %d", current_level);
274 		*level = current_level;
275 	}
276 
277 	return *level == current_level;
278 }
279 
280 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
281 				    int *level)
282 {
283 	uint64_t *pml4e, *pdpe, *pde;
284 
285 	TEST_ASSERT(!vm->arch.is_pt_protected,
286 		    "Walking page tables of protected guests is impossible");
287 
288 	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
289 		    "Invalid PG_LEVEL_* '%d'", *level);
290 
291 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
292 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
293 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
294 		(vaddr >> vm->page_shift)),
295 		"Invalid virtual address, vaddr: 0x%lx",
296 		vaddr);
297 	/*
298 	 * Based on the mode check above there are 48 bits in the vaddr, so
299 	 * shift 16 to sign extend the last bit (bit-47),
300 	 */
301 	TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
302 		"Canonical check failed.  The virtual address is invalid.");
303 
304 	pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
305 	if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
306 		return pml4e;
307 
308 	pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
309 	if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
310 		return pdpe;
311 
312 	pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
313 	if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
314 		return pde;
315 
316 	return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
317 }
318 
319 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
320 {
321 	int level = PG_LEVEL_4K;
322 
323 	return __vm_get_page_table_entry(vm, vaddr, &level);
324 }
325 
326 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
327 {
328 	uint64_t *pml4e, *pml4e_start;
329 	uint64_t *pdpe, *pdpe_start;
330 	uint64_t *pde, *pde_start;
331 	uint64_t *pte, *pte_start;
332 
333 	if (!vm->pgd_created)
334 		return;
335 
336 	fprintf(stream, "%*s                                          "
337 		"                no\n", indent, "");
338 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
339 		"addr         w exec dirty\n",
340 		indent, "");
341 	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
342 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
343 		pml4e = &pml4e_start[n1];
344 		if (!(*pml4e & PTE_PRESENT_MASK))
345 			continue;
346 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
347 			" %u\n",
348 			indent, "",
349 			pml4e - pml4e_start, pml4e,
350 			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
351 			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
352 
353 		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
354 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
355 			pdpe = &pdpe_start[n2];
356 			if (!(*pdpe & PTE_PRESENT_MASK))
357 				continue;
358 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
359 				"%u  %u\n",
360 				indent, "",
361 				pdpe - pdpe_start, pdpe,
362 				addr_hva2gpa(vm, pdpe),
363 				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
364 				!!(*pdpe & PTE_NX_MASK));
365 
366 			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
367 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
368 				pde = &pde_start[n3];
369 				if (!(*pde & PTE_PRESENT_MASK))
370 					continue;
371 				fprintf(stream, "%*spde   0x%-3zx %p "
372 					"0x%-12lx 0x%-10llx %u  %u\n",
373 					indent, "", pde - pde_start, pde,
374 					addr_hva2gpa(vm, pde),
375 					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
376 					!!(*pde & PTE_NX_MASK));
377 
378 				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
379 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
380 					pte = &pte_start[n4];
381 					if (!(*pte & PTE_PRESENT_MASK))
382 						continue;
383 					fprintf(stream, "%*spte   0x%-3zx %p "
384 						"0x%-12lx 0x%-10llx %u  %u "
385 						"    %u    0x%-10lx\n",
386 						indent, "",
387 						pte - pte_start, pte,
388 						addr_hva2gpa(vm, pte),
389 						PTE_GET_PFN(*pte),
390 						!!(*pte & PTE_WRITABLE_MASK),
391 						!!(*pte & PTE_NX_MASK),
392 						!!(*pte & PTE_DIRTY_MASK),
393 						((uint64_t) n1 << 27)
394 							| ((uint64_t) n2 << 18)
395 							| ((uint64_t) n3 << 9)
396 							| ((uint64_t) n4));
397 				}
398 			}
399 		}
400 	}
401 }
402 
403 /*
404  * Set Unusable Segment
405  *
406  * Input Args: None
407  *
408  * Output Args:
409  *   segp - Pointer to segment register
410  *
411  * Return: None
412  *
413  * Sets the segment register pointed to by @segp to an unusable state.
414  */
415 static void kvm_seg_set_unusable(struct kvm_segment *segp)
416 {
417 	memset(segp, 0, sizeof(*segp));
418 	segp->unusable = true;
419 }
420 
421 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
422 {
423 	void *gdt = addr_gva2hva(vm, vm->arch.gdt);
424 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
425 
426 	desc->limit0 = segp->limit & 0xFFFF;
427 	desc->base0 = segp->base & 0xFFFF;
428 	desc->base1 = segp->base >> 16;
429 	desc->type = segp->type;
430 	desc->s = segp->s;
431 	desc->dpl = segp->dpl;
432 	desc->p = segp->present;
433 	desc->limit1 = segp->limit >> 16;
434 	desc->avl = segp->avl;
435 	desc->l = segp->l;
436 	desc->db = segp->db;
437 	desc->g = segp->g;
438 	desc->base2 = segp->base >> 24;
439 	if (!segp->s)
440 		desc->base3 = segp->base >> 32;
441 }
442 
443 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp)
444 {
445 	memset(segp, 0, sizeof(*segp));
446 	segp->selector = KERNEL_CS;
447 	segp->limit = 0xFFFFFFFFu;
448 	segp->s = 0x1; /* kTypeCodeData */
449 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
450 					  * | kFlagCodeReadable
451 					  */
452 	segp->g = true;
453 	segp->l = true;
454 	segp->present = 1;
455 }
456 
457 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp)
458 {
459 	memset(segp, 0, sizeof(*segp));
460 	segp->selector = KERNEL_DS;
461 	segp->limit = 0xFFFFFFFFu;
462 	segp->s = 0x1; /* kTypeCodeData */
463 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
464 					  * | kFlagDataWritable
465 					  */
466 	segp->g = true;
467 	segp->present = true;
468 }
469 
470 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
471 {
472 	int level = PG_LEVEL_NONE;
473 	uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
474 
475 	TEST_ASSERT(*pte & PTE_PRESENT_MASK,
476 		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
477 
478 	/*
479 	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
480 	 * address bits to be zero.
481 	 */
482 	return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
483 }
484 
485 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp)
486 {
487 	memset(segp, 0, sizeof(*segp));
488 	segp->base = base;
489 	segp->limit = 0x67;
490 	segp->selector = KERNEL_TSS;
491 	segp->type = 0xb;
492 	segp->present = 1;
493 }
494 
495 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
496 {
497 	struct kvm_sregs sregs;
498 
499 	TEST_ASSERT_EQ(vm->mode, VM_MODE_PXXV48_4K);
500 
501 	/* Set mode specific system register values. */
502 	vcpu_sregs_get(vcpu, &sregs);
503 
504 	sregs.idt.base = vm->arch.idt;
505 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
506 	sregs.gdt.base = vm->arch.gdt;
507 	sregs.gdt.limit = getpagesize() - 1;
508 
509 	sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
510 	sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
511 	sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
512 
513 	kvm_seg_set_unusable(&sregs.ldt);
514 	kvm_seg_set_kernel_code_64bit(&sregs.cs);
515 	kvm_seg_set_kernel_data_64bit(&sregs.ds);
516 	kvm_seg_set_kernel_data_64bit(&sregs.es);
517 	kvm_seg_set_kernel_data_64bit(&sregs.gs);
518 	kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr);
519 
520 	sregs.cr3 = vm->pgd;
521 	vcpu_sregs_set(vcpu, &sregs);
522 }
523 
524 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
525 			  int dpl, unsigned short selector)
526 {
527 	struct idt_entry *base =
528 		(struct idt_entry *)addr_gva2hva(vm, vm->arch.idt);
529 	struct idt_entry *e = &base[vector];
530 
531 	memset(e, 0, sizeof(*e));
532 	e->offset0 = addr;
533 	e->selector = selector;
534 	e->ist = 0;
535 	e->type = 14;
536 	e->dpl = dpl;
537 	e->p = 1;
538 	e->offset1 = addr >> 16;
539 	e->offset2 = addr >> 32;
540 }
541 
542 static bool kvm_fixup_exception(struct ex_regs *regs)
543 {
544 	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
545 		return false;
546 
547 	if (regs->vector == DE_VECTOR)
548 		return false;
549 
550 	regs->rip = regs->r11;
551 	regs->r9 = regs->vector;
552 	regs->r10 = regs->error_code;
553 	return true;
554 }
555 
556 void route_exception(struct ex_regs *regs)
557 {
558 	typedef void(*handler)(struct ex_regs *);
559 	handler *handlers = (handler *)exception_handlers;
560 
561 	if (handlers && handlers[regs->vector]) {
562 		handlers[regs->vector](regs);
563 		return;
564 	}
565 
566 	if (kvm_fixup_exception(regs))
567 		return;
568 
569 	ucall_assert(UCALL_UNHANDLED,
570 		     "Unhandled exception in guest", __FILE__, __LINE__,
571 		     "Unhandled exception '0x%lx' at guest RIP '0x%lx'",
572 		     regs->vector, regs->rip);
573 }
574 
575 static void vm_init_descriptor_tables(struct kvm_vm *vm)
576 {
577 	extern void *idt_handlers;
578 	struct kvm_segment seg;
579 	int i;
580 
581 	vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
582 	vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
583 	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
584 	vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
585 
586 	/* Handlers have the same address in both address spaces.*/
587 	for (i = 0; i < NUM_INTERRUPTS; i++)
588 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS);
589 
590 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
591 
592 	kvm_seg_set_kernel_code_64bit(&seg);
593 	kvm_seg_fill_gdt_64bit(vm, &seg);
594 
595 	kvm_seg_set_kernel_data_64bit(&seg);
596 	kvm_seg_fill_gdt_64bit(vm, &seg);
597 
598 	kvm_seg_set_tss_64bit(vm->arch.tss, &seg);
599 	kvm_seg_fill_gdt_64bit(vm, &seg);
600 }
601 
602 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
603 			       void (*handler)(struct ex_regs *))
604 {
605 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
606 
607 	handlers[vector] = (vm_vaddr_t)handler;
608 }
609 
610 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
611 {
612 	struct ucall uc;
613 
614 	if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED)
615 		REPORT_GUEST_ASSERT(uc);
616 }
617 
618 void kvm_arch_vm_post_create(struct kvm_vm *vm)
619 {
620 	int r;
621 
622 	TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ),
623 		    "Require KVM_GET_TSC_KHZ to provide udelay() to guest.");
624 
625 	vm_create_irqchip(vm);
626 	vm_init_descriptor_tables(vm);
627 
628 	sync_global_to_guest(vm, host_cpu_is_intel);
629 	sync_global_to_guest(vm, host_cpu_is_amd);
630 	sync_global_to_guest(vm, is_forced_emulation_enabled);
631 
632 	if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
633 		struct kvm_sev_init init = { 0 };
634 
635 		vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
636 	}
637 
638 	r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL);
639 	TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency.");
640 	guest_tsc_khz = r;
641 	sync_global_to_guest(vm, guest_tsc_khz);
642 }
643 
644 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
645 {
646 	struct kvm_regs regs;
647 
648 	vcpu_regs_get(vcpu, &regs);
649 	regs.rip = (unsigned long) guest_code;
650 	vcpu_regs_set(vcpu, &regs);
651 }
652 
653 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
654 {
655 	struct kvm_mp_state mp_state;
656 	struct kvm_regs regs;
657 	vm_vaddr_t stack_vaddr;
658 	struct kvm_vcpu *vcpu;
659 
660 	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
661 				       DEFAULT_GUEST_STACK_VADDR_MIN,
662 				       MEM_REGION_DATA);
663 
664 	stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
665 
666 	/*
667 	 * Align stack to match calling sequence requirements in section "The
668 	 * Stack Frame" of the System V ABI AMD64 Architecture Processor
669 	 * Supplement, which requires the value (%rsp + 8) to be a multiple of
670 	 * 16 when control is transferred to the function entry point.
671 	 *
672 	 * If this code is ever used to launch a vCPU with 32-bit entry point it
673 	 * may need to subtract 4 bytes instead of 8 bytes.
674 	 */
675 	TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
676 		    "__vm_vaddr_alloc() did not provide a page-aligned address");
677 	stack_vaddr -= 8;
678 
679 	vcpu = __vm_vcpu_add(vm, vcpu_id);
680 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
681 	vcpu_init_sregs(vm, vcpu);
682 
683 	/* Setup guest general purpose registers */
684 	vcpu_regs_get(vcpu, &regs);
685 	regs.rflags = regs.rflags | 0x2;
686 	regs.rsp = stack_vaddr;
687 	vcpu_regs_set(vcpu, &regs);
688 
689 	/* Setup the MP state */
690 	mp_state.mp_state = 0;
691 	vcpu_mp_state_set(vcpu, &mp_state);
692 
693 	return vcpu;
694 }
695 
696 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
697 {
698 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
699 
700 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
701 
702 	return vcpu;
703 }
704 
705 void vcpu_arch_free(struct kvm_vcpu *vcpu)
706 {
707 	if (vcpu->cpuid)
708 		free(vcpu->cpuid);
709 }
710 
711 /* Do not use kvm_supported_cpuid directly except for validity checks. */
712 static void *kvm_supported_cpuid;
713 
714 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
715 {
716 	int kvm_fd;
717 
718 	if (kvm_supported_cpuid)
719 		return kvm_supported_cpuid;
720 
721 	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
722 	kvm_fd = open_kvm_dev_path_or_exit();
723 
724 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
725 		  (struct kvm_cpuid2 *)kvm_supported_cpuid);
726 
727 	close(kvm_fd);
728 	return kvm_supported_cpuid;
729 }
730 
731 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
732 			      uint32_t function, uint32_t index,
733 			      uint8_t reg, uint8_t lo, uint8_t hi)
734 {
735 	const struct kvm_cpuid_entry2 *entry;
736 	int i;
737 
738 	for (i = 0; i < cpuid->nent; i++) {
739 		entry = &cpuid->entries[i];
740 
741 		/*
742 		 * The output registers in kvm_cpuid_entry2 are in alphabetical
743 		 * order, but kvm_x86_cpu_feature matches that mess, so yay
744 		 * pointer shenanigans!
745 		 */
746 		if (entry->function == function && entry->index == index)
747 			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
748 	}
749 
750 	return 0;
751 }
752 
753 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
754 		   struct kvm_x86_cpu_feature feature)
755 {
756 	return __kvm_cpu_has(cpuid, feature.function, feature.index,
757 			     feature.reg, feature.bit, feature.bit);
758 }
759 
760 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
761 			    struct kvm_x86_cpu_property property)
762 {
763 	return __kvm_cpu_has(cpuid, property.function, property.index,
764 			     property.reg, property.lo_bit, property.hi_bit);
765 }
766 
767 uint64_t kvm_get_feature_msr(uint64_t msr_index)
768 {
769 	struct {
770 		struct kvm_msrs header;
771 		struct kvm_msr_entry entry;
772 	} buffer = {};
773 	int r, kvm_fd;
774 
775 	buffer.header.nmsrs = 1;
776 	buffer.entry.index = msr_index;
777 	kvm_fd = open_kvm_dev_path_or_exit();
778 
779 	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
780 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
781 
782 	close(kvm_fd);
783 	return buffer.entry.data;
784 }
785 
786 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
787 {
788 	int kvm_fd;
789 	u64 bitmask;
790 	long rc;
791 	struct kvm_device_attr attr = {
792 		.group = 0,
793 		.attr = KVM_X86_XCOMP_GUEST_SUPP,
794 		.addr = (unsigned long) &bitmask,
795 	};
796 
797 	TEST_ASSERT(!kvm_supported_cpuid,
798 		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
799 
800 	TEST_ASSERT(is_power_of_2(xfeature),
801 		    "Dynamic XFeatures must be enabled one at a time");
802 
803 	kvm_fd = open_kvm_dev_path_or_exit();
804 	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
805 	close(kvm_fd);
806 
807 	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
808 		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
809 
810 	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
811 
812 	__TEST_REQUIRE(bitmask & xfeature,
813 		       "Required XSAVE feature '%s' not supported", name);
814 
815 	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
816 
817 	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
818 	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
819 	TEST_ASSERT(bitmask & xfeature,
820 		    "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
821 		    name, xfeature, bitmask);
822 }
823 
824 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
825 {
826 	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
827 
828 	/* Allow overriding the default CPUID. */
829 	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
830 		free(vcpu->cpuid);
831 		vcpu->cpuid = NULL;
832 	}
833 
834 	if (!vcpu->cpuid)
835 		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
836 
837 	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
838 	vcpu_set_cpuid(vcpu);
839 }
840 
841 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
842 			     struct kvm_x86_cpu_property property,
843 			     uint32_t value)
844 {
845 	struct kvm_cpuid_entry2 *entry;
846 
847 	entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
848 
849 	(&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
850 	(&entry->eax)[property.reg] |= value << property.lo_bit;
851 
852 	vcpu_set_cpuid(vcpu);
853 
854 	/* Sanity check that @value doesn't exceed the bounds in any way. */
855 	TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
856 }
857 
858 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
859 {
860 	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
861 
862 	entry->eax = 0;
863 	entry->ebx = 0;
864 	entry->ecx = 0;
865 	entry->edx = 0;
866 	vcpu_set_cpuid(vcpu);
867 }
868 
869 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
870 				     struct kvm_x86_cpu_feature feature,
871 				     bool set)
872 {
873 	struct kvm_cpuid_entry2 *entry;
874 	u32 *reg;
875 
876 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
877 	reg = (&entry->eax) + feature.reg;
878 
879 	if (set)
880 		*reg |= BIT(feature.bit);
881 	else
882 		*reg &= ~BIT(feature.bit);
883 
884 	vcpu_set_cpuid(vcpu);
885 }
886 
887 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
888 {
889 	struct {
890 		struct kvm_msrs header;
891 		struct kvm_msr_entry entry;
892 	} buffer = {};
893 
894 	buffer.header.nmsrs = 1;
895 	buffer.entry.index = msr_index;
896 
897 	vcpu_msrs_get(vcpu, &buffer.header);
898 
899 	return buffer.entry.data;
900 }
901 
902 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
903 {
904 	struct {
905 		struct kvm_msrs header;
906 		struct kvm_msr_entry entry;
907 	} buffer = {};
908 
909 	memset(&buffer, 0, sizeof(buffer));
910 	buffer.header.nmsrs = 1;
911 	buffer.entry.index = msr_index;
912 	buffer.entry.data = msr_value;
913 
914 	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
915 }
916 
917 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
918 {
919 	va_list ap;
920 	struct kvm_regs regs;
921 
922 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
923 		    "  num: %u",
924 		    num);
925 
926 	va_start(ap, num);
927 	vcpu_regs_get(vcpu, &regs);
928 
929 	if (num >= 1)
930 		regs.rdi = va_arg(ap, uint64_t);
931 
932 	if (num >= 2)
933 		regs.rsi = va_arg(ap, uint64_t);
934 
935 	if (num >= 3)
936 		regs.rdx = va_arg(ap, uint64_t);
937 
938 	if (num >= 4)
939 		regs.rcx = va_arg(ap, uint64_t);
940 
941 	if (num >= 5)
942 		regs.r8 = va_arg(ap, uint64_t);
943 
944 	if (num >= 6)
945 		regs.r9 = va_arg(ap, uint64_t);
946 
947 	vcpu_regs_set(vcpu, &regs);
948 	va_end(ap);
949 }
950 
951 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
952 {
953 	struct kvm_regs regs;
954 	struct kvm_sregs sregs;
955 
956 	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
957 
958 	fprintf(stream, "%*sregs:\n", indent + 2, "");
959 	vcpu_regs_get(vcpu, &regs);
960 	regs_dump(stream, &regs, indent + 4);
961 
962 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
963 	vcpu_sregs_get(vcpu, &sregs);
964 	sregs_dump(stream, &sregs, indent + 4);
965 }
966 
967 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
968 {
969 	struct kvm_msr_list *list;
970 	struct kvm_msr_list nmsrs;
971 	int kvm_fd, r;
972 
973 	kvm_fd = open_kvm_dev_path_or_exit();
974 
975 	nmsrs.nmsrs = 0;
976 	if (!feature_msrs)
977 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
978 	else
979 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
980 
981 	TEST_ASSERT(r == -1 && errno == E2BIG,
982 		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
983 		    r, errno, strerror(errno));
984 
985 	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
986 	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
987 	list->nmsrs = nmsrs.nmsrs;
988 
989 	if (!feature_msrs)
990 		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
991 	else
992 		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
993 	close(kvm_fd);
994 
995 	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
996 		    "Number of MSRs in list changed, was %d, now %d",
997 		    nmsrs.nmsrs, list->nmsrs);
998 	return list;
999 }
1000 
1001 const struct kvm_msr_list *kvm_get_msr_index_list(void)
1002 {
1003 	static const struct kvm_msr_list *list;
1004 
1005 	if (!list)
1006 		list = __kvm_get_msr_index_list(false);
1007 	return list;
1008 }
1009 
1010 
1011 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
1012 {
1013 	static const struct kvm_msr_list *list;
1014 
1015 	if (!list)
1016 		list = __kvm_get_msr_index_list(true);
1017 	return list;
1018 }
1019 
1020 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
1021 {
1022 	const struct kvm_msr_list *list = kvm_get_msr_index_list();
1023 	int i;
1024 
1025 	for (i = 0; i < list->nmsrs; ++i) {
1026 		if (list->indices[i] == msr_index)
1027 			return true;
1028 	}
1029 
1030 	return false;
1031 }
1032 
1033 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
1034 				  struct kvm_x86_state *state)
1035 {
1036 	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
1037 
1038 	if (size) {
1039 		state->xsave = malloc(size);
1040 		vcpu_xsave2_get(vcpu, state->xsave);
1041 	} else {
1042 		state->xsave = malloc(sizeof(struct kvm_xsave));
1043 		vcpu_xsave_get(vcpu, state->xsave);
1044 	}
1045 }
1046 
1047 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
1048 {
1049 	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
1050 	struct kvm_x86_state *state;
1051 	int i;
1052 
1053 	static int nested_size = -1;
1054 
1055 	if (nested_size == -1) {
1056 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1057 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1058 			    "Nested state size too big, %i > %zi",
1059 			    nested_size, sizeof(state->nested_));
1060 	}
1061 
1062 	/*
1063 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1064 	 * guest state is consistent only after userspace re-enters the
1065 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1066 	 * to a new VM.
1067 	 */
1068 	vcpu_run_complete_io(vcpu);
1069 
1070 	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
1071 	TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
1072 
1073 	vcpu_events_get(vcpu, &state->events);
1074 	vcpu_mp_state_get(vcpu, &state->mp_state);
1075 	vcpu_regs_get(vcpu, &state->regs);
1076 	vcpu_save_xsave_state(vcpu, state);
1077 
1078 	if (kvm_has_cap(KVM_CAP_XCRS))
1079 		vcpu_xcrs_get(vcpu, &state->xcrs);
1080 
1081 	vcpu_sregs_get(vcpu, &state->sregs);
1082 
1083 	if (nested_size) {
1084 		state->nested.size = sizeof(state->nested_);
1085 
1086 		vcpu_nested_state_get(vcpu, &state->nested);
1087 		TEST_ASSERT(state->nested.size <= nested_size,
1088 			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1089 			    state->nested.size, nested_size);
1090 	} else {
1091 		state->nested.size = 0;
1092 	}
1093 
1094 	state->msrs.nmsrs = msr_list->nmsrs;
1095 	for (i = 0; i < msr_list->nmsrs; i++)
1096 		state->msrs.entries[i].index = msr_list->indices[i];
1097 	vcpu_msrs_get(vcpu, &state->msrs);
1098 
1099 	vcpu_debugregs_get(vcpu, &state->debugregs);
1100 
1101 	return state;
1102 }
1103 
1104 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1105 {
1106 	vcpu_sregs_set(vcpu, &state->sregs);
1107 	vcpu_msrs_set(vcpu, &state->msrs);
1108 
1109 	if (kvm_has_cap(KVM_CAP_XCRS))
1110 		vcpu_xcrs_set(vcpu, &state->xcrs);
1111 
1112 	vcpu_xsave_set(vcpu,  state->xsave);
1113 	vcpu_events_set(vcpu, &state->events);
1114 	vcpu_mp_state_set(vcpu, &state->mp_state);
1115 	vcpu_debugregs_set(vcpu, &state->debugregs);
1116 	vcpu_regs_set(vcpu, &state->regs);
1117 
1118 	if (state->nested.size)
1119 		vcpu_nested_state_set(vcpu, &state->nested);
1120 }
1121 
1122 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1123 {
1124 	free(state->xsave);
1125 	free(state);
1126 }
1127 
1128 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1129 {
1130 	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1131 		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1132 		*va_bits = 32;
1133 	} else {
1134 		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1135 		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1136 	}
1137 }
1138 
1139 void kvm_init_vm_address_properties(struct kvm_vm *vm)
1140 {
1141 	if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
1142 		vm->arch.sev_fd = open_sev_dev_path_or_exit();
1143 		vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
1144 		vm->gpa_tag_mask = vm->arch.c_bit;
1145 	} else {
1146 		vm->arch.sev_fd = -1;
1147 	}
1148 }
1149 
1150 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1151 					       uint32_t function, uint32_t index)
1152 {
1153 	int i;
1154 
1155 	for (i = 0; i < cpuid->nent; i++) {
1156 		if (cpuid->entries[i].function == function &&
1157 		    cpuid->entries[i].index == index)
1158 			return &cpuid->entries[i];
1159 	}
1160 
1161 	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1162 
1163 	return NULL;
1164 }
1165 
1166 #define X86_HYPERCALL(inputs...)					\
1167 ({									\
1168 	uint64_t r;							\
1169 									\
1170 	asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"		\
1171 		     "jnz 1f\n\t"					\
1172 		     "vmcall\n\t"					\
1173 		     "jmp 2f\n\t"					\
1174 		     "1: vmmcall\n\t"					\
1175 		     "2:"						\
1176 		     : "=a"(r)						\
1177 		     : [use_vmmcall] "r" (host_cpu_is_amd), inputs);	\
1178 									\
1179 	r;								\
1180 })
1181 
1182 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1183 		       uint64_t a3)
1184 {
1185 	return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1186 }
1187 
1188 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1189 {
1190 	return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1191 }
1192 
1193 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1194 {
1195 	GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1196 }
1197 
1198 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1199 {
1200 	static struct kvm_cpuid2 *cpuid;
1201 	int kvm_fd;
1202 
1203 	if (cpuid)
1204 		return cpuid;
1205 
1206 	cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1207 	kvm_fd = open_kvm_dev_path_or_exit();
1208 
1209 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1210 
1211 	close(kvm_fd);
1212 	return cpuid;
1213 }
1214 
1215 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
1216 {
1217 	static struct kvm_cpuid2 *cpuid_full;
1218 	const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1219 	int i, nent = 0;
1220 
1221 	if (!cpuid_full) {
1222 		cpuid_sys = kvm_get_supported_cpuid();
1223 		cpuid_hv = kvm_get_supported_hv_cpuid();
1224 
1225 		cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
1226 		if (!cpuid_full) {
1227 			perror("malloc");
1228 			abort();
1229 		}
1230 
1231 		/* Need to skip KVM CPUID leaves 0x400000xx */
1232 		for (i = 0; i < cpuid_sys->nent; i++) {
1233 			if (cpuid_sys->entries[i].function >= 0x40000000 &&
1234 			    cpuid_sys->entries[i].function < 0x40000100)
1235 				continue;
1236 			cpuid_full->entries[nent] = cpuid_sys->entries[i];
1237 			nent++;
1238 		}
1239 
1240 		memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1241 		       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1242 		cpuid_full->nent = nent + cpuid_hv->nent;
1243 	}
1244 
1245 	vcpu_init_cpuid(vcpu, cpuid_full);
1246 }
1247 
1248 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
1249 {
1250 	struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1251 
1252 	vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1253 
1254 	return cpuid;
1255 }
1256 
1257 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1258 {
1259 	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1260 	unsigned long ht_gfn, max_gfn, max_pfn;
1261 	uint8_t maxphyaddr, guest_maxphyaddr;
1262 
1263 	/*
1264 	 * Use "guest MAXPHYADDR" from KVM if it's available.  Guest MAXPHYADDR
1265 	 * enumerates the max _mappable_ GPA, which can be less than the raw
1266 	 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU
1267 	 * doesn't support 5-level TDP.
1268 	 */
1269 	guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR);
1270 	guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits;
1271 	TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits,
1272 		    "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR");
1273 
1274 	max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1;
1275 
1276 	/* Avoid reserved HyperTransport region on AMD processors.  */
1277 	if (!host_cpu_is_amd)
1278 		return max_gfn;
1279 
1280 	/* On parts with <40 physical address bits, the area is fully hidden */
1281 	if (vm->pa_bits < 40)
1282 		return max_gfn;
1283 
1284 	/* Before family 17h, the HyperTransport area is just below 1T.  */
1285 	ht_gfn = (1 << 28) - num_ht_pages;
1286 	if (this_cpu_family() < 0x17)
1287 		goto done;
1288 
1289 	/*
1290 	 * Otherwise it's at the top of the physical address space, possibly
1291 	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1292 	 * the old conservative value if MAXPHYADDR is not enumerated.
1293 	 */
1294 	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1295 		goto done;
1296 
1297 	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1298 	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1299 
1300 	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1301 		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1302 
1303 	ht_gfn = max_pfn - num_ht_pages;
1304 done:
1305 	return min(max_gfn, ht_gfn - 1);
1306 }
1307 
1308 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
1309 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1310 {
1311 	/* Ensure that a KVM vendor-specific module is loaded. */
1312 	if (vm == NULL)
1313 		close(open_kvm_dev_path_or_exit());
1314 
1315 	return get_kvm_intel_param_bool("unrestricted_guest");
1316 }
1317 
1318 void kvm_selftest_arch_init(void)
1319 {
1320 	host_cpu_is_intel = this_cpu_is_intel();
1321 	host_cpu_is_amd = this_cpu_is_amd();
1322 	is_forced_emulation_enabled = kvm_is_forced_emulation_enabled();
1323 }
1324 
1325 bool sys_clocksource_is_based_on_tsc(void)
1326 {
1327 	char *clk_name = sys_get_cur_clocksource();
1328 	bool ret = !strcmp(clk_name, "tsc\n") ||
1329 		   !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1330 
1331 	free(clk_name);
1332 
1333 	return ret;
1334 }
1335