xref: /linux/tools/testing/selftests/kvm/lib/x86/processor.c (revision 1b5f3c51fbb8042efb314484b47b2092cdd40bf6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #include "linux/bitmap.h"
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "sev.h"
11 
12 #ifndef NUM_INTERRUPTS
13 #define NUM_INTERRUPTS 256
14 #endif
15 
16 #define KERNEL_CS	0x8
17 #define KERNEL_DS	0x10
18 #define KERNEL_TSS	0x18
19 
20 vm_vaddr_t exception_handlers;
21 bool host_cpu_is_amd;
22 bool host_cpu_is_intel;
23 bool is_forced_emulation_enabled;
24 uint64_t guest_tsc_khz;
25 
26 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
27 {
28 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
29 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
30 		indent, "",
31 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
32 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
33 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
34 		indent, "",
35 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
36 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
37 		"r10: 0x%.16llx r11: 0x%.16llx\n",
38 		indent, "",
39 		regs->r8, regs->r9, regs->r10, regs->r11);
40 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
41 		"r14: 0x%.16llx r15: 0x%.16llx\n",
42 		indent, "",
43 		regs->r12, regs->r13, regs->r14, regs->r15);
44 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
45 		indent, "",
46 		regs->rip, regs->rflags);
47 }
48 
49 static void segment_dump(FILE *stream, struct kvm_segment *segment,
50 			 uint8_t indent)
51 {
52 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
53 		"selector: 0x%.4x type: 0x%.2x\n",
54 		indent, "", segment->base, segment->limit,
55 		segment->selector, segment->type);
56 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
57 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
58 		indent, "", segment->present, segment->dpl,
59 		segment->db, segment->s, segment->l);
60 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
61 		"unusable: 0x%.2x padding: 0x%.2x\n",
62 		indent, "", segment->g, segment->avl,
63 		segment->unusable, segment->padding);
64 }
65 
66 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
67 			uint8_t indent)
68 {
69 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
70 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
71 		indent, "", dtable->base, dtable->limit,
72 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
73 }
74 
75 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
76 {
77 	unsigned int i;
78 
79 	fprintf(stream, "%*scs:\n", indent, "");
80 	segment_dump(stream, &sregs->cs, indent + 2);
81 	fprintf(stream, "%*sds:\n", indent, "");
82 	segment_dump(stream, &sregs->ds, indent + 2);
83 	fprintf(stream, "%*ses:\n", indent, "");
84 	segment_dump(stream, &sregs->es, indent + 2);
85 	fprintf(stream, "%*sfs:\n", indent, "");
86 	segment_dump(stream, &sregs->fs, indent + 2);
87 	fprintf(stream, "%*sgs:\n", indent, "");
88 	segment_dump(stream, &sregs->gs, indent + 2);
89 	fprintf(stream, "%*sss:\n", indent, "");
90 	segment_dump(stream, &sregs->ss, indent + 2);
91 	fprintf(stream, "%*str:\n", indent, "");
92 	segment_dump(stream, &sregs->tr, indent + 2);
93 	fprintf(stream, "%*sldt:\n", indent, "");
94 	segment_dump(stream, &sregs->ldt, indent + 2);
95 
96 	fprintf(stream, "%*sgdt:\n", indent, "");
97 	dtable_dump(stream, &sregs->gdt, indent + 2);
98 	fprintf(stream, "%*sidt:\n", indent, "");
99 	dtable_dump(stream, &sregs->idt, indent + 2);
100 
101 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
102 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
103 		indent, "",
104 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
105 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
106 		"apic_base: 0x%.16llx\n",
107 		indent, "",
108 		sregs->cr8, sregs->efer, sregs->apic_base);
109 
110 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
111 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
112 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
113 			sregs->interrupt_bitmap[i]);
114 	}
115 }
116 
117 bool kvm_is_tdp_enabled(void)
118 {
119 	if (host_cpu_is_intel)
120 		return get_kvm_intel_param_bool("ept");
121 	else
122 		return get_kvm_amd_param_bool("npt");
123 }
124 
125 void virt_arch_pgd_alloc(struct kvm_vm *vm)
126 {
127 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
128 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
129 
130 	/* If needed, create page map l4 table. */
131 	if (!vm->pgd_created) {
132 		vm->pgd = vm_alloc_page_table(vm);
133 		vm->pgd_created = true;
134 	}
135 }
136 
137 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
138 			  uint64_t vaddr, int level)
139 {
140 	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
141 	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
142 	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
143 
144 	TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
145 		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
146 		    level + 1, vaddr);
147 
148 	return &page_table[index];
149 }
150 
151 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
152 				       uint64_t *parent_pte,
153 				       uint64_t vaddr,
154 				       uint64_t paddr,
155 				       int current_level,
156 				       int target_level)
157 {
158 	uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
159 
160 	paddr = vm_untag_gpa(vm, paddr);
161 
162 	if (!(*pte & PTE_PRESENT_MASK)) {
163 		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
164 		if (current_level == target_level)
165 			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
166 		else
167 			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
168 	} else {
169 		/*
170 		 * Entry already present.  Assert that the caller doesn't want
171 		 * a hugepage at this level, and that there isn't a hugepage at
172 		 * this level.
173 		 */
174 		TEST_ASSERT(current_level != target_level,
175 			    "Cannot create hugepage at level: %u, vaddr: 0x%lx",
176 			    current_level, vaddr);
177 		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
178 			    "Cannot create page table at level: %u, vaddr: 0x%lx",
179 			    current_level, vaddr);
180 	}
181 	return pte;
182 }
183 
184 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
185 {
186 	const uint64_t pg_size = PG_LEVEL_SIZE(level);
187 	uint64_t *pml4e, *pdpe, *pde;
188 	uint64_t *pte;
189 
190 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
191 		    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
192 
193 	TEST_ASSERT((vaddr % pg_size) == 0,
194 		    "Virtual address not aligned,\n"
195 		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
196 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
197 		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
198 	TEST_ASSERT((paddr % pg_size) == 0,
199 		    "Physical address not aligned,\n"
200 		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
201 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
202 		    "Physical address beyond maximum supported,\n"
203 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
204 		    paddr, vm->max_gfn, vm->page_size);
205 	TEST_ASSERT(vm_untag_gpa(vm, paddr) == paddr,
206 		    "Unexpected bits in paddr: %lx", paddr);
207 
208 	/*
209 	 * Allocate upper level page tables, if not already present.  Return
210 	 * early if a hugepage was created.
211 	 */
212 	pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
213 	if (*pml4e & PTE_LARGE_MASK)
214 		return;
215 
216 	pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
217 	if (*pdpe & PTE_LARGE_MASK)
218 		return;
219 
220 	pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
221 	if (*pde & PTE_LARGE_MASK)
222 		return;
223 
224 	/* Fill in page table entry. */
225 	pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
226 	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
227 		    "PTE already present for 4k page at vaddr: 0x%lx", vaddr);
228 	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
229 
230 	/*
231 	 * Neither SEV nor TDX supports shared page tables, so only the final
232 	 * leaf PTE needs manually set the C/S-bit.
233 	 */
234 	if (vm_is_gpa_protected(vm, paddr))
235 		*pte |= vm->arch.c_bit;
236 	else
237 		*pte |= vm->arch.s_bit;
238 }
239 
240 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
241 {
242 	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
243 }
244 
245 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
246 		    uint64_t nr_bytes, int level)
247 {
248 	uint64_t pg_size = PG_LEVEL_SIZE(level);
249 	uint64_t nr_pages = nr_bytes / pg_size;
250 	int i;
251 
252 	TEST_ASSERT(nr_bytes % pg_size == 0,
253 		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
254 		    nr_bytes, pg_size);
255 
256 	for (i = 0; i < nr_pages; i++) {
257 		__virt_pg_map(vm, vaddr, paddr, level);
258 
259 		vaddr += pg_size;
260 		paddr += pg_size;
261 	}
262 }
263 
264 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
265 {
266 	if (*pte & PTE_LARGE_MASK) {
267 		TEST_ASSERT(*level == PG_LEVEL_NONE ||
268 			    *level == current_level,
269 			    "Unexpected hugepage at level %d", current_level);
270 		*level = current_level;
271 	}
272 
273 	return *level == current_level;
274 }
275 
276 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
277 				    int *level)
278 {
279 	uint64_t *pml4e, *pdpe, *pde;
280 
281 	TEST_ASSERT(!vm->arch.is_pt_protected,
282 		    "Walking page tables of protected guests is impossible");
283 
284 	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
285 		    "Invalid PG_LEVEL_* '%d'", *level);
286 
287 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
288 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
289 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
290 		(vaddr >> vm->page_shift)),
291 		"Invalid virtual address, vaddr: 0x%lx",
292 		vaddr);
293 	/*
294 	 * Based on the mode check above there are 48 bits in the vaddr, so
295 	 * shift 16 to sign extend the last bit (bit-47),
296 	 */
297 	TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
298 		"Canonical check failed.  The virtual address is invalid.");
299 
300 	pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
301 	if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
302 		return pml4e;
303 
304 	pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
305 	if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
306 		return pdpe;
307 
308 	pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
309 	if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
310 		return pde;
311 
312 	return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
313 }
314 
315 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
316 {
317 	int level = PG_LEVEL_4K;
318 
319 	return __vm_get_page_table_entry(vm, vaddr, &level);
320 }
321 
322 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
323 {
324 	uint64_t *pml4e, *pml4e_start;
325 	uint64_t *pdpe, *pdpe_start;
326 	uint64_t *pde, *pde_start;
327 	uint64_t *pte, *pte_start;
328 
329 	if (!vm->pgd_created)
330 		return;
331 
332 	fprintf(stream, "%*s                                          "
333 		"                no\n", indent, "");
334 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
335 		"addr         w exec dirty\n",
336 		indent, "");
337 	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
338 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
339 		pml4e = &pml4e_start[n1];
340 		if (!(*pml4e & PTE_PRESENT_MASK))
341 			continue;
342 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
343 			" %u\n",
344 			indent, "",
345 			pml4e - pml4e_start, pml4e,
346 			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
347 			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
348 
349 		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
350 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
351 			pdpe = &pdpe_start[n2];
352 			if (!(*pdpe & PTE_PRESENT_MASK))
353 				continue;
354 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
355 				"%u  %u\n",
356 				indent, "",
357 				pdpe - pdpe_start, pdpe,
358 				addr_hva2gpa(vm, pdpe),
359 				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
360 				!!(*pdpe & PTE_NX_MASK));
361 
362 			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
363 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
364 				pde = &pde_start[n3];
365 				if (!(*pde & PTE_PRESENT_MASK))
366 					continue;
367 				fprintf(stream, "%*spde   0x%-3zx %p "
368 					"0x%-12lx 0x%-10llx %u  %u\n",
369 					indent, "", pde - pde_start, pde,
370 					addr_hva2gpa(vm, pde),
371 					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
372 					!!(*pde & PTE_NX_MASK));
373 
374 				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
375 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
376 					pte = &pte_start[n4];
377 					if (!(*pte & PTE_PRESENT_MASK))
378 						continue;
379 					fprintf(stream, "%*spte   0x%-3zx %p "
380 						"0x%-12lx 0x%-10llx %u  %u "
381 						"    %u    0x%-10lx\n",
382 						indent, "",
383 						pte - pte_start, pte,
384 						addr_hva2gpa(vm, pte),
385 						PTE_GET_PFN(*pte),
386 						!!(*pte & PTE_WRITABLE_MASK),
387 						!!(*pte & PTE_NX_MASK),
388 						!!(*pte & PTE_DIRTY_MASK),
389 						((uint64_t) n1 << 27)
390 							| ((uint64_t) n2 << 18)
391 							| ((uint64_t) n3 << 9)
392 							| ((uint64_t) n4));
393 				}
394 			}
395 		}
396 	}
397 }
398 
399 /*
400  * Set Unusable Segment
401  *
402  * Input Args: None
403  *
404  * Output Args:
405  *   segp - Pointer to segment register
406  *
407  * Return: None
408  *
409  * Sets the segment register pointed to by @segp to an unusable state.
410  */
411 static void kvm_seg_set_unusable(struct kvm_segment *segp)
412 {
413 	memset(segp, 0, sizeof(*segp));
414 	segp->unusable = true;
415 }
416 
417 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
418 {
419 	void *gdt = addr_gva2hva(vm, vm->arch.gdt);
420 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
421 
422 	desc->limit0 = segp->limit & 0xFFFF;
423 	desc->base0 = segp->base & 0xFFFF;
424 	desc->base1 = segp->base >> 16;
425 	desc->type = segp->type;
426 	desc->s = segp->s;
427 	desc->dpl = segp->dpl;
428 	desc->p = segp->present;
429 	desc->limit1 = segp->limit >> 16;
430 	desc->avl = segp->avl;
431 	desc->l = segp->l;
432 	desc->db = segp->db;
433 	desc->g = segp->g;
434 	desc->base2 = segp->base >> 24;
435 	if (!segp->s)
436 		desc->base3 = segp->base >> 32;
437 }
438 
439 static void kvm_seg_set_kernel_code_64bit(struct kvm_segment *segp)
440 {
441 	memset(segp, 0, sizeof(*segp));
442 	segp->selector = KERNEL_CS;
443 	segp->limit = 0xFFFFFFFFu;
444 	segp->s = 0x1; /* kTypeCodeData */
445 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
446 					  * | kFlagCodeReadable
447 					  */
448 	segp->g = true;
449 	segp->l = true;
450 	segp->present = 1;
451 }
452 
453 static void kvm_seg_set_kernel_data_64bit(struct kvm_segment *segp)
454 {
455 	memset(segp, 0, sizeof(*segp));
456 	segp->selector = KERNEL_DS;
457 	segp->limit = 0xFFFFFFFFu;
458 	segp->s = 0x1; /* kTypeCodeData */
459 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
460 					  * | kFlagDataWritable
461 					  */
462 	segp->g = true;
463 	segp->present = true;
464 }
465 
466 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
467 {
468 	int level = PG_LEVEL_NONE;
469 	uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
470 
471 	TEST_ASSERT(*pte & PTE_PRESENT_MASK,
472 		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
473 
474 	/*
475 	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
476 	 * address bits to be zero.
477 	 */
478 	return vm_untag_gpa(vm, PTE_GET_PA(*pte)) | (gva & ~HUGEPAGE_MASK(level));
479 }
480 
481 static void kvm_seg_set_tss_64bit(vm_vaddr_t base, struct kvm_segment *segp)
482 {
483 	memset(segp, 0, sizeof(*segp));
484 	segp->base = base;
485 	segp->limit = 0x67;
486 	segp->selector = KERNEL_TSS;
487 	segp->type = 0xb;
488 	segp->present = 1;
489 }
490 
491 static void vcpu_init_sregs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
492 {
493 	struct kvm_sregs sregs;
494 
495 	TEST_ASSERT_EQ(vm->mode, VM_MODE_PXXV48_4K);
496 
497 	/* Set mode specific system register values. */
498 	vcpu_sregs_get(vcpu, &sregs);
499 
500 	sregs.idt.base = vm->arch.idt;
501 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
502 	sregs.gdt.base = vm->arch.gdt;
503 	sregs.gdt.limit = getpagesize() - 1;
504 
505 	sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
506 	sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
507 	if (kvm_cpu_has(X86_FEATURE_XSAVE))
508 		sregs.cr4 |= X86_CR4_OSXSAVE;
509 	sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
510 
511 	kvm_seg_set_unusable(&sregs.ldt);
512 	kvm_seg_set_kernel_code_64bit(&sregs.cs);
513 	kvm_seg_set_kernel_data_64bit(&sregs.ds);
514 	kvm_seg_set_kernel_data_64bit(&sregs.es);
515 	kvm_seg_set_kernel_data_64bit(&sregs.gs);
516 	kvm_seg_set_tss_64bit(vm->arch.tss, &sregs.tr);
517 
518 	sregs.cr3 = vm->pgd;
519 	vcpu_sregs_set(vcpu, &sregs);
520 }
521 
522 static void vcpu_init_xcrs(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
523 {
524 	struct kvm_xcrs xcrs = {
525 		.nr_xcrs = 1,
526 		.xcrs[0].xcr = 0,
527 		.xcrs[0].value = kvm_cpu_supported_xcr0(),
528 	};
529 
530 	if (!kvm_cpu_has(X86_FEATURE_XSAVE))
531 		return;
532 
533 	vcpu_xcrs_set(vcpu, &xcrs);
534 }
535 
536 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
537 			  int dpl, unsigned short selector)
538 {
539 	struct idt_entry *base =
540 		(struct idt_entry *)addr_gva2hva(vm, vm->arch.idt);
541 	struct idt_entry *e = &base[vector];
542 
543 	memset(e, 0, sizeof(*e));
544 	e->offset0 = addr;
545 	e->selector = selector;
546 	e->ist = 0;
547 	e->type = 14;
548 	e->dpl = dpl;
549 	e->p = 1;
550 	e->offset1 = addr >> 16;
551 	e->offset2 = addr >> 32;
552 }
553 
554 static bool kvm_fixup_exception(struct ex_regs *regs)
555 {
556 	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
557 		return false;
558 
559 	if (regs->vector == DE_VECTOR)
560 		return false;
561 
562 	regs->rip = regs->r11;
563 	regs->r9 = regs->vector;
564 	regs->r10 = regs->error_code;
565 	return true;
566 }
567 
568 void route_exception(struct ex_regs *regs)
569 {
570 	typedef void(*handler)(struct ex_regs *);
571 	handler *handlers = (handler *)exception_handlers;
572 
573 	if (handlers && handlers[regs->vector]) {
574 		handlers[regs->vector](regs);
575 		return;
576 	}
577 
578 	if (kvm_fixup_exception(regs))
579 		return;
580 
581 	GUEST_FAIL("Unhandled exception '0x%lx' at guest RIP '0x%lx'",
582 		   regs->vector, regs->rip);
583 }
584 
585 static void vm_init_descriptor_tables(struct kvm_vm *vm)
586 {
587 	extern void *idt_handlers;
588 	struct kvm_segment seg;
589 	int i;
590 
591 	vm->arch.gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
592 	vm->arch.idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
593 	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
594 	vm->arch.tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
595 
596 	/* Handlers have the same address in both address spaces.*/
597 	for (i = 0; i < NUM_INTERRUPTS; i++)
598 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, KERNEL_CS);
599 
600 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
601 
602 	kvm_seg_set_kernel_code_64bit(&seg);
603 	kvm_seg_fill_gdt_64bit(vm, &seg);
604 
605 	kvm_seg_set_kernel_data_64bit(&seg);
606 	kvm_seg_fill_gdt_64bit(vm, &seg);
607 
608 	kvm_seg_set_tss_64bit(vm->arch.tss, &seg);
609 	kvm_seg_fill_gdt_64bit(vm, &seg);
610 }
611 
612 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
613 			       void (*handler)(struct ex_regs *))
614 {
615 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
616 
617 	handlers[vector] = (vm_vaddr_t)handler;
618 }
619 
620 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
621 {
622 	struct ucall uc;
623 
624 	if (get_ucall(vcpu, &uc) == UCALL_ABORT)
625 		REPORT_GUEST_ASSERT(uc);
626 }
627 
628 void kvm_arch_vm_post_create(struct kvm_vm *vm)
629 {
630 	int r;
631 
632 	TEST_ASSERT(kvm_has_cap(KVM_CAP_GET_TSC_KHZ),
633 		    "Require KVM_GET_TSC_KHZ to provide udelay() to guest.");
634 
635 	vm_create_irqchip(vm);
636 	vm_init_descriptor_tables(vm);
637 
638 	sync_global_to_guest(vm, host_cpu_is_intel);
639 	sync_global_to_guest(vm, host_cpu_is_amd);
640 	sync_global_to_guest(vm, is_forced_emulation_enabled);
641 
642 	if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
643 		struct kvm_sev_init init = { 0 };
644 
645 		vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
646 	}
647 
648 	r = __vm_ioctl(vm, KVM_GET_TSC_KHZ, NULL);
649 	TEST_ASSERT(r > 0, "KVM_GET_TSC_KHZ did not provide a valid TSC frequency.");
650 	guest_tsc_khz = r;
651 	sync_global_to_guest(vm, guest_tsc_khz);
652 }
653 
654 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
655 {
656 	struct kvm_regs regs;
657 
658 	vcpu_regs_get(vcpu, &regs);
659 	regs.rip = (unsigned long) guest_code;
660 	vcpu_regs_set(vcpu, &regs);
661 }
662 
663 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
664 {
665 	struct kvm_mp_state mp_state;
666 	struct kvm_regs regs;
667 	vm_vaddr_t stack_vaddr;
668 	struct kvm_vcpu *vcpu;
669 
670 	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
671 				       DEFAULT_GUEST_STACK_VADDR_MIN,
672 				       MEM_REGION_DATA);
673 
674 	stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
675 
676 	/*
677 	 * Align stack to match calling sequence requirements in section "The
678 	 * Stack Frame" of the System V ABI AMD64 Architecture Processor
679 	 * Supplement, which requires the value (%rsp + 8) to be a multiple of
680 	 * 16 when control is transferred to the function entry point.
681 	 *
682 	 * If this code is ever used to launch a vCPU with 32-bit entry point it
683 	 * may need to subtract 4 bytes instead of 8 bytes.
684 	 */
685 	TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
686 		    "__vm_vaddr_alloc() did not provide a page-aligned address");
687 	stack_vaddr -= 8;
688 
689 	vcpu = __vm_vcpu_add(vm, vcpu_id);
690 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
691 	vcpu_init_sregs(vm, vcpu);
692 	vcpu_init_xcrs(vm, vcpu);
693 
694 	/* Setup guest general purpose registers */
695 	vcpu_regs_get(vcpu, &regs);
696 	regs.rflags = regs.rflags | 0x2;
697 	regs.rsp = stack_vaddr;
698 	vcpu_regs_set(vcpu, &regs);
699 
700 	/* Setup the MP state */
701 	mp_state.mp_state = 0;
702 	vcpu_mp_state_set(vcpu, &mp_state);
703 
704 	/*
705 	 * Refresh CPUID after setting SREGS and XCR0, so that KVM's "runtime"
706 	 * updates to guest CPUID, e.g. for OSXSAVE and XSAVE state size, are
707 	 * reflected into selftests' vCPU CPUID cache, i.e. so that the cache
708 	 * is consistent with vCPU state.
709 	 */
710 	vcpu_get_cpuid(vcpu);
711 	return vcpu;
712 }
713 
714 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
715 {
716 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
717 
718 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
719 
720 	return vcpu;
721 }
722 
723 void vcpu_arch_free(struct kvm_vcpu *vcpu)
724 {
725 	if (vcpu->cpuid)
726 		free(vcpu->cpuid);
727 }
728 
729 /* Do not use kvm_supported_cpuid directly except for validity checks. */
730 static void *kvm_supported_cpuid;
731 
732 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
733 {
734 	int kvm_fd;
735 
736 	if (kvm_supported_cpuid)
737 		return kvm_supported_cpuid;
738 
739 	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
740 	kvm_fd = open_kvm_dev_path_or_exit();
741 
742 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
743 		  (struct kvm_cpuid2 *)kvm_supported_cpuid);
744 
745 	close(kvm_fd);
746 	return kvm_supported_cpuid;
747 }
748 
749 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
750 			      uint32_t function, uint32_t index,
751 			      uint8_t reg, uint8_t lo, uint8_t hi)
752 {
753 	const struct kvm_cpuid_entry2 *entry;
754 	int i;
755 
756 	for (i = 0; i < cpuid->nent; i++) {
757 		entry = &cpuid->entries[i];
758 
759 		/*
760 		 * The output registers in kvm_cpuid_entry2 are in alphabetical
761 		 * order, but kvm_x86_cpu_feature matches that mess, so yay
762 		 * pointer shenanigans!
763 		 */
764 		if (entry->function == function && entry->index == index)
765 			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
766 	}
767 
768 	return 0;
769 }
770 
771 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
772 		   struct kvm_x86_cpu_feature feature)
773 {
774 	return __kvm_cpu_has(cpuid, feature.function, feature.index,
775 			     feature.reg, feature.bit, feature.bit);
776 }
777 
778 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
779 			    struct kvm_x86_cpu_property property)
780 {
781 	return __kvm_cpu_has(cpuid, property.function, property.index,
782 			     property.reg, property.lo_bit, property.hi_bit);
783 }
784 
785 uint64_t kvm_get_feature_msr(uint64_t msr_index)
786 {
787 	struct {
788 		struct kvm_msrs header;
789 		struct kvm_msr_entry entry;
790 	} buffer = {};
791 	int r, kvm_fd;
792 
793 	buffer.header.nmsrs = 1;
794 	buffer.entry.index = msr_index;
795 	kvm_fd = open_kvm_dev_path_or_exit();
796 
797 	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
798 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
799 
800 	close(kvm_fd);
801 	return buffer.entry.data;
802 }
803 
804 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
805 {
806 	int kvm_fd;
807 	u64 bitmask;
808 	long rc;
809 	struct kvm_device_attr attr = {
810 		.group = 0,
811 		.attr = KVM_X86_XCOMP_GUEST_SUPP,
812 		.addr = (unsigned long) &bitmask,
813 	};
814 
815 	TEST_ASSERT(!kvm_supported_cpuid,
816 		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
817 
818 	TEST_ASSERT(is_power_of_2(xfeature),
819 		    "Dynamic XFeatures must be enabled one at a time");
820 
821 	kvm_fd = open_kvm_dev_path_or_exit();
822 	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
823 	close(kvm_fd);
824 
825 	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
826 		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
827 
828 	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
829 
830 	__TEST_REQUIRE(bitmask & xfeature,
831 		       "Required XSAVE feature '%s' not supported", name);
832 
833 	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
834 
835 	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
836 	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
837 	TEST_ASSERT(bitmask & xfeature,
838 		    "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
839 		    name, xfeature, bitmask);
840 }
841 
842 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
843 {
844 	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
845 
846 	/* Allow overriding the default CPUID. */
847 	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
848 		free(vcpu->cpuid);
849 		vcpu->cpuid = NULL;
850 	}
851 
852 	if (!vcpu->cpuid)
853 		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
854 
855 	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
856 	vcpu_set_cpuid(vcpu);
857 }
858 
859 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
860 			     struct kvm_x86_cpu_property property,
861 			     uint32_t value)
862 {
863 	struct kvm_cpuid_entry2 *entry;
864 
865 	entry = __vcpu_get_cpuid_entry(vcpu, property.function, property.index);
866 
867 	(&entry->eax)[property.reg] &= ~GENMASK(property.hi_bit, property.lo_bit);
868 	(&entry->eax)[property.reg] |= value << property.lo_bit;
869 
870 	vcpu_set_cpuid(vcpu);
871 
872 	/* Sanity check that @value doesn't exceed the bounds in any way. */
873 	TEST_ASSERT_EQ(kvm_cpuid_property(vcpu->cpuid, property), value);
874 }
875 
876 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
877 {
878 	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
879 
880 	entry->eax = 0;
881 	entry->ebx = 0;
882 	entry->ecx = 0;
883 	entry->edx = 0;
884 	vcpu_set_cpuid(vcpu);
885 }
886 
887 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
888 				     struct kvm_x86_cpu_feature feature,
889 				     bool set)
890 {
891 	struct kvm_cpuid_entry2 *entry;
892 	u32 *reg;
893 
894 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
895 	reg = (&entry->eax) + feature.reg;
896 
897 	if (set)
898 		*reg |= BIT(feature.bit);
899 	else
900 		*reg &= ~BIT(feature.bit);
901 
902 	vcpu_set_cpuid(vcpu);
903 }
904 
905 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
906 {
907 	struct {
908 		struct kvm_msrs header;
909 		struct kvm_msr_entry entry;
910 	} buffer = {};
911 
912 	buffer.header.nmsrs = 1;
913 	buffer.entry.index = msr_index;
914 
915 	vcpu_msrs_get(vcpu, &buffer.header);
916 
917 	return buffer.entry.data;
918 }
919 
920 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
921 {
922 	struct {
923 		struct kvm_msrs header;
924 		struct kvm_msr_entry entry;
925 	} buffer = {};
926 
927 	memset(&buffer, 0, sizeof(buffer));
928 	buffer.header.nmsrs = 1;
929 	buffer.entry.index = msr_index;
930 	buffer.entry.data = msr_value;
931 
932 	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
933 }
934 
935 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
936 {
937 	va_list ap;
938 	struct kvm_regs regs;
939 
940 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
941 		    "  num: %u",
942 		    num);
943 
944 	va_start(ap, num);
945 	vcpu_regs_get(vcpu, &regs);
946 
947 	if (num >= 1)
948 		regs.rdi = va_arg(ap, uint64_t);
949 
950 	if (num >= 2)
951 		regs.rsi = va_arg(ap, uint64_t);
952 
953 	if (num >= 3)
954 		regs.rdx = va_arg(ap, uint64_t);
955 
956 	if (num >= 4)
957 		regs.rcx = va_arg(ap, uint64_t);
958 
959 	if (num >= 5)
960 		regs.r8 = va_arg(ap, uint64_t);
961 
962 	if (num >= 6)
963 		regs.r9 = va_arg(ap, uint64_t);
964 
965 	vcpu_regs_set(vcpu, &regs);
966 	va_end(ap);
967 }
968 
969 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
970 {
971 	struct kvm_regs regs;
972 	struct kvm_sregs sregs;
973 
974 	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
975 
976 	fprintf(stream, "%*sregs:\n", indent + 2, "");
977 	vcpu_regs_get(vcpu, &regs);
978 	regs_dump(stream, &regs, indent + 4);
979 
980 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
981 	vcpu_sregs_get(vcpu, &sregs);
982 	sregs_dump(stream, &sregs, indent + 4);
983 }
984 
985 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
986 {
987 	struct kvm_msr_list *list;
988 	struct kvm_msr_list nmsrs;
989 	int kvm_fd, r;
990 
991 	kvm_fd = open_kvm_dev_path_or_exit();
992 
993 	nmsrs.nmsrs = 0;
994 	if (!feature_msrs)
995 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
996 	else
997 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
998 
999 	TEST_ASSERT(r == -1 && errno == E2BIG,
1000 		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
1001 		    r, errno, strerror(errno));
1002 
1003 	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
1004 	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
1005 	list->nmsrs = nmsrs.nmsrs;
1006 
1007 	if (!feature_msrs)
1008 		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1009 	else
1010 		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
1011 	close(kvm_fd);
1012 
1013 	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
1014 		    "Number of MSRs in list changed, was %d, now %d",
1015 		    nmsrs.nmsrs, list->nmsrs);
1016 	return list;
1017 }
1018 
1019 const struct kvm_msr_list *kvm_get_msr_index_list(void)
1020 {
1021 	static const struct kvm_msr_list *list;
1022 
1023 	if (!list)
1024 		list = __kvm_get_msr_index_list(false);
1025 	return list;
1026 }
1027 
1028 
1029 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
1030 {
1031 	static const struct kvm_msr_list *list;
1032 
1033 	if (!list)
1034 		list = __kvm_get_msr_index_list(true);
1035 	return list;
1036 }
1037 
1038 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
1039 {
1040 	const struct kvm_msr_list *list = kvm_get_msr_index_list();
1041 	int i;
1042 
1043 	for (i = 0; i < list->nmsrs; ++i) {
1044 		if (list->indices[i] == msr_index)
1045 			return true;
1046 	}
1047 
1048 	return false;
1049 }
1050 
1051 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
1052 				  struct kvm_x86_state *state)
1053 {
1054 	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
1055 
1056 	if (size) {
1057 		state->xsave = malloc(size);
1058 		vcpu_xsave2_get(vcpu, state->xsave);
1059 	} else {
1060 		state->xsave = malloc(sizeof(struct kvm_xsave));
1061 		vcpu_xsave_get(vcpu, state->xsave);
1062 	}
1063 }
1064 
1065 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
1066 {
1067 	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
1068 	struct kvm_x86_state *state;
1069 	int i;
1070 
1071 	static int nested_size = -1;
1072 
1073 	if (nested_size == -1) {
1074 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1075 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1076 			    "Nested state size too big, %i > %zi",
1077 			    nested_size, sizeof(state->nested_));
1078 	}
1079 
1080 	/*
1081 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1082 	 * guest state is consistent only after userspace re-enters the
1083 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1084 	 * to a new VM.
1085 	 */
1086 	vcpu_run_complete_io(vcpu);
1087 
1088 	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
1089 	TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
1090 
1091 	vcpu_events_get(vcpu, &state->events);
1092 	vcpu_mp_state_get(vcpu, &state->mp_state);
1093 	vcpu_regs_get(vcpu, &state->regs);
1094 	vcpu_save_xsave_state(vcpu, state);
1095 
1096 	if (kvm_has_cap(KVM_CAP_XCRS))
1097 		vcpu_xcrs_get(vcpu, &state->xcrs);
1098 
1099 	vcpu_sregs_get(vcpu, &state->sregs);
1100 
1101 	if (nested_size) {
1102 		state->nested.size = sizeof(state->nested_);
1103 
1104 		vcpu_nested_state_get(vcpu, &state->nested);
1105 		TEST_ASSERT(state->nested.size <= nested_size,
1106 			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1107 			    state->nested.size, nested_size);
1108 	} else {
1109 		state->nested.size = 0;
1110 	}
1111 
1112 	state->msrs.nmsrs = msr_list->nmsrs;
1113 	for (i = 0; i < msr_list->nmsrs; i++)
1114 		state->msrs.entries[i].index = msr_list->indices[i];
1115 	vcpu_msrs_get(vcpu, &state->msrs);
1116 
1117 	vcpu_debugregs_get(vcpu, &state->debugregs);
1118 
1119 	return state;
1120 }
1121 
1122 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1123 {
1124 	vcpu_sregs_set(vcpu, &state->sregs);
1125 	vcpu_msrs_set(vcpu, &state->msrs);
1126 
1127 	if (kvm_has_cap(KVM_CAP_XCRS))
1128 		vcpu_xcrs_set(vcpu, &state->xcrs);
1129 
1130 	vcpu_xsave_set(vcpu,  state->xsave);
1131 	vcpu_events_set(vcpu, &state->events);
1132 	vcpu_mp_state_set(vcpu, &state->mp_state);
1133 	vcpu_debugregs_set(vcpu, &state->debugregs);
1134 	vcpu_regs_set(vcpu, &state->regs);
1135 
1136 	if (state->nested.size)
1137 		vcpu_nested_state_set(vcpu, &state->nested);
1138 }
1139 
1140 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1141 {
1142 	free(state->xsave);
1143 	free(state);
1144 }
1145 
1146 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1147 {
1148 	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1149 		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1150 		*va_bits = 32;
1151 	} else {
1152 		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1153 		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1154 	}
1155 }
1156 
1157 void kvm_init_vm_address_properties(struct kvm_vm *vm)
1158 {
1159 	if (vm->type == KVM_X86_SEV_VM || vm->type == KVM_X86_SEV_ES_VM) {
1160 		vm->arch.sev_fd = open_sev_dev_path_or_exit();
1161 		vm->arch.c_bit = BIT_ULL(this_cpu_property(X86_PROPERTY_SEV_C_BIT));
1162 		vm->gpa_tag_mask = vm->arch.c_bit;
1163 	} else {
1164 		vm->arch.sev_fd = -1;
1165 	}
1166 }
1167 
1168 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1169 					       uint32_t function, uint32_t index)
1170 {
1171 	int i;
1172 
1173 	for (i = 0; i < cpuid->nent; i++) {
1174 		if (cpuid->entries[i].function == function &&
1175 		    cpuid->entries[i].index == index)
1176 			return &cpuid->entries[i];
1177 	}
1178 
1179 	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1180 
1181 	return NULL;
1182 }
1183 
1184 #define X86_HYPERCALL(inputs...)					\
1185 ({									\
1186 	uint64_t r;							\
1187 									\
1188 	asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"		\
1189 		     "jnz 1f\n\t"					\
1190 		     "vmcall\n\t"					\
1191 		     "jmp 2f\n\t"					\
1192 		     "1: vmmcall\n\t"					\
1193 		     "2:"						\
1194 		     : "=a"(r)						\
1195 		     : [use_vmmcall] "r" (host_cpu_is_amd), inputs);	\
1196 									\
1197 	r;								\
1198 })
1199 
1200 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1201 		       uint64_t a3)
1202 {
1203 	return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1204 }
1205 
1206 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1207 {
1208 	return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1209 }
1210 
1211 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1212 {
1213 	GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1214 }
1215 
1216 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1217 {
1218 	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1219 	unsigned long ht_gfn, max_gfn, max_pfn;
1220 	uint8_t maxphyaddr, guest_maxphyaddr;
1221 
1222 	/*
1223 	 * Use "guest MAXPHYADDR" from KVM if it's available.  Guest MAXPHYADDR
1224 	 * enumerates the max _mappable_ GPA, which can be less than the raw
1225 	 * MAXPHYADDR, e.g. if MAXPHYADDR=52, KVM is using TDP, and the CPU
1226 	 * doesn't support 5-level TDP.
1227 	 */
1228 	guest_maxphyaddr = kvm_cpu_property(X86_PROPERTY_GUEST_MAX_PHY_ADDR);
1229 	guest_maxphyaddr = guest_maxphyaddr ?: vm->pa_bits;
1230 	TEST_ASSERT(guest_maxphyaddr <= vm->pa_bits,
1231 		    "Guest MAXPHYADDR should never be greater than raw MAXPHYADDR");
1232 
1233 	max_gfn = (1ULL << (guest_maxphyaddr - vm->page_shift)) - 1;
1234 
1235 	/* Avoid reserved HyperTransport region on AMD processors.  */
1236 	if (!host_cpu_is_amd)
1237 		return max_gfn;
1238 
1239 	/* On parts with <40 physical address bits, the area is fully hidden */
1240 	if (vm->pa_bits < 40)
1241 		return max_gfn;
1242 
1243 	/* Before family 17h, the HyperTransport area is just below 1T.  */
1244 	ht_gfn = (1 << 28) - num_ht_pages;
1245 	if (this_cpu_family() < 0x17)
1246 		goto done;
1247 
1248 	/*
1249 	 * Otherwise it's at the top of the physical address space, possibly
1250 	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1251 	 * the old conservative value if MAXPHYADDR is not enumerated.
1252 	 */
1253 	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1254 		goto done;
1255 
1256 	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1257 	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1258 
1259 	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1260 		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1261 
1262 	ht_gfn = max_pfn - num_ht_pages;
1263 done:
1264 	return min(max_gfn, ht_gfn - 1);
1265 }
1266 
1267 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
1268 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1269 {
1270 	/* Ensure that a KVM vendor-specific module is loaded. */
1271 	if (vm == NULL)
1272 		close(open_kvm_dev_path_or_exit());
1273 
1274 	return get_kvm_intel_param_bool("unrestricted_guest");
1275 }
1276 
1277 void kvm_selftest_arch_init(void)
1278 {
1279 	host_cpu_is_intel = this_cpu_is_intel();
1280 	host_cpu_is_amd = this_cpu_is_amd();
1281 	is_forced_emulation_enabled = kvm_is_forced_emulation_enabled();
1282 }
1283 
1284 bool sys_clocksource_is_based_on_tsc(void)
1285 {
1286 	char *clk_name = sys_get_cur_clocksource();
1287 	bool ret = !strcmp(clk_name, "tsc\n") ||
1288 		   !strcmp(clk_name, "hyperv_clocksource_tsc_page\n");
1289 
1290 	free(clk_name);
1291 
1292 	return ret;
1293 }
1294