xref: /linux/tools/testing/selftests/kvm/lib/x86/processor.c (revision ec5806639e39950527593e3be0efe7f0d7b65bf7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #include "linux/bitmap.h"
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "pmu.h"
10 #include "processor.h"
11 #include "sev.h"
12 
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16 
17 #define KERNEL_CS	0x8
18 #define KERNEL_DS	0x10
19 #define KERNEL_TSS	0x18
20 
21 vm_vaddr_t exception_handlers;
22 bool host_cpu_is_amd;
23 bool host_cpu_is_intel;
24 bool is_forced_emulation_enabled;
25 uint64_t guest_tsc_khz;
26 
27 const char *ex_str(int vector)
28 {
29 	switch (vector) {
30 #define VEC_STR(v) case v##_VECTOR: return "#" #v
31 	case DE_VECTOR: return "no exception";
32 	case KVM_MAGIC_DE_VECTOR: return "#DE";
33 	VEC_STR(DB);
34 	VEC_STR(NMI);
35 	VEC_STR(BP);
36 	VEC_STR(OF);
37 	VEC_STR(BR);
38 	VEC_STR(UD);
39 	VEC_STR(NM);
40 	VEC_STR(DF);
41 	VEC_STR(TS);
42 	VEC_STR(NP);
43 	VEC_STR(SS);
44 	VEC_STR(GP);
45 	VEC_STR(PF);
46 	VEC_STR(MF);
47 	VEC_STR(AC);
48 	VEC_STR(MC);
49 	VEC_STR(XM);
50 	VEC_STR(VE);
51 	VEC_STR(CP);
52 	VEC_STR(HV);
53 	VEC_STR(VC);
54 	VEC_STR(SX);
55 	default: return "#??";
56 #undef VEC_STR
57 	}
58 }
59 
60 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
61 {
62 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
63 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
64 		indent, "",
65 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
66 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
67 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
68 		indent, "",
69 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
70 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
71 		"r10: 0x%.16llx r11: 0x%.16llx\n",
72 		indent, "",
73 		regs->r8, regs->r9, regs->r10, regs->r11);
74 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
75 		"r14: 0x%.16llx r15: 0x%.16llx\n",
76 		indent, "",
77 		regs->r12, regs->r13, regs->r14, regs->r15);
78 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
79 		indent, "",
80 		regs->rip, regs->rflags);
81 }
82 
83 static void segment_dump(FILE *stream, struct kvm_segment *segment,
84 			 uint8_t indent)
85 {
86 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
87 		"selector: 0x%.4x type: 0x%.2x\n",
88 		indent, "", segment->base, segment->limit,
89 		segment->selector, segment->type);
90 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
91 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
92 		indent, "", segment->present, segment->dpl,
93 		segment->db, segment->s, segment->l);
94 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
95 		"unusable: 0x%.2x padding: 0x%.2x\n",
96 		indent, "", segment->g, segment->avl,
97 		segment->unusable, segment->padding);
98 }
99 
100 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
101 			uint8_t indent)
102 {
103 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
104 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
105 		indent, "", dtable->base, dtable->limit,
106 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
107 }
108 
109 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
110 {
111 	unsigned int i;
112 
113 	fprintf(stream, "%*scs:\n", indent, "");
114 	segment_dump(stream, &sregs->cs, indent + 2);
115 	fprintf(stream, "%*sds:\n", indent, "");
116 	segment_dump(stream, &sregs->ds, indent + 2);
117 	fprintf(stream, "%*ses:\n", indent, "");
118 	segment_dump(stream, &sregs->es, indent + 2);
119 	fprintf(stream, "%*sfs:\n", indent, "");
120 	segment_dump(stream, &sregs->fs, indent + 2);
121 	fprintf(stream, "%*sgs:\n", indent, "");
122 	segment_dump(stream, &sregs->gs, indent + 2);
123 	fprintf(stream, "%*sss:\n", indent, "");
124 	segment_dump(stream, &sregs->ss, indent + 2);
125 	fprintf(stream, "%*str:\n", indent, "");
126 	segment_dump(stream, &sregs->tr, indent + 2);
127 	fprintf(stream, "%*sldt:\n", indent, "");
128 	segment_dump(stream, &sregs->ldt, indent + 2);
129 
130 	fprintf(stream, "%*sgdt:\n", indent, "");
131 	dtable_dump(stream, &sregs->gdt, indent + 2);
132 	fprintf(stream, "%*sidt:\n", indent, "");
133 	dtable_dump(stream, &sregs->idt, indent + 2);
134 
135 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
136 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
137 		indent, "",
138 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
139 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
140 		"apic_base: 0x%.16llx\n",
141 		indent, "",
142 		sregs->cr8, sregs->efer, sregs->apic_base);
143 
144 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
145 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
146 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
147 			sregs->interrupt_bitmap[i]);
148 	}
149 }
150 
151 bool kvm_is_tdp_enabled(void)
152 {
153 	if (host_cpu_is_intel)
154 		return get_kvm_intel_param_bool("ept");
155 	else
156 		return get_kvm_amd_param_bool("npt");
157 }
158 
159 void virt_arch_pgd_alloc(struct kvm_vm *vm)
160 {
161 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
162 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
163 
164 	/* If needed, create the top-level page table. */
165 	if (!vm->pgd_created) {
166 		vm->pgd = vm_alloc_page_table(vm);
167 		vm->pgd_created = true;
168 	}
169 }
170 
171 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
172 			  uint64_t vaddr, int level)
173 {
174 	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
175 	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
176 	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
177 
178 	TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
179 		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
180 		    level + 1, vaddr);
181 
182 	return &page_table[index];
183 }
184 
185 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
186 				       uint64_t *parent_pte,
187 				       uint64_t vaddr,
188 				       uint64_t paddr,
189 				       int current_level,
190 				       int target_level)
191 {
192 	uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
193 
194 	paddr = vm_untag_gpa(vm, paddr);
195 
196 	if (!(*pte & PTE_PRESENT_MASK)) {
197 		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
198 		if (current_level == target_level)
199 			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
200 		else
201 			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
202 	} else {
203 		/*
204 		 * Entry already present.  Assert that the caller doesn't want
205 		 * a hugepage at this level, and that there isn't a hugepage at
206 		 * this level.
207 		 */
208 		TEST_ASSERT(current_level != target_level,
209 			    "Cannot create hugepage at level: %u, vaddr: 0x%lx",
210 			    current_level, vaddr);
211 		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
212 			    "Cannot create page table at level: %u, vaddr: 0x%lx",
213 			    current_level, vaddr);
214 	}
215 	return pte;
216 }
217 
218 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
219 {
220 	const uint64_t pg_size = PG_LEVEL_SIZE(level);
221 	uint64_t *pte = &vm->pgd;
222 	int current_level;
223 
224 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
225 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
226 
227 	TEST_ASSERT((vaddr % pg_size) == 0,
228 		    "Virtual address not aligned,\n"
229 		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
230 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
231 		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
232 	TEST_ASSERT((paddr % pg_size) == 0,
233 		    "Physical address not aligned,\n"
234 		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
235 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
236 		    "Physical address beyond maximum supported,\n"
237 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
238 		    paddr, vm->max_gfn, vm->page_size);
239 	TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
240 		    "Unexpected bits in paddr: %lx", paddr);
241 
242 	/*
243 	 * Allocate upper level page tables, if not already present.  Return
244 	 * early if a hugepage was created.
245 	 */
246 	for (current_level = vm->pgtable_levels;
247 	     current_level > PG_LEVEL_4K;
248 	     current_level--) {
249 		pte = virt_create_upper_pte(vm, pte, vaddr, paddr,
250 					    current_level, level);
251 		if (*pte & PTE_LARGE_MASK)
252 			return;
253 	}
254 
255 	/* Fill in page table entry. */
256 	pte = virt_get_pte(vm, pte, vaddr, PG_LEVEL_4K);
257 	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
258 		    "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
259 	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
260 
261 	/*
262 	 * Neither SEV nor TDX supports shared page tables, so only the final
263 	 * leaf PTE needs manually set the C/S-bit.
264 	 */
265 	if (vm_is_gpa_protected(vm, paddr))
266 		*pte |= vm->arch.c_bit;
267 	else
268 		*pte |= vm->arch.s_bit;
269 }
270 
271 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
272 {
273 	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
274 }
275 
276 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
277 		    uint64_t nr_bytes, int level)
278 {
279 	uint64_t pg_size = PG_LEVEL_SIZE(level);
280 	uint64_t nr_pages = nr_bytes / pg_size;
281 	int i;
282 
283 	TEST_ASSERT(nr_bytes % pg_size == 0,
284 		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
285 		    nr_bytes, pg_size);
286 
287 	for (i = 0; i < nr_pages; i++) {
288 		__virt_pg_map(vm, vaddr, paddr, level);
289 
290 		vaddr += pg_size;
291 		paddr += pg_size;
292 	}
293 }
294 
295 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
296 {
297 	if (*pte & PTE_LARGE_MASK) {
298 		TEST_ASSERT(*level == PG_LEVEL_NONE ||
299 			    *level == current_level,
300 			    "Unexpected hugepage at level %d", current_level);
301 		*level = current_level;
302 	}
303 
304 	return *level == current_level;
305 }
306 
307 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
308 				    int *level)
309 {
310 	int va_width = 12 + (vm->pgtable_levels) * 9;
311 	uint64_t *pte = &vm->pgd;
312 	int current_level;
313 
314 	TEST_ASSERT(!vm->arch.is_pt_protected,
315 		    "Walking page tables of protected guests is impossible");
316 
317 	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level <= vm->pgtable_levels,
318 		    "Invalid PG_LEVEL_* '%d'", *level);
319 
320 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
321 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
322 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
323 		(vaddr >> vm->page_shift)),
324 		"Invalid virtual address, vaddr: 0x%lx",
325 		vaddr);
326 	/*
327 	 * Check that the vaddr is a sign-extended va_width value.
328 	 */
329 	TEST_ASSERT(vaddr ==
330 		    (((int64_t)vaddr << (64 - va_width) >> (64 - va_width))),
331 		    "Canonical check failed.  The virtual address is invalid.");
332 
333 	for (current_level = vm->pgtable_levels;
334 	     current_level > PG_LEVEL_4K;
335 	     current_level--) {
336 		pte = virt_get_pte(vm, pte, vaddr, current_level);
337 		if (vm_is_target_pte(pte, level, current_level))
338 			return pte;
339 	}
340 
341 	return virt_get_pte(vm, pte, vaddr, PG_LEVEL_4K);
342 }
343 
344 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
345 {
346 	int level = PG_LEVEL_4K;
347 
348 	return __vm_get_page_table_entry(vm, vaddr, &level);
349 }
350 
351 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
352 {
353 	uint64_t *pml4e, *pml4e_start;
354 	uint64_t *pdpe, *pdpe_start;
355 	uint64_t *pde, *pde_start;
356 	uint64_t *pte, *pte_start;
357 
358 	if (!vm->pgd_created)
359 		return;
360 
361 	fprintf(stream, "%*s                                          "
362 		"                no\n", indent, "");
363 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
364 		"addr         w exec dirty\n",
365 		indent, "");
366 	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
367 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
368 		pml4e = &pml4e_start[n1];
369 		if (!(*pml4e & PTE_PRESENT_MASK))
370 			continue;
371 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
372 			" %u\n",
373 			indent, "",
374 			pml4e - pml4e_start, pml4e,
375 			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
376 			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
377 
378 		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
379 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
380 			pdpe = &pdpe_start[n2];
381 			if (!(*pdpe & PTE_PRESENT_MASK))
382 				continue;
383 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
384 				"%u  %u\n",
385 				indent, "",
386 				pdpe - pdpe_start, pdpe,
387 				addr_hva2gpa(vm, pdpe),
388 				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
389 				!!(*pdpe & PTE_NX_MASK));
390 
391 			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
392 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
393 				pde = &pde_start[n3];
394 				if (!(*pde & PTE_PRESENT_MASK))
395 					continue;
396 				fprintf(stream, "%*spde   0x%-3zx %p "
397 					"0x%-12lx 0x%-10llx %u  %u\n",
398 					indent, "", pde - pde_start, pde,
399 					addr_hva2gpa(vm, pde),
400 					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
401 					!!(*pde & PTE_NX_MASK));
402 
403 				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
404 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
405 					pte = &pte_start[n4];
406 					if (!(*pte & PTE_PRESENT_MASK))
407 						continue;
408 					fprintf(stream, "%*spte   0x%-3zx %p "
409 						"0x%-12lx 0x%-10llx %u  %u "
410 						"    %u    0x%-10lx\n",
411 						indent, "",
412 						pte - pte_start, pte,
413 						addr_hva2gpa(vm, pte),
414 						PTE_GET_PFN(*pte),
415 						!!(*pte & PTE_WRITABLE_MASK),
416 						!!(*pte & PTE_NX_MASK),
417 						!!(*pte & PTE_DIRTY_MASK),
418 						((uint64_t) n1 << 27)
419 							| ((uint64_t) n2 << 18)
420 							| ((uint64_t) n3 << 9)
421 							| ((uint64_t) n4));
422 				}
423 			}
424 		}
425 	}
426 }
427 
428 /*
429  * Set Unusable Segment
430  *
431  * Input Args: None
432  *
433  * Output Args:
434  *   segp - Pointer to segment register
435  *
436  * Return: None
437  *
438  * Sets the segment register pointed to by @segp to an unusable state.
439  */
440 static void kvm_seg_set_unusable(struct kvm_segment *segp)
441 {
442 	memset(segp, 0, sizeof(*segp));
443 	segp->unusable = true;
444 }
445 
446 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
447 {
448 	void *gdt = addr_gva2hva(vm, vm->arch.gdt);
449 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
450 
451 	desc->limit0 = segp->limit & 0xFFFF;
452 	desc->base0 = segp->base & 0xFFFF;
453 	desc->base1 = segp->base >> 16;
454 	desc->type = segp->type;
455 	desc->s = segp->s;
456 	desc->dpl = segp->dpl;
457 	desc->p = segp->present;
458 	desc->limit1 = segp->limit >> 16;
459 	desc->avl = segp->avl;
460 	desc->l = segp->l;
461 	desc->db = segp->db;
462 	desc->g = segp->g;
463 	desc->base2 = segp->base >> 24;
464 	if (!segp->s)
465 		desc->base3 = segp->base >> 32;
466 }
467 
468 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp)
469 {
470 	memset(segp, 0, sizeof(*segp));
471 	segp->selector = KERNEL_CS;
472 	segp->limit = 0xFFFFFFFFu;
473 	segp->s = 0x1; /* kTypeCodeData */
474 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
475 					  * | kFlagCodeReadable
476 					  */
477 	segp->g = true;
478 	segp->l = true;
479 	segp->present = 1;
480 }
481 
482 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp)
483 {
484 	memset(segp, 0, sizeof(*segp));
485 	segp->selector = KERNEL_DS;
486 	segp->limit = 0xFFFFFFFFu;
487 	segp->s = 0x1; /* kTypeCodeData */
488 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
489 					  * | kFlagDataWritable
490 					  */
491 	segp->g = true;
492 	segp->present = true;
493 }
494 
495 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
496 {
497 	int level = PG_LEVEL_NONE;
498 	uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
499 
500 	TEST_ASSERT(*pte & PTE_PRESENT_MASK,
501 		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
502 
503 	/*
504 	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
505 	 * address bits to be zero.
506 	 */
507 	return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
508 }
509 
510 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp)
511 {
512 	memset(segp, 0, sizeof(*segp));
513 	segp->base = base;
514 	segp->limit = 0x67;
515 	segp->selector = KERNEL_TSS;
516 	segp->type = 0xb;
517 	segp->present = 1;
518 }
519 
520 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
521 {
522 	struct kvm_sregs sregs;
523 
524 	TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
525 		    "Unknown or unsupported guest mode: 0x%x", vm->mode);
526 
527 	/* Set mode specific system register values. */
528 	vcpu_sregs_get(vcpu, &sregs);
529 
530 	sregs.idt.base = vm->arch.idt;
531 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
532 	sregs.gdt.base = vm->arch.gdt;
533 	sregs.gdt.limit = getpagesize() - 1;
534 
535 	sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
536 	sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
537 	if (kvm_cpu_has(X86_FEATURE_XSAVE))
538 		sregs.cr4 |= X86_CR4_OSXSAVE;
539 	if (vm->pgtable_levels == 5)
540 		sregs.cr4 |= X86_CR4_LA57;
541 	sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
542 
543 	kvm_seg_set_unusable(&sregs.ldt);
544 	kvm_seg_set_kernel_code_64bit(&sregs.cs);
545 	kvm_seg_set_kernel_data_64bit(&sregs.ds);
546 	kvm_seg_set_kernel_data_64bit(&sregs.es);
547 	kvm_seg_set_kernel_data_64bit(&sregs.gs);
548 	kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr);
549 
550 	sregs.cr3 = vm->pgd;
551 	vcpu_sregs_set(vcpu, &sregs);
552 }
553 
554 static void vcpu_init_xcrs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
555 {
556 	struct kvm_xcrs xcrs = {
557 		.nr_xcrs = 1,
558 		.xcrs[0].xcr = 0,
559 		.xcrs[0].value = kvm_cpu_supported_xcr0(),
560 	};
561 
562 	if (!kvm_cpu_has(X86_FEATURE_XSAVE))
563 		return;
564 
565 	vcpu_xcrs_set(vcpu, &xcrs);
566 }
567 
568 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
569 			  int dpl, unsigned short selector)
570 {
571 	struct idt_entry *base =
572 		(struct idt_entry *)addr_gva2hva(vm, vm->arch.idt);
573 	struct idt_entry *e = &base[vector];
574 
575 	memset(e, 0, sizeof(*e));
576 	e->offset0 = addr;
577 	e->selector = selector;
578 	e->ist = 0;
579 	e->type = 14;
580 	e->dpl = dpl;
581 	e->p = 1;
582 	e->offset1 = addr >> 16;
583 	e->offset2 = addr >> 32;
584 }
585 
586 static bool kvm_fixup_exception(struct ex_regs *regs)
587 {
588 	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
589 		return false;
590 
591 	if (regs->vector == DE_VECTOR)
592 		regs->vector = KVM_MAGIC_DE_VECTOR;
593 
594 	regs->rip = regs->r11;
595 	regs->r9 = regs->vector;
596 	regs->r10 = regs->error_code;
597 	return true;
598 }
599 
600 void route_exception(struct ex_regs *regs)
601 {
602 	typedef void(*handler)(struct ex_regs *);
603 	handler *handlers = (handler *)exception_handlers;
604 
605 	if (handlers && handlers[regs->vector]) {
606 		handlers[regs->vector](regs);
607 		return;
608 	}
609 
610 	if (kvm_fixup_exception(regs))
611 		return;
612 
613 	GUEST_FAIL("Unhandled exception '0x%lx' at guest RIP '0x%lx'",
614 		   regs->vector, regs->rip);
615 }
616 
617 static void vm_init_descriptor_tables(struct kvm_vm *vm)
618 {
619 	extern void *idt_handlers;
620 	struct kvm_segment seg;
621 	int i;
622 
623 	vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
624 	vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
625 	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
626 	vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
627 
628 	/* Handlers have the same address in both address spaces.*/
629 	for (i = 0; i < NUM_INTERRUPTS; i++)
630 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS);
631 
632 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
633 
634 	kvm_seg_set_kernel_code_64bit(&seg);
635 	kvm_seg_fill_gdt_64bit(vm, &seg);
636 
637 	kvm_seg_set_kernel_data_64bit(&seg);
638 	kvm_seg_fill_gdt_64bit(vm, &seg);
639 
640 	kvm_seg_set_tss_64bit(vm->arch.tss, &seg);
641 	kvm_seg_fill_gdt_64bit(vm, &seg);
642 }
643 
644 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
645 			       void (*handler)(struct ex_regs *))
646 {
647 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
648 
649 	handlers[vector] = (vm_vaddr_t)handler;
650 }
651 
652 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
653 {
654 	struct ucall uc;
655 
656 	if (get_ucall(vcpu, &uc) == UCALL_ABORT)
657 		REPORT_GUEST_ASSERT(uc);
658 }
659 
660 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
661 {
662 	int r;
663 
664 	TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ),
665 		    "Require KVM_GET_TSC_KHZ to provide udelay() to guest.");
666 
667 	vm_create_irqchip(vm);
668 	vm_init_descriptor_tables(vm);
669 
670 	sync_global_to_guest(vm, host_cpu_is_intel);
671 	sync_global_to_guest(vm, host_cpu_is_amd);
672 	sync_global_to_guest(vm, is_forced_emulation_enabled);
673 	sync_global_to_guest(vm, pmu_errata_mask);
674 
675 	if (is_sev_vm(vm)) {
676 		struct kvm_sev_init init = { 0 };
677 
678 		vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
679 	}
680 
681 	r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL);
682 	TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency.");
683 	guest_tsc_khz = r;
684 	sync_global_to_guest(vm, guest_tsc_khz);
685 }
686 
687 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
688 {
689 	struct kvm_regs regs;
690 
691 	vcpu_regs_get(vcpu, &regs);
692 	regs.rip = (unsigned long) guest_code;
693 	vcpu_regs_set(vcpu, &regs);
694 }
695 
696 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
697 {
698 	struct kvm_mp_state mp_state;
699 	struct kvm_regs regs;
700 	vm_vaddr_t stack_vaddr;
701 	struct kvm_vcpu *vcpu;
702 
703 	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
704 				       DEFAULT_GUEST_STACK_VADDR_MIN,
705 				       MEM_REGION_DATA);
706 
707 	stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
708 
709 	/*
710 	 * Align stack to match calling sequence requirements in section "The
711 	 * Stack Frame" of the System V ABI AMD64 Architecture Processor
712 	 * Supplement, which requires the value (%rsp + 8) to be a multiple of
713 	 * 16 when control is transferred to the function entry point.
714 	 *
715 	 * If this code is ever used to launch a vCPU with 32-bit entry point it
716 	 * may need to subtract 4 bytes instead of 8 bytes.
717 	 */
718 	TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
719 		    "__vm_vaddr_alloc() did not provide a page-aligned address");
720 	stack_vaddr -= 8;
721 
722 	vcpu = __vm_vcpu_add(vm, vcpu_id);
723 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
724 	vcpu_init_sregs(vm, vcpu);
725 	vcpu_init_xcrs(vm, vcpu);
726 
727 	/* Setup guest general purpose registers */
728 	vcpu_regs_get(vcpu, &regs);
729 	regs.rflags = regs.rflags | 0x2;
730 	regs.rsp = stack_vaddr;
731 	vcpu_regs_set(vcpu, &regs);
732 
733 	/* Setup the MP state */
734 	mp_state.mp_state = 0;
735 	vcpu_mp_state_set(vcpu, &mp_state);
736 
737 	/*
738 	 * Refresh CPUID after setting SREGS and XCR0, so that KVM's "runtime"
739 	 * updates to guest CPUID, e.g. for OSXSAVE and XSAVE state size, are
740 	 * reflected into selftests' vCPU CPUID cache, i.e. so that the cache
741 	 * is consistent with vCPU state.
742 	 */
743 	vcpu_get_cpuid(vcpu);
744 	return vcpu;
745 }
746 
747 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
748 {
749 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
750 
751 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
752 
753 	return vcpu;
754 }
755 
756 void vcpu_arch_free(struct kvm_vcpu *vcpu)
757 {
758 	if (vcpu->cpuid)
759 		free(vcpu->cpuid);
760 }
761 
762 /* Do not use kvm_supported_cpuid directly except for validity checks. */
763 static void *kvm_supported_cpuid;
764 
765 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
766 {
767 	int kvm_fd;
768 
769 	if (kvm_supported_cpuid)
770 		return kvm_supported_cpuid;
771 
772 	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
773 	kvm_fd = open_kvm_dev_path_or_exit();
774 
775 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
776 		  (struct kvm_cpuid2 *)kvm_supported_cpuid);
777 
778 	close(kvm_fd);
779 	return kvm_supported_cpuid;
780 }
781 
782 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
783 			      uint32_t function, uint32_t index,
784 			      uint8_t reg, uint8_t lo, uint8_t hi)
785 {
786 	const struct kvm_cpuid_entry2 *entry;
787 	int i;
788 
789 	for (i = 0; i < cpuid->nent; i++) {
790 		entry = &cpuid->entries[i];
791 
792 		/*
793 		 * The output registers in kvm_cpuid_entry2 are in alphabetical
794 		 * order, but kvm_x86_cpu_feature matches that mess, so yay
795 		 * pointer shenanigans!
796 		 */
797 		if (entry->function == function && entry->index == index)
798 			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
799 	}
800 
801 	return 0;
802 }
803 
804 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
805 		   struct kvm_x86_cpu_feature feature)
806 {
807 	return __kvm_cpu_has(cpuid, feature.function, feature.index,
808 			     feature.reg, feature.bit, feature.bit);
809 }
810 
811 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
812 			    struct kvm_x86_cpu_property property)
813 {
814 	return __kvm_cpu_has(cpuid, property.function, property.index,
815 			     property.reg, property.lo_bit, property.hi_bit);
816 }
817 
818 uint64_t kvm_get_feature_msr(uint64_t msr_index)
819 {
820 	struct {
821 		struct kvm_msrs header;
822 		struct kvm_msr_entry entry;
823 	} buffer = {};
824 	int r, kvm_fd;
825 
826 	buffer.header.nmsrs = 1;
827 	buffer.entry.index = msr_index;
828 	kvm_fd = open_kvm_dev_path_or_exit();
829 
830 	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
831 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
832 
833 	close(kvm_fd);
834 	return buffer.entry.data;
835 }
836 
837 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
838 {
839 	int kvm_fd;
840 	u64 bitmask;
841 	long rc;
842 	struct kvm_device_attr attr = {
843 		.group = 0,
844 		.attr = KVM_X86_XCOMP_GUEST_SUPP,
845 		.addr = (unsigned long) &bitmask,
846 	};
847 
848 	TEST_ASSERT(!kvm_supported_cpuid,
849 		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
850 
851 	TEST_ASSERT(is_power_of_2(xfeature),
852 		    "Dynamic XFeatures must be enabled one at a time");
853 
854 	kvm_fd = open_kvm_dev_path_or_exit();
855 	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
856 	close(kvm_fd);
857 
858 	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
859 		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
860 
861 	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
862 
863 	__TEST_REQUIRE(bitmask & xfeature,
864 		       "Required XSAVE feature '%s' not supported", name);
865 
866 	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
867 
868 	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
869 	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
870 	TEST_ASSERT(bitmask & xfeature,
871 		    "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
872 		    name, xfeature, bitmask);
873 }
874 
875 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
876 {
877 	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
878 
879 	/* Allow overriding the default CPUID. */
880 	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
881 		free(vcpu->cpuid);
882 		vcpu->cpuid = NULL;
883 	}
884 
885 	if (!vcpu->cpuid)
886 		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
887 
888 	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
889 	vcpu_set_cpuid(vcpu);
890 }
891 
892 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
893 			     struct kvm_x86_cpu_property property,
894 			     uint32_t value)
895 {
896 	struct kvm_cpuid_entry2 *entry;
897 
898 	entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
899 
900 	(&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
901 	(&entry->eax)[property.reg] |= value << property.lo_bit;
902 
903 	vcpu_set_cpuid(vcpu);
904 
905 	/* Sanity check that @value doesn't exceed the bounds in any way. */
906 	TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
907 }
908 
909 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
910 {
911 	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
912 
913 	entry->eax = 0;
914 	entry->ebx = 0;
915 	entry->ecx = 0;
916 	entry->edx = 0;
917 	vcpu_set_cpuid(vcpu);
918 }
919 
920 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
921 				     struct kvm_x86_cpu_feature feature,
922 				     bool set)
923 {
924 	struct kvm_cpuid_entry2 *entry;
925 	u32 *reg;
926 
927 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
928 	reg = (&entry->eax) + feature.reg;
929 
930 	if (set)
931 		*reg |= BIT(feature.bit);
932 	else
933 		*reg &= ~BIT(feature.bit);
934 
935 	vcpu_set_cpuid(vcpu);
936 }
937 
938 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
939 {
940 	struct {
941 		struct kvm_msrs header;
942 		struct kvm_msr_entry entry;
943 	} buffer = {};
944 
945 	buffer.header.nmsrs = 1;
946 	buffer.entry.index = msr_index;
947 
948 	vcpu_msrs_get(vcpu, &buffer.header);
949 
950 	return buffer.entry.data;
951 }
952 
953 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
954 {
955 	struct {
956 		struct kvm_msrs header;
957 		struct kvm_msr_entry entry;
958 	} buffer = {};
959 
960 	memset(&buffer, 0, sizeof(buffer));
961 	buffer.header.nmsrs = 1;
962 	buffer.entry.index = msr_index;
963 	buffer.entry.data = msr_value;
964 
965 	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
966 }
967 
968 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
969 {
970 	va_list ap;
971 	struct kvm_regs regs;
972 
973 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
974 		    "  num: %u",
975 		    num);
976 
977 	va_start(ap, num);
978 	vcpu_regs_get(vcpu, &regs);
979 
980 	if (num >= 1)
981 		regs.rdi = va_arg(ap, uint64_t);
982 
983 	if (num >= 2)
984 		regs.rsi = va_arg(ap, uint64_t);
985 
986 	if (num >= 3)
987 		regs.rdx = va_arg(ap, uint64_t);
988 
989 	if (num >= 4)
990 		regs.rcx = va_arg(ap, uint64_t);
991 
992 	if (num >= 5)
993 		regs.r8 = va_arg(ap, uint64_t);
994 
995 	if (num >= 6)
996 		regs.r9 = va_arg(ap, uint64_t);
997 
998 	vcpu_regs_set(vcpu, &regs);
999 	va_end(ap);
1000 }
1001 
1002 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
1003 {
1004 	struct kvm_regs regs;
1005 	struct kvm_sregs sregs;
1006 
1007 	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
1008 
1009 	fprintf(stream, "%*sregs:\n", indent + 2, "");
1010 	vcpu_regs_get(vcpu, &regs);
1011 	regs_dump(stream, &regs, indent + 4);
1012 
1013 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
1014 	vcpu_sregs_get(vcpu, &sregs);
1015 	sregs_dump(stream, &sregs, indent + 4);
1016 }
1017 
1018 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
1019 {
1020 	struct kvm_msr_list *list;
1021 	struct kvm_msr_list nmsrs;
1022 	int kvm_fd, r;
1023 
1024 	kvm_fd = open_kvm_dev_path_or_exit();
1025 
1026 	nmsrs.nmsrs = 0;
1027 	if (!feature_msrs)
1028 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1029 	else
1030 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
1031 
1032 	TEST_ASSERT(r == -1 && errno == E2BIG,
1033 		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
1034 		    r, errno, strerror(errno));
1035 
1036 	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
1037 	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
1038 	list->nmsrs = nmsrs.nmsrs;
1039 
1040 	if (!feature_msrs)
1041 		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1042 	else
1043 		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
1044 	close(kvm_fd);
1045 
1046 	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
1047 		    "Number of MSRs in list changed, was %d, now %d",
1048 		    nmsrs.nmsrs, list->nmsrs);
1049 	return list;
1050 }
1051 
1052 const struct kvm_msr_list *kvm_get_msr_index_list(void)
1053 {
1054 	static const struct kvm_msr_list *list;
1055 
1056 	if (!list)
1057 		list = __kvm_get_msr_index_list(false);
1058 	return list;
1059 }
1060 
1061 
1062 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
1063 {
1064 	static const struct kvm_msr_list *list;
1065 
1066 	if (!list)
1067 		list = __kvm_get_msr_index_list(true);
1068 	return list;
1069 }
1070 
1071 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
1072 {
1073 	const struct kvm_msr_list *list = kvm_get_msr_index_list();
1074 	int i;
1075 
1076 	for (i = 0; i < list->nmsrs; ++i) {
1077 		if (list->indices[i] == msr_index)
1078 			return true;
1079 	}
1080 
1081 	return false;
1082 }
1083 
1084 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
1085 				  struct kvm_x86_state *state)
1086 {
1087 	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
1088 
1089 	if (size) {
1090 		state->xsave = malloc(size);
1091 		vcpu_xsave2_get(vcpu, state->xsave);
1092 	} else {
1093 		state->xsave = malloc(sizeof(struct kvm_xsave));
1094 		vcpu_xsave_get(vcpu, state->xsave);
1095 	}
1096 }
1097 
1098 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
1099 {
1100 	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
1101 	struct kvm_x86_state *state;
1102 	int i;
1103 
1104 	static int nested_size = -1;
1105 
1106 	if (nested_size == -1) {
1107 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1108 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1109 			    "Nested state size too big, %i > %zi",
1110 			    nested_size, sizeof(state->nested_));
1111 	}
1112 
1113 	/*
1114 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1115 	 * guest state is consistent only after userspace re-enters the
1116 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1117 	 * to a new VM.
1118 	 */
1119 	vcpu_run_complete_io(vcpu);
1120 
1121 	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
1122 	TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
1123 
1124 	vcpu_events_get(vcpu, &state->events);
1125 	vcpu_mp_state_get(vcpu, &state->mp_state);
1126 	vcpu_regs_get(vcpu, &state->regs);
1127 	vcpu_save_xsave_state(vcpu, state);
1128 
1129 	if (kvm_has_cap(KVM_CAP_XCRS))
1130 		vcpu_xcrs_get(vcpu, &state->xcrs);
1131 
1132 	vcpu_sregs_get(vcpu, &state->sregs);
1133 
1134 	if (nested_size) {
1135 		state->nested.size = sizeof(state->nested_);
1136 
1137 		vcpu_nested_state_get(vcpu, &state->nested);
1138 		TEST_ASSERT(state->nested.size <= nested_size,
1139 			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1140 			    state->nested.size, nested_size);
1141 	} else {
1142 		state->nested.size = 0;
1143 	}
1144 
1145 	state->msrs.nmsrs = msr_list->nmsrs;
1146 	for (i = 0; i < msr_list->nmsrs; i++)
1147 		state->msrs.entries[i].index = msr_list->indices[i];
1148 	vcpu_msrs_get(vcpu, &state->msrs);
1149 
1150 	vcpu_debugregs_get(vcpu, &state->debugregs);
1151 
1152 	return state;
1153 }
1154 
1155 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1156 {
1157 	vcpu_sregs_set(vcpu, &state->sregs);
1158 	vcpu_msrs_set(vcpu, &state->msrs);
1159 
1160 	if (kvm_has_cap(KVM_CAP_XCRS))
1161 		vcpu_xcrs_set(vcpu, &state->xcrs);
1162 
1163 	vcpu_xsave_set(vcpu,  state->xsave);
1164 	vcpu_events_set(vcpu, &state->events);
1165 	vcpu_mp_state_set(vcpu, &state->mp_state);
1166 	vcpu_debugregs_set(vcpu, &state->debugregs);
1167 	vcpu_regs_set(vcpu, &state->regs);
1168 
1169 	if (state->nested.size)
1170 		vcpu_nested_state_set(vcpu, &state->nested);
1171 }
1172 
1173 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1174 {
1175 	free(state->xsave);
1176 	free(state);
1177 }
1178 
1179 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1180 {
1181 	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1182 		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1183 		*va_bits = 32;
1184 	} else {
1185 		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1186 		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1187 	}
1188 }
1189 
1190 void kvm_init_vm_address_properties(struct kvm_vm *vm)
1191 {
1192 	if (is_sev_vm(vm)) {
1193 		vm->arch.sev_fd = open_sev_dev_path_or_exit();
1194 		vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
1195 		vm->gpa_tag_mask = vm->arch.c_bit;
1196 	} else {
1197 		vm->arch.sev_fd = -1;
1198 	}
1199 }
1200 
1201 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1202 					       uint32_t function, uint32_t index)
1203 {
1204 	int i;
1205 
1206 	for (i = 0; i < cpuid->nent; i++) {
1207 		if (cpuid->entries[i].function == function &&
1208 		    cpuid->entries[i].index == index)
1209 			return &cpuid->entries[i];
1210 	}
1211 
1212 	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1213 
1214 	return NULL;
1215 }
1216 
1217 #define X86_HYPERCALL(inputs...)					\
1218 ({									\
1219 	uint64_t r;							\
1220 									\
1221 	asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"		\
1222 		     "jnz 1f\n\t"					\
1223 		     "vmcall\n\t"					\
1224 		     "jmp 2f\n\t"					\
1225 		     "1: vmmcall\n\t"					\
1226 		     "2:"						\
1227 		     : "=a"(r)						\
1228 		     : [use_vmmcall] "r" (host_cpu_is_amd), inputs);	\
1229 									\
1230 	r;								\
1231 })
1232 
1233 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1234 		       uint64_t a3)
1235 {
1236 	return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1237 }
1238 
1239 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1240 {
1241 	return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1242 }
1243 
1244 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1245 {
1246 	GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1247 }
1248 
1249 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1250 {
1251 	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1252 	unsigned long ht_gfn, max_gfn, max_pfn;
1253 	uint8_t maxphyaddr, guest_maxphyaddr;
1254 
1255 	/*
1256 	 * Use "guest MAXPHYADDR" from KVM if it's available.  Guest MAXPHYADDR
1257 	 * enumerates the max _mappable_ GPA, which can be less than the raw
1258 	 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU
1259 	 * doesn't support 5-level TDP.
1260 	 */
1261 	guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR);
1262 	guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits;
1263 	TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits,
1264 		    "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR");
1265 
1266 	max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1;
1267 
1268 	/* Avoid reserved HyperTransport region on AMD processors.  */
1269 	if (!host_cpu_is_amd)
1270 		return max_gfn;
1271 
1272 	/* On parts with <40 physical address bits, the area is fully hidden */
1273 	if (vm->pa_bits < 40)
1274 		return max_gfn;
1275 
1276 	/* Before family 17h, the HyperTransport area is just below 1T.  */
1277 	ht_gfn = (1 << 28) - num_ht_pages;
1278 	if (this_cpu_family() < 0x17)
1279 		goto done;
1280 
1281 	/*
1282 	 * Otherwise it's at the top of the physical address space, possibly
1283 	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1284 	 * the old conservative value if MAXPHYADDR is not enumerated.
1285 	 */
1286 	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1287 		goto done;
1288 
1289 	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1290 	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1291 
1292 	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1293 		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1294 
1295 	ht_gfn = max_pfn - num_ht_pages;
1296 done:
1297 	return min(max_gfn, ht_gfn - 1);
1298 }
1299 
1300 void kvm_selftest_arch_init(void)
1301 {
1302 	host_cpu_is_intel = this_cpu_is_intel();
1303 	host_cpu_is_amd = this_cpu_is_amd();
1304 	is_forced_emulation_enabled = kvm_is_forced_emulation_enabled();
1305 
1306 	kvm_init_pmu_errata();
1307 }
1308 
1309 bool sys_clocksource_is_based_on_tsc(void)
1310 {
1311 	char *clk_name = sys_get_cur_clocksource();
1312 	bool ret = !strcmp(clk_name, "tsc\n") ||
1313 		   !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1314 
1315 	free(clk_name);
1316 
1317 	return ret;
1318 }
1319 
1320 bool kvm_arch_has_default_irqchip(void)
1321 {
1322 	return true;
1323 }
1324