1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2018, Google LLC. 4 */ 5 6 #include "linux/bitmap.h" 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "pmu.h" 10 #include "processor.h" 11 #include "sev.h" 12 13 #ifndef NUM_INTERRUPTS 14 #define NUM_INTERRUPTS 256 15 #endif 16 17 #define KERNEL_CS 0x8 18 #define KERNEL_DS 0x10 19 #define KERNEL_TSS 0x18 20 21 vm_vaddr_t exception_handlers; 22 bool host_cpu_is_amd; 23 bool host_cpu_is_intel; 24 bool is_forced_emulation_enabled; 25 uint64_t guest_tsc_khz; 26 27 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) 28 { 29 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 30 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 31 indent, "", 32 regs->rax, regs->rbx, regs->rcx, regs->rdx); 33 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 34 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 35 indent, "", 36 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 37 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 38 "r10: 0x%.16llx r11: 0x%.16llx\n", 39 indent, "", 40 regs->r8, regs->r9, regs->r10, regs->r11); 41 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 42 "r14: 0x%.16llx r15: 0x%.16llx\n", 43 indent, "", 44 regs->r12, regs->r13, regs->r14, regs->r15); 45 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 46 indent, "", 47 regs->rip, regs->rflags); 48 } 49 50 static void segment_dump(FILE *stream, struct kvm_segment *segment, 51 uint8_t indent) 52 { 53 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 54 "selector: 0x%.4x type: 0x%.2x\n", 55 indent, "", segment->base, segment->limit, 56 segment->selector, segment->type); 57 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 58 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 59 indent, "", segment->present, segment->dpl, 60 segment->db, segment->s, segment->l); 61 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 62 "unusable: 0x%.2x padding: 0x%.2x\n", 63 indent, "", segment->g, segment->avl, 64 segment->unusable, segment->padding); 65 } 66 67 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 68 uint8_t indent) 69 { 70 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 71 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 72 indent, "", dtable->base, dtable->limit, 73 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 74 } 75 76 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) 77 { 78 unsigned int i; 79 80 fprintf(stream, "%*scs:\n", indent, ""); 81 segment_dump(stream, &sregs->cs, indent + 2); 82 fprintf(stream, "%*sds:\n", indent, ""); 83 segment_dump(stream, &sregs->ds, indent + 2); 84 fprintf(stream, "%*ses:\n", indent, ""); 85 segment_dump(stream, &sregs->es, indent + 2); 86 fprintf(stream, "%*sfs:\n", indent, ""); 87 segment_dump(stream, &sregs->fs, indent + 2); 88 fprintf(stream, "%*sgs:\n", indent, ""); 89 segment_dump(stream, &sregs->gs, indent + 2); 90 fprintf(stream, "%*sss:\n", indent, ""); 91 segment_dump(stream, &sregs->ss, indent + 2); 92 fprintf(stream, "%*str:\n", indent, ""); 93 segment_dump(stream, &sregs->tr, indent + 2); 94 fprintf(stream, "%*sldt:\n", indent, ""); 95 segment_dump(stream, &sregs->ldt, indent + 2); 96 97 fprintf(stream, "%*sgdt:\n", indent, ""); 98 dtable_dump(stream, &sregs->gdt, indent + 2); 99 fprintf(stream, "%*sidt:\n", indent, ""); 100 dtable_dump(stream, &sregs->idt, indent + 2); 101 102 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 103 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 104 indent, "", 105 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 106 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 107 "apic_base: 0x%.16llx\n", 108 indent, "", 109 sregs->cr8, sregs->efer, sregs->apic_base); 110 111 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 112 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 113 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 114 sregs->interrupt_bitmap[i]); 115 } 116 } 117 118 bool kvm_is_tdp_enabled(void) 119 { 120 if (host_cpu_is_intel) 121 return get_kvm_intel_param_bool("ept"); 122 else 123 return get_kvm_amd_param_bool("npt"); 124 } 125 126 void virt_arch_pgd_alloc(struct kvm_vm *vm) 127 { 128 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 129 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 130 131 /* If needed, create page map l4 table. */ 132 if (!vm->pgd_created) { 133 vm->pgd = vm_alloc_page_table(vm); 134 vm->pgd_created = true; 135 } 136 } 137 138 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte, 139 uint64_t vaddr, int level) 140 { 141 uint64_t pt_gpa = PTE_GET_PA(*parent_pte); 142 uint64_t *page_table = addr_gpa2hva(vm, pt_gpa); 143 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; 144 145 TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd, 146 "Parent PTE (level %d) not PRESENT for gva: 0x%08lx", 147 level + 1, vaddr); 148 149 return &page_table[index]; 150 } 151 152 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, 153 uint64_t *parent_pte, 154 uint64_t vaddr, 155 uint64_t paddr, 156 int current_level, 157 int target_level) 158 { 159 uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level); 160 161 paddr = vm_untag_gpa(vm, paddr); 162 163 if (!(*pte & PTE_PRESENT_MASK)) { 164 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; 165 if (current_level == target_level) 166 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); 167 else 168 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; 169 } else { 170 /* 171 * Entry already present. Assert that the caller doesn't want 172 * a hugepage at this level, and that there isn't a hugepage at 173 * this level. 174 */ 175 TEST_ASSERT(current_level != target_level, 176 "Cannot create hugepage at level: %u, vaddr: 0x%lx", 177 current_level, vaddr); 178 TEST_ASSERT(!(*pte & PTE_LARGE_MASK), 179 "Cannot create page table at level: %u, vaddr: 0x%lx", 180 current_level, vaddr); 181 } 182 return pte; 183 } 184 185 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level) 186 { 187 const uint64_t pg_size = PG_LEVEL_SIZE(level); 188 uint64_t *pml4e, *pdpe, *pde; 189 uint64_t *pte; 190 191 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 192 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 193 194 TEST_ASSERT((vaddr % pg_size) == 0, 195 "Virtual address not aligned,\n" 196 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 197 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 198 "Invalid virtual address, vaddr: 0x%lx", vaddr); 199 TEST_ASSERT((paddr % pg_size) == 0, 200 "Physical address not aligned,\n" 201 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 202 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 203 "Physical address beyond maximum supported,\n" 204 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 205 paddr, vm->max_gfn, vm->page_size); 206 TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr, 207 "Unexpected bits in paddr: %lx", paddr); 208 209 /* 210 * Allocate upper level page tables, if not already present. Return 211 * early if a hugepage was created. 212 */ 213 pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level); 214 if (*pml4e & PTE_LARGE_MASK) 215 return; 216 217 pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level); 218 if (*pdpe & PTE_LARGE_MASK) 219 return; 220 221 pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level); 222 if (*pde & PTE_LARGE_MASK) 223 return; 224 225 /* Fill in page table entry. */ 226 pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 227 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), 228 "PTE already present for 4k page at vaddr: 0x%lx", vaddr); 229 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); 230 231 /* 232 * Neither SEV nor TDX supports shared page tables, so only the final 233 * leaf PTE needs manually set the C/S-bit. 234 */ 235 if (vm_is_gpa_protected(vm, paddr)) 236 *pte |= vm->arch.c_bit; 237 else 238 *pte |= vm->arch.s_bit; 239 } 240 241 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 242 { 243 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K); 244 } 245 246 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 247 uint64_t nr_bytes, int level) 248 { 249 uint64_t pg_size = PG_LEVEL_SIZE(level); 250 uint64_t nr_pages = nr_bytes / pg_size; 251 int i; 252 253 TEST_ASSERT(nr_bytes % pg_size == 0, 254 "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx", 255 nr_bytes, pg_size); 256 257 for (i = 0; i < nr_pages; i++) { 258 __virt_pg_map(vm, vaddr, paddr, level); 259 260 vaddr += pg_size; 261 paddr += pg_size; 262 } 263 } 264 265 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level) 266 { 267 if (*pte & PTE_LARGE_MASK) { 268 TEST_ASSERT(*level == PG_LEVEL_NONE || 269 *level == current_level, 270 "Unexpected hugepage at level %d", current_level); 271 *level = current_level; 272 } 273 274 return *level == current_level; 275 } 276 277 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 278 int *level) 279 { 280 uint64_t *pml4e, *pdpe, *pde; 281 282 TEST_ASSERT(!vm->arch.is_pt_protected, 283 "Walking page tables of protected guests is impossible"); 284 285 TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM, 286 "Invalid PG_LEVEL_* '%d'", *level); 287 288 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 289 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 290 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 291 (vaddr >> vm->page_shift)), 292 "Invalid virtual address, vaddr: 0x%lx", 293 vaddr); 294 /* 295 * Based on the mode check above there are 48 bits in the vaddr, so 296 * shift 16 to sign extend the last bit (bit-47), 297 */ 298 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 299 "Canonical check failed. The virtual address is invalid."); 300 301 pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G); 302 if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G)) 303 return pml4e; 304 305 pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G); 306 if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G)) 307 return pdpe; 308 309 pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M); 310 if (vm_is_target_pte(pde, level, PG_LEVEL_2M)) 311 return pde; 312 313 return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 314 } 315 316 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr) 317 { 318 int level = PG_LEVEL_4K; 319 320 return __vm_get_page_table_entry(vm, vaddr, &level); 321 } 322 323 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 324 { 325 uint64_t *pml4e, *pml4e_start; 326 uint64_t *pdpe, *pdpe_start; 327 uint64_t *pde, *pde_start; 328 uint64_t *pte, *pte_start; 329 330 if (!vm->pgd_created) 331 return; 332 333 fprintf(stream, "%*s " 334 " no\n", indent, ""); 335 fprintf(stream, "%*s index hvaddr gpaddr " 336 "addr w exec dirty\n", 337 indent, ""); 338 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); 339 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 340 pml4e = &pml4e_start[n1]; 341 if (!(*pml4e & PTE_PRESENT_MASK)) 342 continue; 343 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " 344 " %u\n", 345 indent, "", 346 pml4e - pml4e_start, pml4e, 347 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), 348 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); 349 350 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); 351 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 352 pdpe = &pdpe_start[n2]; 353 if (!(*pdpe & PTE_PRESENT_MASK)) 354 continue; 355 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " 356 "%u %u\n", 357 indent, "", 358 pdpe - pdpe_start, pdpe, 359 addr_hva2gpa(vm, pdpe), 360 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), 361 !!(*pdpe & PTE_NX_MASK)); 362 363 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); 364 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 365 pde = &pde_start[n3]; 366 if (!(*pde & PTE_PRESENT_MASK)) 367 continue; 368 fprintf(stream, "%*spde 0x%-3zx %p " 369 "0x%-12lx 0x%-10llx %u %u\n", 370 indent, "", pde - pde_start, pde, 371 addr_hva2gpa(vm, pde), 372 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), 373 !!(*pde & PTE_NX_MASK)); 374 375 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); 376 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 377 pte = &pte_start[n4]; 378 if (!(*pte & PTE_PRESENT_MASK)) 379 continue; 380 fprintf(stream, "%*spte 0x%-3zx %p " 381 "0x%-12lx 0x%-10llx %u %u " 382 " %u 0x%-10lx\n", 383 indent, "", 384 pte - pte_start, pte, 385 addr_hva2gpa(vm, pte), 386 PTE_GET_PFN(*pte), 387 !!(*pte & PTE_WRITABLE_MASK), 388 !!(*pte & PTE_NX_MASK), 389 !!(*pte & PTE_DIRTY_MASK), 390 ((uint64_t) n1 << 27) 391 | ((uint64_t) n2 << 18) 392 | ((uint64_t) n3 << 9) 393 | ((uint64_t) n4)); 394 } 395 } 396 } 397 } 398 } 399 400 /* 401 * Set Unusable Segment 402 * 403 * Input Args: None 404 * 405 * Output Args: 406 * segp - Pointer to segment register 407 * 408 * Return: None 409 * 410 * Sets the segment register pointed to by @segp to an unusable state. 411 */ 412 static void kvm_seg_set_unusable(struct kvm_segment *segp) 413 { 414 memset(segp, 0, sizeof(*segp)); 415 segp->unusable = true; 416 } 417 418 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 419 { 420 void *gdt = addr_gva2hva(vm, vm->arch.gdt); 421 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 422 423 desc->limit0 = segp->limit & 0xFFFF; 424 desc->base0 = segp->base & 0xFFFF; 425 desc->base1 = segp->base >> 16; 426 desc->type = segp->type; 427 desc->s = segp->s; 428 desc->dpl = segp->dpl; 429 desc->p = segp->present; 430 desc->limit1 = segp->limit >> 16; 431 desc->avl = segp->avl; 432 desc->l = segp->l; 433 desc->db = segp->db; 434 desc->g = segp->g; 435 desc->base2 = segp->base >> 24; 436 if (!segp->s) 437 desc->base3 = segp->base >> 32; 438 } 439 440 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp) 441 { 442 memset(segp, 0, sizeof(*segp)); 443 segp->selector = KERNEL_CS; 444 segp->limit = 0xFFFFFFFFu; 445 segp->s = 0x1; /* kTypeCodeData */ 446 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 447 * | kFlagCodeReadable 448 */ 449 segp->g = true; 450 segp->l = true; 451 segp->present = 1; 452 } 453 454 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp) 455 { 456 memset(segp, 0, sizeof(*segp)); 457 segp->selector = KERNEL_DS; 458 segp->limit = 0xFFFFFFFFu; 459 segp->s = 0x1; /* kTypeCodeData */ 460 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 461 * | kFlagDataWritable 462 */ 463 segp->g = true; 464 segp->present = true; 465 } 466 467 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 468 { 469 int level = PG_LEVEL_NONE; 470 uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level); 471 472 TEST_ASSERT(*pte & PTE_PRESENT_MASK, 473 "Leaf PTE not PRESENT for gva: 0x%08lx", gva); 474 475 /* 476 * No need for a hugepage mask on the PTE, x86-64 requires the "unused" 477 * address bits to be zero. 478 */ 479 return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level)); 480 } 481 482 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp) 483 { 484 memset(segp, 0, sizeof(*segp)); 485 segp->base = base; 486 segp->limit = 0x67; 487 segp->selector = KERNEL_TSS; 488 segp->type = 0xb; 489 segp->present = 1; 490 } 491 492 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 493 { 494 struct kvm_sregs sregs; 495 496 TEST_ASSERT_EQ(vm->mode, VM_MODE_PXXV48_4K); 497 498 /* Set mode specific system register values. */ 499 vcpu_sregs_get(vcpu, &sregs); 500 501 sregs.idt.base = vm->arch.idt; 502 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 503 sregs.gdt.base = vm->arch.gdt; 504 sregs.gdt.limit = getpagesize() - 1; 505 506 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 507 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 508 if (kvm_cpu_has(X86_FEATURE_XSAVE)) 509 sregs.cr4 |= X86_CR4_OSXSAVE; 510 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 511 512 kvm_seg_set_unusable(&sregs.ldt); 513 kvm_seg_set_kernel_code_64bit(&sregs.cs); 514 kvm_seg_set_kernel_data_64bit(&sregs.ds); 515 kvm_seg_set_kernel_data_64bit(&sregs.es); 516 kvm_seg_set_kernel_data_64bit(&sregs.gs); 517 kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr); 518 519 sregs.cr3 = vm->pgd; 520 vcpu_sregs_set(vcpu, &sregs); 521 } 522 523 static void vcpu_init_xcrs(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 524 { 525 struct kvm_xcrs xcrs = { 526 .nr_xcrs = 1, 527 .xcrs[0].xcr = 0, 528 .xcrs[0].value = kvm_cpu_supported_xcr0(), 529 }; 530 531 if (!kvm_cpu_has(X86_FEATURE_XSAVE)) 532 return; 533 534 vcpu_xcrs_set(vcpu, &xcrs); 535 } 536 537 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 538 int dpl, unsigned short selector) 539 { 540 struct idt_entry *base = 541 (struct idt_entry *)addr_gva2hva(vm, vm->arch.idt); 542 struct idt_entry *e = &base[vector]; 543 544 memset(e, 0, sizeof(*e)); 545 e->offset0 = addr; 546 e->selector = selector; 547 e->ist = 0; 548 e->type = 14; 549 e->dpl = dpl; 550 e->p = 1; 551 e->offset1 = addr >> 16; 552 e->offset2 = addr >> 32; 553 } 554 555 static bool kvm_fixup_exception(struct ex_regs *regs) 556 { 557 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10) 558 return false; 559 560 if (regs->vector == DE_VECTOR) 561 regs->vector = KVM_MAGIC_DE_VECTOR; 562 563 regs->rip = regs->r11; 564 regs->r9 = regs->vector; 565 regs->r10 = regs->error_code; 566 return true; 567 } 568 569 void route_exception(struct ex_regs *regs) 570 { 571 typedef void(*handler)(struct ex_regs *); 572 handler *handlers = (handler *)exception_handlers; 573 574 if (handlers && handlers[regs->vector]) { 575 handlers[regs->vector](regs); 576 return; 577 } 578 579 if (kvm_fixup_exception(regs)) 580 return; 581 582 GUEST_FAIL("Unhandled exception '0x%lx' at guest RIP '0x%lx'", 583 regs->vector, regs->rip); 584 } 585 586 static void vm_init_descriptor_tables(struct kvm_vm *vm) 587 { 588 extern void *idt_handlers; 589 struct kvm_segment seg; 590 int i; 591 592 vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 593 vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 594 vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 595 vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 596 597 /* Handlers have the same address in both address spaces.*/ 598 for (i = 0; i < NUM_INTERRUPTS; i++) 599 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS); 600 601 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 602 603 kvm_seg_set_kernel_code_64bit(&seg); 604 kvm_seg_fill_gdt_64bit(vm, &seg); 605 606 kvm_seg_set_kernel_data_64bit(&seg); 607 kvm_seg_fill_gdt_64bit(vm, &seg); 608 609 kvm_seg_set_tss_64bit(vm->arch.tss, &seg); 610 kvm_seg_fill_gdt_64bit(vm, &seg); 611 } 612 613 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 614 void (*handler)(struct ex_regs *)) 615 { 616 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 617 618 handlers[vector] = (vm_vaddr_t)handler; 619 } 620 621 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) 622 { 623 struct ucall uc; 624 625 if (get_ucall(vcpu, &uc) == UCALL_ABORT) 626 REPORT_GUEST_ASSERT(uc); 627 } 628 629 void kvm_arch_vm_post_create(struct kvm_vm *vm) 630 { 631 int r; 632 633 TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ), 634 "Require KVM_GET_TSC_KHZ to provide udelay() to guest."); 635 636 vm_create_irqchip(vm); 637 vm_init_descriptor_tables(vm); 638 639 sync_global_to_guest(vm, host_cpu_is_intel); 640 sync_global_to_guest(vm, host_cpu_is_amd); 641 sync_global_to_guest(vm, is_forced_emulation_enabled); 642 sync_global_to_guest(vm, pmu_errata_mask); 643 644 if (is_sev_vm(vm)) { 645 struct kvm_sev_init init = { 0 }; 646 647 vm_sev_ioctl(vm, KVM_SEV_INIT2, &init); 648 } 649 650 r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL); 651 TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency."); 652 guest_tsc_khz = r; 653 sync_global_to_guest(vm, guest_tsc_khz); 654 } 655 656 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code) 657 { 658 struct kvm_regs regs; 659 660 vcpu_regs_get(vcpu, ®s); 661 regs.rip = (unsigned long) guest_code; 662 vcpu_regs_set(vcpu, ®s); 663 } 664 665 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 666 { 667 struct kvm_mp_state mp_state; 668 struct kvm_regs regs; 669 vm_vaddr_t stack_vaddr; 670 struct kvm_vcpu *vcpu; 671 672 stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 673 DEFAULT_GUEST_STACK_VADDR_MIN, 674 MEM_REGION_DATA); 675 676 stack_vaddr += DEFAULT_STACK_PGS * getpagesize(); 677 678 /* 679 * Align stack to match calling sequence requirements in section "The 680 * Stack Frame" of the System V ABI AMD64 Architecture Processor 681 * Supplement, which requires the value (%rsp + 8) to be a multiple of 682 * 16 when control is transferred to the function entry point. 683 * 684 * If this code is ever used to launch a vCPU with 32-bit entry point it 685 * may need to subtract 4 bytes instead of 8 bytes. 686 */ 687 TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE), 688 "__vm_vaddr_alloc() did not provide a page-aligned address"); 689 stack_vaddr -= 8; 690 691 vcpu = __vm_vcpu_add(vm, vcpu_id); 692 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 693 vcpu_init_sregs(vm, vcpu); 694 vcpu_init_xcrs(vm, vcpu); 695 696 /* Setup guest general purpose registers */ 697 vcpu_regs_get(vcpu, ®s); 698 regs.rflags = regs.rflags | 0x2; 699 regs.rsp = stack_vaddr; 700 vcpu_regs_set(vcpu, ®s); 701 702 /* Setup the MP state */ 703 mp_state.mp_state = 0; 704 vcpu_mp_state_set(vcpu, &mp_state); 705 706 /* 707 * Refresh CPUID after setting SREGS and XCR0, so that KVM's "runtime" 708 * updates to guest CPUID, e.g. for OSXSAVE and XSAVE state size, are 709 * reflected into selftests' vCPU CPUID cache, i.e. so that the cache 710 * is consistent with vCPU state. 711 */ 712 vcpu_get_cpuid(vcpu); 713 return vcpu; 714 } 715 716 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) 717 { 718 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); 719 720 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 721 722 return vcpu; 723 } 724 725 void vcpu_arch_free(struct kvm_vcpu *vcpu) 726 { 727 if (vcpu->cpuid) 728 free(vcpu->cpuid); 729 } 730 731 /* Do not use kvm_supported_cpuid directly except for validity checks. */ 732 static void *kvm_supported_cpuid; 733 734 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 735 { 736 int kvm_fd; 737 738 if (kvm_supported_cpuid) 739 return kvm_supported_cpuid; 740 741 kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 742 kvm_fd = open_kvm_dev_path_or_exit(); 743 744 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, 745 (struct kvm_cpuid2 *)kvm_supported_cpuid); 746 747 close(kvm_fd); 748 return kvm_supported_cpuid; 749 } 750 751 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid, 752 uint32_t function, uint32_t index, 753 uint8_t reg, uint8_t lo, uint8_t hi) 754 { 755 const struct kvm_cpuid_entry2 *entry; 756 int i; 757 758 for (i = 0; i < cpuid->nent; i++) { 759 entry = &cpuid->entries[i]; 760 761 /* 762 * The output registers in kvm_cpuid_entry2 are in alphabetical 763 * order, but kvm_x86_cpu_feature matches that mess, so yay 764 * pointer shenanigans! 765 */ 766 if (entry->function == function && entry->index == index) 767 return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo; 768 } 769 770 return 0; 771 } 772 773 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 774 struct kvm_x86_cpu_feature feature) 775 { 776 return __kvm_cpu_has(cpuid, feature.function, feature.index, 777 feature.reg, feature.bit, feature.bit); 778 } 779 780 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 781 struct kvm_x86_cpu_property property) 782 { 783 return __kvm_cpu_has(cpuid, property.function, property.index, 784 property.reg, property.lo_bit, property.hi_bit); 785 } 786 787 uint64_t kvm_get_feature_msr(uint64_t msr_index) 788 { 789 struct { 790 struct kvm_msrs header; 791 struct kvm_msr_entry entry; 792 } buffer = {}; 793 int r, kvm_fd; 794 795 buffer.header.nmsrs = 1; 796 buffer.entry.index = msr_index; 797 kvm_fd = open_kvm_dev_path_or_exit(); 798 799 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 800 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r)); 801 802 close(kvm_fd); 803 return buffer.entry.data; 804 } 805 806 void __vm_xsave_require_permission(uint64_t xfeature, const char *name) 807 { 808 int kvm_fd; 809 u64 bitmask; 810 long rc; 811 struct kvm_device_attr attr = { 812 .group = 0, 813 .attr = KVM_X86_XCOMP_GUEST_SUPP, 814 .addr = (unsigned long) &bitmask, 815 }; 816 817 TEST_ASSERT(!kvm_supported_cpuid, 818 "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM"); 819 820 TEST_ASSERT(is_power_of_2(xfeature), 821 "Dynamic XFeatures must be enabled one at a time"); 822 823 kvm_fd = open_kvm_dev_path_or_exit(); 824 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); 825 close(kvm_fd); 826 827 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) 828 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported"); 829 830 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); 831 832 __TEST_REQUIRE(bitmask & xfeature, 833 "Required XSAVE feature '%s' not supported", name); 834 835 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature))); 836 837 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 838 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 839 TEST_ASSERT(bitmask & xfeature, 840 "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx", 841 name, xfeature, bitmask); 842 } 843 844 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid) 845 { 846 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID"); 847 848 /* Allow overriding the default CPUID. */ 849 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) { 850 free(vcpu->cpuid); 851 vcpu->cpuid = NULL; 852 } 853 854 if (!vcpu->cpuid) 855 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent); 856 857 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent)); 858 vcpu_set_cpuid(vcpu); 859 } 860 861 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, 862 struct kvm_x86_cpu_property property, 863 uint32_t value) 864 { 865 struct kvm_cpuid_entry2 *entry; 866 867 entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index); 868 869 (&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit); 870 (&entry->eax)[property.reg] |= value << property.lo_bit; 871 872 vcpu_set_cpuid(vcpu); 873 874 /* Sanity check that @value doesn't exceed the bounds in any way. */ 875 TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value); 876 } 877 878 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) 879 { 880 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function); 881 882 entry->eax = 0; 883 entry->ebx = 0; 884 entry->ecx = 0; 885 entry->edx = 0; 886 vcpu_set_cpuid(vcpu); 887 } 888 889 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 890 struct kvm_x86_cpu_feature feature, 891 bool set) 892 { 893 struct kvm_cpuid_entry2 *entry; 894 u32 *reg; 895 896 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 897 reg = (&entry->eax) + feature.reg; 898 899 if (set) 900 *reg |= BIT(feature.bit); 901 else 902 *reg &= ~BIT(feature.bit); 903 904 vcpu_set_cpuid(vcpu); 905 } 906 907 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index) 908 { 909 struct { 910 struct kvm_msrs header; 911 struct kvm_msr_entry entry; 912 } buffer = {}; 913 914 buffer.header.nmsrs = 1; 915 buffer.entry.index = msr_index; 916 917 vcpu_msrs_get(vcpu, &buffer.header); 918 919 return buffer.entry.data; 920 } 921 922 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value) 923 { 924 struct { 925 struct kvm_msrs header; 926 struct kvm_msr_entry entry; 927 } buffer = {}; 928 929 memset(&buffer, 0, sizeof(buffer)); 930 buffer.header.nmsrs = 1; 931 buffer.entry.index = msr_index; 932 buffer.entry.data = msr_value; 933 934 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header); 935 } 936 937 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) 938 { 939 va_list ap; 940 struct kvm_regs regs; 941 942 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 943 " num: %u", 944 num); 945 946 va_start(ap, num); 947 vcpu_regs_get(vcpu, ®s); 948 949 if (num >= 1) 950 regs.rdi = va_arg(ap, uint64_t); 951 952 if (num >= 2) 953 regs.rsi = va_arg(ap, uint64_t); 954 955 if (num >= 3) 956 regs.rdx = va_arg(ap, uint64_t); 957 958 if (num >= 4) 959 regs.rcx = va_arg(ap, uint64_t); 960 961 if (num >= 5) 962 regs.r8 = va_arg(ap, uint64_t); 963 964 if (num >= 6) 965 regs.r9 = va_arg(ap, uint64_t); 966 967 vcpu_regs_set(vcpu, ®s); 968 va_end(ap); 969 } 970 971 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) 972 { 973 struct kvm_regs regs; 974 struct kvm_sregs sregs; 975 976 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id); 977 978 fprintf(stream, "%*sregs:\n", indent + 2, ""); 979 vcpu_regs_get(vcpu, ®s); 980 regs_dump(stream, ®s, indent + 4); 981 982 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 983 vcpu_sregs_get(vcpu, &sregs); 984 sregs_dump(stream, &sregs, indent + 4); 985 } 986 987 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs) 988 { 989 struct kvm_msr_list *list; 990 struct kvm_msr_list nmsrs; 991 int kvm_fd, r; 992 993 kvm_fd = open_kvm_dev_path_or_exit(); 994 995 nmsrs.nmsrs = 0; 996 if (!feature_msrs) 997 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 998 else 999 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs); 1000 1001 TEST_ASSERT(r == -1 && errno == E2BIG, 1002 "Expected -E2BIG, got rc: %i errno: %i (%s)", 1003 r, errno, strerror(errno)); 1004 1005 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0])); 1006 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list"); 1007 list->nmsrs = nmsrs.nmsrs; 1008 1009 if (!feature_msrs) 1010 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1011 else 1012 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list); 1013 close(kvm_fd); 1014 1015 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs, 1016 "Number of MSRs in list changed, was %d, now %d", 1017 nmsrs.nmsrs, list->nmsrs); 1018 return list; 1019 } 1020 1021 const struct kvm_msr_list *kvm_get_msr_index_list(void) 1022 { 1023 static const struct kvm_msr_list *list; 1024 1025 if (!list) 1026 list = __kvm_get_msr_index_list(false); 1027 return list; 1028 } 1029 1030 1031 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void) 1032 { 1033 static const struct kvm_msr_list *list; 1034 1035 if (!list) 1036 list = __kvm_get_msr_index_list(true); 1037 return list; 1038 } 1039 1040 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index) 1041 { 1042 const struct kvm_msr_list *list = kvm_get_msr_index_list(); 1043 int i; 1044 1045 for (i = 0; i < list->nmsrs; ++i) { 1046 if (list->indices[i] == msr_index) 1047 return true; 1048 } 1049 1050 return false; 1051 } 1052 1053 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu, 1054 struct kvm_x86_state *state) 1055 { 1056 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2); 1057 1058 if (size) { 1059 state->xsave = malloc(size); 1060 vcpu_xsave2_get(vcpu, state->xsave); 1061 } else { 1062 state->xsave = malloc(sizeof(struct kvm_xsave)); 1063 vcpu_xsave_get(vcpu, state->xsave); 1064 } 1065 } 1066 1067 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu) 1068 { 1069 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list(); 1070 struct kvm_x86_state *state; 1071 int i; 1072 1073 static int nested_size = -1; 1074 1075 if (nested_size == -1) { 1076 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 1077 TEST_ASSERT(nested_size <= sizeof(state->nested_), 1078 "Nested state size too big, %i > %zi", 1079 nested_size, sizeof(state->nested_)); 1080 } 1081 1082 /* 1083 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 1084 * guest state is consistent only after userspace re-enters the 1085 * kernel with KVM_RUN. Complete IO prior to migrating state 1086 * to a new VM. 1087 */ 1088 vcpu_run_complete_io(vcpu); 1089 1090 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0])); 1091 TEST_ASSERT(state, "-ENOMEM when allocating kvm state"); 1092 1093 vcpu_events_get(vcpu, &state->events); 1094 vcpu_mp_state_get(vcpu, &state->mp_state); 1095 vcpu_regs_get(vcpu, &state->regs); 1096 vcpu_save_xsave_state(vcpu, state); 1097 1098 if (kvm_has_cap(KVM_CAP_XCRS)) 1099 vcpu_xcrs_get(vcpu, &state->xcrs); 1100 1101 vcpu_sregs_get(vcpu, &state->sregs); 1102 1103 if (nested_size) { 1104 state->nested.size = sizeof(state->nested_); 1105 1106 vcpu_nested_state_get(vcpu, &state->nested); 1107 TEST_ASSERT(state->nested.size <= nested_size, 1108 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 1109 state->nested.size, nested_size); 1110 } else { 1111 state->nested.size = 0; 1112 } 1113 1114 state->msrs.nmsrs = msr_list->nmsrs; 1115 for (i = 0; i < msr_list->nmsrs; i++) 1116 state->msrs.entries[i].index = msr_list->indices[i]; 1117 vcpu_msrs_get(vcpu, &state->msrs); 1118 1119 vcpu_debugregs_get(vcpu, &state->debugregs); 1120 1121 return state; 1122 } 1123 1124 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) 1125 { 1126 vcpu_sregs_set(vcpu, &state->sregs); 1127 vcpu_msrs_set(vcpu, &state->msrs); 1128 1129 if (kvm_has_cap(KVM_CAP_XCRS)) 1130 vcpu_xcrs_set(vcpu, &state->xcrs); 1131 1132 vcpu_xsave_set(vcpu, state->xsave); 1133 vcpu_events_set(vcpu, &state->events); 1134 vcpu_mp_state_set(vcpu, &state->mp_state); 1135 vcpu_debugregs_set(vcpu, &state->debugregs); 1136 vcpu_regs_set(vcpu, &state->regs); 1137 1138 if (state->nested.size) 1139 vcpu_nested_state_set(vcpu, &state->nested); 1140 } 1141 1142 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1143 { 1144 free(state->xsave); 1145 free(state); 1146 } 1147 1148 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1149 { 1150 if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) { 1151 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32; 1152 *va_bits = 32; 1153 } else { 1154 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1155 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); 1156 } 1157 } 1158 1159 void kvm_init_vm_address_properties(struct kvm_vm *vm) 1160 { 1161 if (is_sev_vm(vm)) { 1162 vm->arch.sev_fd = open_sev_dev_path_or_exit(); 1163 vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT)); 1164 vm->gpa_tag_mask = vm->arch.c_bit; 1165 } else { 1166 vm->arch.sev_fd = -1; 1167 } 1168 } 1169 1170 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 1171 uint32_t function, uint32_t index) 1172 { 1173 int i; 1174 1175 for (i = 0; i < cpuid->nent; i++) { 1176 if (cpuid->entries[i].function == function && 1177 cpuid->entries[i].index == index) 1178 return &cpuid->entries[i]; 1179 } 1180 1181 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); 1182 1183 return NULL; 1184 } 1185 1186 #define X86_HYPERCALL(inputs...) \ 1187 ({ \ 1188 uint64_t r; \ 1189 \ 1190 asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t" \ 1191 "jnz 1f\n\t" \ 1192 "vmcall\n\t" \ 1193 "jmp 2f\n\t" \ 1194 "1: vmmcall\n\t" \ 1195 "2:" \ 1196 : "=a"(r) \ 1197 : [use_vmmcall] "r" (host_cpu_is_amd), inputs); \ 1198 \ 1199 r; \ 1200 }) 1201 1202 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1203 uint64_t a3) 1204 { 1205 return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1206 } 1207 1208 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1209 { 1210 return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1)); 1211 } 1212 1213 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1214 { 1215 GUEST_ASSERT(!__xen_hypercall(nr, a0, a1)); 1216 } 1217 1218 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1219 { 1220 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1221 unsigned long ht_gfn, max_gfn, max_pfn; 1222 uint8_t maxphyaddr, guest_maxphyaddr; 1223 1224 /* 1225 * Use "guest MAXPHYADDR" from KVM if it's available. Guest MAXPHYADDR 1226 * enumerates the max _mappable_ GPA, which can be less than the raw 1227 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU 1228 * doesn't support 5-level TDP. 1229 */ 1230 guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR); 1231 guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits; 1232 TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits, 1233 "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR"); 1234 1235 max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1; 1236 1237 /* Avoid reserved HyperTransport region on AMD processors. */ 1238 if (!host_cpu_is_amd) 1239 return max_gfn; 1240 1241 /* On parts with <40 physical address bits, the area is fully hidden */ 1242 if (vm->pa_bits < 40) 1243 return max_gfn; 1244 1245 /* Before family 17h, the HyperTransport area is just below 1T. */ 1246 ht_gfn = (1 << 28) - num_ht_pages; 1247 if (this_cpu_family() < 0x17) 1248 goto done; 1249 1250 /* 1251 * Otherwise it's at the top of the physical address space, possibly 1252 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1253 * the old conservative value if MAXPHYADDR is not enumerated. 1254 */ 1255 if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) 1256 goto done; 1257 1258 maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1259 max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1; 1260 1261 if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION)) 1262 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION); 1263 1264 ht_gfn = max_pfn - num_ht_pages; 1265 done: 1266 return min(max_gfn, ht_gfn - 1); 1267 } 1268 1269 void kvm_selftest_arch_init(void) 1270 { 1271 host_cpu_is_intel = this_cpu_is_intel(); 1272 host_cpu_is_amd = this_cpu_is_amd(); 1273 is_forced_emulation_enabled = kvm_is_forced_emulation_enabled(); 1274 1275 kvm_init_pmu_errata(); 1276 } 1277 1278 bool sys_clocksource_is_based_on_tsc(void) 1279 { 1280 char *clk_name = sys_get_cur_clocksource(); 1281 bool ret = !strcmp(clk_name, "tsc\n") || 1282 !strcmp(clk_name, "hyperv_clocksource_tsc_page\n"); 1283 1284 free(clk_name); 1285 1286 return ret; 1287 } 1288