xref: /linux/tools/testing/selftests/kvm/lib/sparsebit.c (revision 20dfee95936413708701eb151f419597fdd9d948)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Sparse bit array
4  *
5  * Copyright (C) 2018, Google LLC.
6  * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
7  *
8  * This library provides functions to support a memory efficient bit array,
9  * with an index size of 2^64.  A sparsebit array is allocated through
10  * the use sparsebit_alloc() and free'd via sparsebit_free(),
11  * such as in the following:
12  *
13  *   struct sparsebit *s;
14  *   s = sparsebit_alloc();
15  *   sparsebit_free(&s);
16  *
17  * The struct sparsebit type resolves down to a struct sparsebit.
18  * Note that, sparsebit_free() takes a pointer to the sparsebit
19  * structure.  This is so that sparsebit_free() is able to poison
20  * the pointer (e.g. set it to NULL) to the struct sparsebit before
21  * returning to the caller.
22  *
23  * Between the return of sparsebit_alloc() and the call of
24  * sparsebit_free(), there are multiple query and modifying operations
25  * that can be performed on the allocated sparsebit array.  All of
26  * these operations take as a parameter the value returned from
27  * sparsebit_alloc() and most also take a bit index.  Frequently
28  * used routines include:
29  *
30  *  ---- Query Operations
31  *  sparsebit_is_set(s, idx)
32  *  sparsebit_is_clear(s, idx)
33  *  sparsebit_any_set(s)
34  *  sparsebit_first_set(s)
35  *  sparsebit_next_set(s, prev_idx)
36  *
37  *  ---- Modifying Operations
38  *  sparsebit_set(s, idx)
39  *  sparsebit_clear(s, idx)
40  *  sparsebit_set_num(s, idx, num);
41  *  sparsebit_clear_num(s, idx, num);
42  *
43  * A common operation, is to itterate over all the bits set in a test
44  * sparsebit array.  This can be done via code with the following structure:
45  *
46  *   sparsebit_idx_t idx;
47  *   if (sparsebit_any_set(s)) {
48  *     idx = sparsebit_first_set(s);
49  *     do {
50  *       ...
51  *       idx = sparsebit_next_set(s, idx);
52  *     } while (idx != 0);
53  *   }
54  *
55  * The index of the first bit set needs to be obtained via
56  * sparsebit_first_set(), because sparsebit_next_set(), needs
57  * the index of the previously set.  The sparsebit_idx_t type is
58  * unsigned, so there is no previous index before 0 that is available.
59  * Also, the call to sparsebit_first_set() is not made unless there
60  * is at least 1 bit in the array set.  This is because sparsebit_first_set()
61  * aborts if sparsebit_first_set() is called with no bits set.
62  * It is the callers responsibility to assure that the
63  * sparsebit array has at least a single bit set before calling
64  * sparsebit_first_set().
65  *
66  * ==== Implementation Overview ====
67  * For the most part the internal implementation of sparsebit is
68  * opaque to the caller.  One important implementation detail that the
69  * caller may need to be aware of is the spatial complexity of the
70  * implementation.  This implementation of a sparsebit array is not
71  * only sparse, in that it uses memory proportional to the number of bits
72  * set.  It is also efficient in memory usage when most of the bits are
73  * set.
74  *
75  * At a high-level the state of the bit settings are maintained through
76  * the use of a binary-search tree, where each node contains at least
77  * the following members:
78  *
79  *   typedef uint64_t sparsebit_idx_t;
80  *   typedef uint64_t sparsebit_num_t;
81  *
82  *   sparsebit_idx_t idx;
83  *   uint32_t mask;
84  *   sparsebit_num_t num_after;
85  *
86  * The idx member contains the bit index of the first bit described by this
87  * node, while the mask member stores the setting of the first 32-bits.
88  * The setting of the bit at idx + n, where 0 <= n < 32, is located in the
89  * mask member at 1 << n.
90  *
91  * Nodes are sorted by idx and the bits described by two nodes will never
92  * overlap. The idx member is always aligned to the mask size, i.e. a
93  * multiple of 32.
94  *
95  * Beyond a typical implementation, the nodes in this implementation also
96  * contains a member named num_after.  The num_after member holds the
97  * number of bits immediately after the mask bits that are contiguously set.
98  * The use of the num_after member allows this implementation to efficiently
99  * represent cases where most bits are set.  For example, the case of all
100  * but the last two bits set, is represented by the following two nodes:
101  *
102  *   node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
103  *   node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
104  *
105  * ==== Invariants ====
106  * This implementation usses the following invariants:
107  *
108  *   + Node are only used to represent bits that are set.
109  *     Nodes with a mask of 0 and num_after of 0 are not allowed.
110  *
111  *   + Sum of bits set in all the nodes is equal to the value of
112  *     the struct sparsebit_pvt num_set member.
113  *
114  *   + The setting of at least one bit is always described in a nodes
115  *     mask (mask >= 1).
116  *
117  *   + A node with all mask bits set only occurs when the last bit
118  *     described by the previous node is not equal to this nodes
119  *     starting index - 1.  All such occurences of this condition are
120  *     avoided by moving the setting of the nodes mask bits into
121  *     the previous nodes num_after setting.
122  *
123  *   + Node starting index is evenly divisible by the number of bits
124  *     within a nodes mask member.
125  *
126  *   + Nodes never represent a range of bits that wrap around the
127  *     highest supported index.
128  *
129  *      (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
130  *
131  *     As a consequence of the above, the num_after member of a node
132  *     will always be <=:
133  *
134  *       maximum_index - nodes_starting_index - number_of_mask_bits
135  *
136  *   + Nodes within the binary search tree are sorted based on each
137  *     nodes starting index.
138  *
139  *   + The range of bits described by any two nodes do not overlap.  The
140  *     range of bits described by a single node is:
141  *
142  *       start: node->idx
143  *       end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
144  *
145  * Note, at times these invariants are temporarily violated for a
146  * specific portion of the code.  For example, when setting a mask
147  * bit, there is a small delay between when the mask bit is set and the
148  * value in the struct sparsebit_pvt num_set member is updated.  Other
149  * temporary violations occur when node_split() is called with a specified
150  * index and assures that a node where its mask represents the bit
151  * at the specified index exists.  At times to do this node_split()
152  * must split an existing node into two nodes or create a node that
153  * has no bits set.  Such temporary violations must be corrected before
154  * returning to the caller.  These corrections are typically performed
155  * by the local function node_reduce().
156  */
157 
158 #include "test_util.h"
159 #include "sparsebit.h"
160 #include <limits.h>
161 #include <assert.h>
162 
163 #define DUMP_LINE_MAX 100 /* Does not include indent amount */
164 
165 typedef uint32_t mask_t;
166 #define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
167 
168 struct node {
169 	struct node *parent;
170 	struct node *left;
171 	struct node *right;
172 	sparsebit_idx_t idx; /* index of least-significant bit in mask */
173 	sparsebit_num_t num_after; /* num contiguously set after mask */
174 	mask_t mask;
175 };
176 
177 struct sparsebit {
178 	/*
179 	 * Points to root node of the binary search
180 	 * tree.  Equal to NULL when no bits are set in
181 	 * the entire sparsebit array.
182 	 */
183 	struct node *root;
184 
185 	/*
186 	 * A redundant count of the total number of bits set.  Used for
187 	 * diagnostic purposes and to change the time complexity of
188 	 * sparsebit_num_set() from O(n) to O(1).
189 	 * Note: Due to overflow, a value of 0 means none or all set.
190 	 */
191 	sparsebit_num_t num_set;
192 };
193 
194 /* Returns the number of set bits described by the settings
195  * of the node pointed to by nodep.
196  */
197 static sparsebit_num_t node_num_set(struct node *nodep)
198 {
199 	return nodep->num_after + __builtin_popcount(nodep->mask);
200 }
201 
202 /* Returns a pointer to the node that describes the
203  * lowest bit index.
204  */
205 static struct node *node_first(const struct sparsebit *s)
206 {
207 	struct node *nodep;
208 
209 	for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
210 		;
211 
212 	return nodep;
213 }
214 
215 /* Returns a pointer to the node that describes the
216  * lowest bit index > the index of the node pointed to by np.
217  * Returns NULL if no node with a higher index exists.
218  */
219 static struct node *node_next(const struct sparsebit *s, struct node *np)
220 {
221 	struct node *nodep = np;
222 
223 	/*
224 	 * If current node has a right child, next node is the left-most
225 	 * of the right child.
226 	 */
227 	if (nodep->right) {
228 		for (nodep = nodep->right; nodep->left; nodep = nodep->left)
229 			;
230 		return nodep;
231 	}
232 
233 	/*
234 	 * No right child.  Go up until node is left child of a parent.
235 	 * That parent is then the next node.
236 	 */
237 	while (nodep->parent && nodep == nodep->parent->right)
238 		nodep = nodep->parent;
239 
240 	return nodep->parent;
241 }
242 
243 /* Searches for and returns a pointer to the node that describes the
244  * highest index < the index of the node pointed to by np.
245  * Returns NULL if no node with a lower index exists.
246  */
247 static struct node *node_prev(const struct sparsebit *s, struct node *np)
248 {
249 	struct node *nodep = np;
250 
251 	/*
252 	 * If current node has a left child, next node is the right-most
253 	 * of the left child.
254 	 */
255 	if (nodep->left) {
256 		for (nodep = nodep->left; nodep->right; nodep = nodep->right)
257 			;
258 		return (struct node *) nodep;
259 	}
260 
261 	/*
262 	 * No left child.  Go up until node is right child of a parent.
263 	 * That parent is then the next node.
264 	 */
265 	while (nodep->parent && nodep == nodep->parent->left)
266 		nodep = nodep->parent;
267 
268 	return (struct node *) nodep->parent;
269 }
270 
271 
272 /* Allocates space to hold a copy of the node sub-tree pointed to by
273  * subtree and duplicates the bit settings to the newly allocated nodes.
274  * Returns the newly allocated copy of subtree.
275  */
276 static struct node *node_copy_subtree(const struct node *subtree)
277 {
278 	struct node *root;
279 
280 	/* Duplicate the node at the root of the subtree */
281 	root = calloc(1, sizeof(*root));
282 	if (!root) {
283 		perror("calloc");
284 		abort();
285 	}
286 
287 	root->idx = subtree->idx;
288 	root->mask = subtree->mask;
289 	root->num_after = subtree->num_after;
290 
291 	/* As needed, recursively duplicate the left and right subtrees */
292 	if (subtree->left) {
293 		root->left = node_copy_subtree(subtree->left);
294 		root->left->parent = root;
295 	}
296 
297 	if (subtree->right) {
298 		root->right = node_copy_subtree(subtree->right);
299 		root->right->parent = root;
300 	}
301 
302 	return root;
303 }
304 
305 /* Searches for and returns a pointer to the node that describes the setting
306  * of the bit given by idx.  A node describes the setting of a bit if its
307  * index is within the bits described by the mask bits or the number of
308  * contiguous bits set after the mask.  Returns NULL if there is no such node.
309  */
310 static struct node *node_find(const struct sparsebit *s, sparsebit_idx_t idx)
311 {
312 	struct node *nodep;
313 
314 	/* Find the node that describes the setting of the bit at idx */
315 	for (nodep = s->root; nodep;
316 	     nodep = nodep->idx > idx ? nodep->left : nodep->right) {
317 		if (idx >= nodep->idx &&
318 		    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
319 			break;
320 	}
321 
322 	return nodep;
323 }
324 
325 /* Entry Requirements:
326  *   + A node that describes the setting of idx is not already present.
327  *
328  * Adds a new node to describe the setting of the bit at the index given
329  * by idx.  Returns a pointer to the newly added node.
330  *
331  * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
332  */
333 static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
334 {
335 	struct node *nodep, *parentp, *prev;
336 
337 	/* Allocate and initialize the new node. */
338 	nodep = calloc(1, sizeof(*nodep));
339 	if (!nodep) {
340 		perror("calloc");
341 		abort();
342 	}
343 
344 	nodep->idx = idx & -MASK_BITS;
345 
346 	/* If no nodes, set it up as the root node. */
347 	if (!s->root) {
348 		s->root = nodep;
349 		return nodep;
350 	}
351 
352 	/*
353 	 * Find the parent where the new node should be attached
354 	 * and add the node there.
355 	 */
356 	parentp = s->root;
357 	while (true) {
358 		if (idx < parentp->idx) {
359 			if (!parentp->left) {
360 				parentp->left = nodep;
361 				nodep->parent = parentp;
362 				break;
363 			}
364 			parentp = parentp->left;
365 		} else {
366 			assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
367 			if (!parentp->right) {
368 				parentp->right = nodep;
369 				nodep->parent = parentp;
370 				break;
371 			}
372 			parentp = parentp->right;
373 		}
374 	}
375 
376 	/*
377 	 * Does num_after bits of previous node overlap with the mask
378 	 * of the new node?  If so set the bits in the new nodes mask
379 	 * and reduce the previous nodes num_after.
380 	 */
381 	prev = node_prev(s, nodep);
382 	while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
383 		unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
384 			- nodep->idx;
385 		assert(prev->num_after > 0);
386 		assert(n1 < MASK_BITS);
387 		assert(!(nodep->mask & (1 << n1)));
388 		nodep->mask |= (1 << n1);
389 		prev->num_after--;
390 	}
391 
392 	return nodep;
393 }
394 
395 /* Returns whether all the bits in the sparsebit array are set.  */
396 bool sparsebit_all_set(const struct sparsebit *s)
397 {
398 	/*
399 	 * If any nodes there must be at least one bit set.  Only case
400 	 * where a bit is set and total num set is 0, is when all bits
401 	 * are set.
402 	 */
403 	return s->root && s->num_set == 0;
404 }
405 
406 /* Clears all bits described by the node pointed to by nodep, then
407  * removes the node.
408  */
409 static void node_rm(struct sparsebit *s, struct node *nodep)
410 {
411 	struct node *tmp;
412 	sparsebit_num_t num_set;
413 
414 	num_set = node_num_set(nodep);
415 	assert(s->num_set >= num_set || sparsebit_all_set(s));
416 	s->num_set -= node_num_set(nodep);
417 
418 	/* Have both left and right child */
419 	if (nodep->left && nodep->right) {
420 		/*
421 		 * Move left children to the leftmost leaf node
422 		 * of the right child.
423 		 */
424 		for (tmp = nodep->right; tmp->left; tmp = tmp->left)
425 			;
426 		tmp->left = nodep->left;
427 		nodep->left = NULL;
428 		tmp->left->parent = tmp;
429 	}
430 
431 	/* Left only child */
432 	if (nodep->left) {
433 		if (!nodep->parent) {
434 			s->root = nodep->left;
435 			nodep->left->parent = NULL;
436 		} else {
437 			nodep->left->parent = nodep->parent;
438 			if (nodep == nodep->parent->left)
439 				nodep->parent->left = nodep->left;
440 			else {
441 				assert(nodep == nodep->parent->right);
442 				nodep->parent->right = nodep->left;
443 			}
444 		}
445 
446 		nodep->parent = nodep->left = nodep->right = NULL;
447 		free(nodep);
448 
449 		return;
450 	}
451 
452 
453 	/* Right only child */
454 	if (nodep->right) {
455 		if (!nodep->parent) {
456 			s->root = nodep->right;
457 			nodep->right->parent = NULL;
458 		} else {
459 			nodep->right->parent = nodep->parent;
460 			if (nodep == nodep->parent->left)
461 				nodep->parent->left = nodep->right;
462 			else {
463 				assert(nodep == nodep->parent->right);
464 				nodep->parent->right = nodep->right;
465 			}
466 		}
467 
468 		nodep->parent = nodep->left = nodep->right = NULL;
469 		free(nodep);
470 
471 		return;
472 	}
473 
474 	/* Leaf Node */
475 	if (!nodep->parent) {
476 		s->root = NULL;
477 	} else {
478 		if (nodep->parent->left == nodep)
479 			nodep->parent->left = NULL;
480 		else {
481 			assert(nodep == nodep->parent->right);
482 			nodep->parent->right = NULL;
483 		}
484 	}
485 
486 	nodep->parent = nodep->left = nodep->right = NULL;
487 	free(nodep);
488 
489 	return;
490 }
491 
492 /* Splits the node containing the bit at idx so that there is a node
493  * that starts at the specified index.  If no such node exists, a new
494  * node at the specified index is created.  Returns the new node.
495  *
496  * idx must start of a mask boundary.
497  */
498 static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
499 {
500 	struct node *nodep1, *nodep2;
501 	sparsebit_idx_t offset;
502 	sparsebit_num_t orig_num_after;
503 
504 	assert(!(idx % MASK_BITS));
505 
506 	/*
507 	 * Is there a node that describes the setting of idx?
508 	 * If not, add it.
509 	 */
510 	nodep1 = node_find(s, idx);
511 	if (!nodep1)
512 		return node_add(s, idx);
513 
514 	/*
515 	 * All done if the starting index of the node is where the
516 	 * split should occur.
517 	 */
518 	if (nodep1->idx == idx)
519 		return nodep1;
520 
521 	/*
522 	 * Split point not at start of mask, so it must be part of
523 	 * bits described by num_after.
524 	 */
525 
526 	/*
527 	 * Calculate offset within num_after for where the split is
528 	 * to occur.
529 	 */
530 	offset = idx - (nodep1->idx + MASK_BITS);
531 	orig_num_after = nodep1->num_after;
532 
533 	/*
534 	 * Add a new node to describe the bits starting at
535 	 * the split point.
536 	 */
537 	nodep1->num_after = offset;
538 	nodep2 = node_add(s, idx);
539 
540 	/* Move bits after the split point into the new node */
541 	nodep2->num_after = orig_num_after - offset;
542 	if (nodep2->num_after >= MASK_BITS) {
543 		nodep2->mask = ~(mask_t) 0;
544 		nodep2->num_after -= MASK_BITS;
545 	} else {
546 		nodep2->mask = (1 << nodep2->num_after) - 1;
547 		nodep2->num_after = 0;
548 	}
549 
550 	return nodep2;
551 }
552 
553 /* Iteratively reduces the node pointed to by nodep and its adjacent
554  * nodes into a more compact form.  For example, a node with a mask with
555  * all bits set adjacent to a previous node, will get combined into a
556  * single node with an increased num_after setting.
557  *
558  * After each reduction, a further check is made to see if additional
559  * reductions are possible with the new previous and next nodes.  Note,
560  * a search for a reduction is only done across the nodes nearest nodep
561  * and those that became part of a reduction.  Reductions beyond nodep
562  * and the adjacent nodes that are reduced are not discovered.  It is the
563  * responsibility of the caller to pass a nodep that is within one node
564  * of each possible reduction.
565  *
566  * This function does not fix the temporary violation of all invariants.
567  * For example it does not fix the case where the bit settings described
568  * by two or more nodes overlap.  Such a violation introduces the potential
569  * complication of a bit setting for a specific index having different settings
570  * in different nodes.  This would then introduce the further complication
571  * of which node has the correct setting of the bit and thus such conditions
572  * are not allowed.
573  *
574  * This function is designed to fix invariant violations that are introduced
575  * by node_split() and by changes to the nodes mask or num_after members.
576  * For example, when setting a bit within a nodes mask, the function that
577  * sets the bit doesn't have to worry about whether the setting of that
578  * bit caused the mask to have leading only or trailing only bits set.
579  * Instead, the function can call node_reduce(), with nodep equal to the
580  * node address that it set a mask bit in, and node_reduce() will notice
581  * the cases of leading or trailing only bits and that there is an
582  * adjacent node that the bit settings could be merged into.
583  *
584  * This implementation specifically detects and corrects violation of the
585  * following invariants:
586  *
587  *   + Node are only used to represent bits that are set.
588  *     Nodes with a mask of 0 and num_after of 0 are not allowed.
589  *
590  *   + The setting of at least one bit is always described in a nodes
591  *     mask (mask >= 1).
592  *
593  *   + A node with all mask bits set only occurs when the last bit
594  *     described by the previous node is not equal to this nodes
595  *     starting index - 1.  All such occurences of this condition are
596  *     avoided by moving the setting of the nodes mask bits into
597  *     the previous nodes num_after setting.
598  */
599 static void node_reduce(struct sparsebit *s, struct node *nodep)
600 {
601 	bool reduction_performed;
602 
603 	do {
604 		reduction_performed = false;
605 		struct node *prev, *next, *tmp;
606 
607 		/* 1) Potential reductions within the current node. */
608 
609 		/* Nodes with all bits cleared may be removed. */
610 		if (nodep->mask == 0 && nodep->num_after == 0) {
611 			/*
612 			 * About to remove the node pointed to by
613 			 * nodep, which normally would cause a problem
614 			 * for the next pass through the reduction loop,
615 			 * because the node at the starting point no longer
616 			 * exists.  This potential problem is handled
617 			 * by first remembering the location of the next
618 			 * or previous nodes.  Doesn't matter which, because
619 			 * once the node at nodep is removed, there will be
620 			 * no other nodes between prev and next.
621 			 *
622 			 * Note, the checks performed on nodep against both
623 			 * both prev and next both check for an adjacent
624 			 * node that can be reduced into a single node.  As
625 			 * such, after removing the node at nodep, doesn't
626 			 * matter whether the nodep for the next pass
627 			 * through the loop is equal to the previous pass
628 			 * prev or next node.  Either way, on the next pass
629 			 * the one not selected will become either the
630 			 * prev or next node.
631 			 */
632 			tmp = node_next(s, nodep);
633 			if (!tmp)
634 				tmp = node_prev(s, nodep);
635 
636 			node_rm(s, nodep);
637 
638 			nodep = tmp;
639 			reduction_performed = true;
640 			continue;
641 		}
642 
643 		/*
644 		 * When the mask is 0, can reduce the amount of num_after
645 		 * bits by moving the initial num_after bits into the mask.
646 		 */
647 		if (nodep->mask == 0) {
648 			assert(nodep->num_after != 0);
649 			assert(nodep->idx + MASK_BITS > nodep->idx);
650 
651 			nodep->idx += MASK_BITS;
652 
653 			if (nodep->num_after >= MASK_BITS) {
654 				nodep->mask = ~0;
655 				nodep->num_after -= MASK_BITS;
656 			} else {
657 				nodep->mask = (1u << nodep->num_after) - 1;
658 				nodep->num_after = 0;
659 			}
660 
661 			reduction_performed = true;
662 			continue;
663 		}
664 
665 		/*
666 		 * 2) Potential reductions between the current and
667 		 * previous nodes.
668 		 */
669 		prev = node_prev(s, nodep);
670 		if (prev) {
671 			sparsebit_idx_t prev_highest_bit;
672 
673 			/* Nodes with no bits set can be removed. */
674 			if (prev->mask == 0 && prev->num_after == 0) {
675 				node_rm(s, prev);
676 
677 				reduction_performed = true;
678 				continue;
679 			}
680 
681 			/*
682 			 * All mask bits set and previous node has
683 			 * adjacent index.
684 			 */
685 			if (nodep->mask + 1 == 0 &&
686 			    prev->idx + MASK_BITS == nodep->idx) {
687 				prev->num_after += MASK_BITS + nodep->num_after;
688 				nodep->mask = 0;
689 				nodep->num_after = 0;
690 
691 				reduction_performed = true;
692 				continue;
693 			}
694 
695 			/*
696 			 * Is node adjacent to previous node and the node
697 			 * contains a single contiguous range of bits
698 			 * starting from the beginning of the mask?
699 			 */
700 			prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
701 			if (prev_highest_bit + 1 == nodep->idx &&
702 			    (nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
703 				/*
704 				 * How many contiguous bits are there?
705 				 * Is equal to the total number of set
706 				 * bits, due to an earlier check that
707 				 * there is a single contiguous range of
708 				 * set bits.
709 				 */
710 				unsigned int num_contiguous
711 					= __builtin_popcount(nodep->mask);
712 				assert((num_contiguous > 0) &&
713 				       ((1ULL << num_contiguous) - 1) == nodep->mask);
714 
715 				prev->num_after += num_contiguous;
716 				nodep->mask = 0;
717 
718 				/*
719 				 * For predictable performance, handle special
720 				 * case where all mask bits are set and there
721 				 * is a non-zero num_after setting.  This code
722 				 * is functionally correct without the following
723 				 * conditionalized statements, but without them
724 				 * the value of num_after is only reduced by
725 				 * the number of mask bits per pass.  There are
726 				 * cases where num_after can be close to 2^64.
727 				 * Without this code it could take nearly
728 				 * (2^64) / 32 passes to perform the full
729 				 * reduction.
730 				 */
731 				if (num_contiguous == MASK_BITS) {
732 					prev->num_after += nodep->num_after;
733 					nodep->num_after = 0;
734 				}
735 
736 				reduction_performed = true;
737 				continue;
738 			}
739 		}
740 
741 		/*
742 		 * 3) Potential reductions between the current and
743 		 * next nodes.
744 		 */
745 		next = node_next(s, nodep);
746 		if (next) {
747 			/* Nodes with no bits set can be removed. */
748 			if (next->mask == 0 && next->num_after == 0) {
749 				node_rm(s, next);
750 				reduction_performed = true;
751 				continue;
752 			}
753 
754 			/*
755 			 * Is next node index adjacent to current node
756 			 * and has a mask with all bits set?
757 			 */
758 			if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
759 			    next->mask == ~(mask_t) 0) {
760 				nodep->num_after += MASK_BITS;
761 				next->mask = 0;
762 				nodep->num_after += next->num_after;
763 				next->num_after = 0;
764 
765 				node_rm(s, next);
766 				next = NULL;
767 
768 				reduction_performed = true;
769 				continue;
770 			}
771 		}
772 	} while (nodep && reduction_performed);
773 }
774 
775 /* Returns whether the bit at the index given by idx, within the
776  * sparsebit array is set or not.
777  */
778 bool sparsebit_is_set(const struct sparsebit *s, sparsebit_idx_t idx)
779 {
780 	struct node *nodep;
781 
782 	/* Find the node that describes the setting of the bit at idx */
783 	for (nodep = s->root; nodep;
784 	     nodep = nodep->idx > idx ? nodep->left : nodep->right)
785 		if (idx >= nodep->idx &&
786 		    idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
787 			goto have_node;
788 
789 	return false;
790 
791 have_node:
792 	/* Bit is set if it is any of the bits described by num_after */
793 	if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
794 		return true;
795 
796 	/* Is the corresponding mask bit set */
797 	assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
798 	return !!(nodep->mask & (1 << (idx - nodep->idx)));
799 }
800 
801 /* Within the sparsebit array pointed to by s, sets the bit
802  * at the index given by idx.
803  */
804 static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
805 {
806 	struct node *nodep;
807 
808 	/* Skip bits that are already set */
809 	if (sparsebit_is_set(s, idx))
810 		return;
811 
812 	/*
813 	 * Get a node where the bit at idx is described by the mask.
814 	 * The node_split will also create a node, if there isn't
815 	 * already a node that describes the setting of bit.
816 	 */
817 	nodep = node_split(s, idx & -MASK_BITS);
818 
819 	/* Set the bit within the nodes mask */
820 	assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
821 	assert(!(nodep->mask & (1 << (idx - nodep->idx))));
822 	nodep->mask |= 1 << (idx - nodep->idx);
823 	s->num_set++;
824 
825 	node_reduce(s, nodep);
826 }
827 
828 /* Within the sparsebit array pointed to by s, clears the bit
829  * at the index given by idx.
830  */
831 static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
832 {
833 	struct node *nodep;
834 
835 	/* Skip bits that are already cleared */
836 	if (!sparsebit_is_set(s, idx))
837 		return;
838 
839 	/* Is there a node that describes the setting of this bit? */
840 	nodep = node_find(s, idx);
841 	if (!nodep)
842 		return;
843 
844 	/*
845 	 * If a num_after bit, split the node, so that the bit is
846 	 * part of a node mask.
847 	 */
848 	if (idx >= nodep->idx + MASK_BITS)
849 		nodep = node_split(s, idx & -MASK_BITS);
850 
851 	/*
852 	 * After node_split above, bit at idx should be within the mask.
853 	 * Clear that bit.
854 	 */
855 	assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
856 	assert(nodep->mask & (1 << (idx - nodep->idx)));
857 	nodep->mask &= ~(1 << (idx - nodep->idx));
858 	assert(s->num_set > 0 || sparsebit_all_set(s));
859 	s->num_set--;
860 
861 	node_reduce(s, nodep);
862 }
863 
864 /* Recursively dumps to the FILE stream given by stream the contents
865  * of the sub-tree of nodes pointed to by nodep.  Each line of output
866  * is prefixed by the number of spaces given by indent.  On each
867  * recursion, the indent amount is increased by 2.  This causes nodes
868  * at each level deeper into the binary search tree to be displayed
869  * with a greater indent.
870  */
871 static void dump_nodes(FILE *stream, struct node *nodep,
872 	unsigned int indent)
873 {
874 	char *node_type;
875 
876 	/* Dump contents of node */
877 	if (!nodep->parent)
878 		node_type = "root";
879 	else if (nodep == nodep->parent->left)
880 		node_type = "left";
881 	else {
882 		assert(nodep == nodep->parent->right);
883 		node_type = "right";
884 	}
885 	fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
886 	fprintf(stream, "%*s  parent: %p left: %p right: %p\n", indent, "",
887 		nodep->parent, nodep->left, nodep->right);
888 	fprintf(stream, "%*s  idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
889 		indent, "", nodep->idx, nodep->mask, nodep->num_after);
890 
891 	/* If present, dump contents of left child nodes */
892 	if (nodep->left)
893 		dump_nodes(stream, nodep->left, indent + 2);
894 
895 	/* If present, dump contents of right child nodes */
896 	if (nodep->right)
897 		dump_nodes(stream, nodep->right, indent + 2);
898 }
899 
900 static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
901 {
902 	mask_t leading = (mask_t)1 << start;
903 	int n1 = __builtin_ctz(nodep->mask & -leading);
904 
905 	return nodep->idx + n1;
906 }
907 
908 static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
909 {
910 	mask_t leading = (mask_t)1 << start;
911 	int n1 = __builtin_ctz(~nodep->mask & -leading);
912 
913 	return nodep->idx + n1;
914 }
915 
916 /* Dumps to the FILE stream specified by stream, the implementation dependent
917  * internal state of s.  Each line of output is prefixed with the number
918  * of spaces given by indent.  The output is completely implementation
919  * dependent and subject to change.  Output from this function should only
920  * be used for diagnostic purposes.  For example, this function can be
921  * used by test cases after they detect an unexpected condition, as a means
922  * to capture diagnostic information.
923  */
924 static void sparsebit_dump_internal(FILE *stream, const struct sparsebit *s,
925 	unsigned int indent)
926 {
927 	/* Dump the contents of s */
928 	fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
929 	fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
930 
931 	if (s->root)
932 		dump_nodes(stream, s->root, indent);
933 }
934 
935 /* Allocates and returns a new sparsebit array. The initial state
936  * of the newly allocated sparsebit array has all bits cleared.
937  */
938 struct sparsebit *sparsebit_alloc(void)
939 {
940 	struct sparsebit *s;
941 
942 	/* Allocate top level structure. */
943 	s = calloc(1, sizeof(*s));
944 	if (!s) {
945 		perror("calloc");
946 		abort();
947 	}
948 
949 	return s;
950 }
951 
952 /* Frees the implementation dependent data for the sparsebit array
953  * pointed to by s and poisons the pointer to that data.
954  */
955 void sparsebit_free(struct sparsebit **sbitp)
956 {
957 	struct sparsebit *s = *sbitp;
958 
959 	if (!s)
960 		return;
961 
962 	sparsebit_clear_all(s);
963 	free(s);
964 	*sbitp = NULL;
965 }
966 
967 /* Makes a copy of the sparsebit array given by s, to the sparsebit
968  * array given by d.  Note, d must have already been allocated via
969  * sparsebit_alloc().  It can though already have bits set, which
970  * if different from src will be cleared.
971  */
972 void sparsebit_copy(struct sparsebit *d, const struct sparsebit *s)
973 {
974 	/* First clear any bits already set in the destination */
975 	sparsebit_clear_all(d);
976 
977 	if (s->root) {
978 		d->root = node_copy_subtree(s->root);
979 		d->num_set = s->num_set;
980 	}
981 }
982 
983 /* Returns whether num consecutive bits starting at idx are all set.  */
984 bool sparsebit_is_set_num(const struct sparsebit *s,
985 	sparsebit_idx_t idx, sparsebit_num_t num)
986 {
987 	sparsebit_idx_t next_cleared;
988 
989 	assert(num > 0);
990 	assert(idx + num - 1 >= idx);
991 
992 	/* With num > 0, the first bit must be set. */
993 	if (!sparsebit_is_set(s, idx))
994 		return false;
995 
996 	/* Find the next cleared bit */
997 	next_cleared = sparsebit_next_clear(s, idx);
998 
999 	/*
1000 	 * If no cleared bits beyond idx, then there are at least num
1001 	 * set bits. idx + num doesn't wrap.  Otherwise check if
1002 	 * there are enough set bits between idx and the next cleared bit.
1003 	 */
1004 	return next_cleared == 0 || next_cleared - idx >= num;
1005 }
1006 
1007 /* Returns whether the bit at the index given by idx.  */
1008 bool sparsebit_is_clear(const struct sparsebit *s,
1009 	sparsebit_idx_t idx)
1010 {
1011 	return !sparsebit_is_set(s, idx);
1012 }
1013 
1014 /* Returns whether num consecutive bits starting at idx are all cleared.  */
1015 bool sparsebit_is_clear_num(const struct sparsebit *s,
1016 	sparsebit_idx_t idx, sparsebit_num_t num)
1017 {
1018 	sparsebit_idx_t next_set;
1019 
1020 	assert(num > 0);
1021 	assert(idx + num - 1 >= idx);
1022 
1023 	/* With num > 0, the first bit must be cleared. */
1024 	if (!sparsebit_is_clear(s, idx))
1025 		return false;
1026 
1027 	/* Find the next set bit */
1028 	next_set = sparsebit_next_set(s, idx);
1029 
1030 	/*
1031 	 * If no set bits beyond idx, then there are at least num
1032 	 * cleared bits. idx + num doesn't wrap.  Otherwise check if
1033 	 * there are enough cleared bits between idx and the next set bit.
1034 	 */
1035 	return next_set == 0 || next_set - idx >= num;
1036 }
1037 
1038 /* Returns the total number of bits set.  Note: 0 is also returned for
1039  * the case of all bits set.  This is because with all bits set, there
1040  * is 1 additional bit set beyond what can be represented in the return
1041  * value.  Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
1042  * to determine if the sparsebit array has any bits set.
1043  */
1044 sparsebit_num_t sparsebit_num_set(const struct sparsebit *s)
1045 {
1046 	return s->num_set;
1047 }
1048 
1049 /* Returns whether any bit is set in the sparsebit array.  */
1050 bool sparsebit_any_set(const struct sparsebit *s)
1051 {
1052 	/*
1053 	 * Nodes only describe set bits.  If any nodes then there
1054 	 * is at least 1 bit set.
1055 	 */
1056 	if (!s->root)
1057 		return false;
1058 
1059 	/*
1060 	 * Every node should have a non-zero mask.  For now will
1061 	 * just assure that the root node has a non-zero mask,
1062 	 * which is a quick check that at least 1 bit is set.
1063 	 */
1064 	assert(s->root->mask != 0);
1065 	assert(s->num_set > 0 ||
1066 	       (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
1067 		s->root->mask == ~(mask_t) 0));
1068 
1069 	return true;
1070 }
1071 
1072 /* Returns whether all the bits in the sparsebit array are cleared.  */
1073 bool sparsebit_all_clear(const struct sparsebit *s)
1074 {
1075 	return !sparsebit_any_set(s);
1076 }
1077 
1078 /* Returns whether all the bits in the sparsebit array are set.  */
1079 bool sparsebit_any_clear(const struct sparsebit *s)
1080 {
1081 	return !sparsebit_all_set(s);
1082 }
1083 
1084 /* Returns the index of the first set bit.  Abort if no bits are set.
1085  */
1086 sparsebit_idx_t sparsebit_first_set(const struct sparsebit *s)
1087 {
1088 	struct node *nodep;
1089 
1090 	/* Validate at least 1 bit is set */
1091 	assert(sparsebit_any_set(s));
1092 
1093 	nodep = node_first(s);
1094 	return node_first_set(nodep, 0);
1095 }
1096 
1097 /* Returns the index of the first cleared bit.  Abort if
1098  * no bits are cleared.
1099  */
1100 sparsebit_idx_t sparsebit_first_clear(const struct sparsebit *s)
1101 {
1102 	struct node *nodep1, *nodep2;
1103 
1104 	/* Validate at least 1 bit is cleared. */
1105 	assert(sparsebit_any_clear(s));
1106 
1107 	/* If no nodes or first node index > 0 then lowest cleared is 0 */
1108 	nodep1 = node_first(s);
1109 	if (!nodep1 || nodep1->idx > 0)
1110 		return 0;
1111 
1112 	/* Does the mask in the first node contain any cleared bits. */
1113 	if (nodep1->mask != ~(mask_t) 0)
1114 		return node_first_clear(nodep1, 0);
1115 
1116 	/*
1117 	 * All mask bits set in first node.  If there isn't a second node
1118 	 * then the first cleared bit is the first bit after the bits
1119 	 * described by the first node.
1120 	 */
1121 	nodep2 = node_next(s, nodep1);
1122 	if (!nodep2) {
1123 		/*
1124 		 * No second node.  First cleared bit is first bit beyond
1125 		 * bits described by first node.
1126 		 */
1127 		assert(nodep1->mask == ~(mask_t) 0);
1128 		assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
1129 		return nodep1->idx + MASK_BITS + nodep1->num_after;
1130 	}
1131 
1132 	/*
1133 	 * There is a second node.
1134 	 * If it is not adjacent to the first node, then there is a gap
1135 	 * of cleared bits between the nodes, and the first cleared bit
1136 	 * is the first bit within the gap.
1137 	 */
1138 	if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1139 		return nodep1->idx + MASK_BITS + nodep1->num_after;
1140 
1141 	/*
1142 	 * Second node is adjacent to the first node.
1143 	 * Because it is adjacent, its mask should be non-zero.  If all
1144 	 * its mask bits are set, then with it being adjacent, it should
1145 	 * have had the mask bits moved into the num_after setting of the
1146 	 * previous node.
1147 	 */
1148 	return node_first_clear(nodep2, 0);
1149 }
1150 
1151 /* Returns index of next bit set within s after the index given by prev.
1152  * Returns 0 if there are no bits after prev that are set.
1153  */
1154 sparsebit_idx_t sparsebit_next_set(const struct sparsebit *s,
1155 	sparsebit_idx_t prev)
1156 {
1157 	sparsebit_idx_t lowest_possible = prev + 1;
1158 	sparsebit_idx_t start;
1159 	struct node *nodep;
1160 
1161 	/* A bit after the highest index can't be set. */
1162 	if (lowest_possible == 0)
1163 		return 0;
1164 
1165 	/*
1166 	 * Find the leftmost 'candidate' overlapping or to the right
1167 	 * of lowest_possible.
1168 	 */
1169 	struct node *candidate = NULL;
1170 
1171 	/* True iff lowest_possible is within candidate */
1172 	bool contains = false;
1173 
1174 	/*
1175 	 * Find node that describes setting of bit at lowest_possible.
1176 	 * If such a node doesn't exist, find the node with the lowest
1177 	 * starting index that is > lowest_possible.
1178 	 */
1179 	for (nodep = s->root; nodep;) {
1180 		if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
1181 			>= lowest_possible) {
1182 			candidate = nodep;
1183 			if (candidate->idx <= lowest_possible) {
1184 				contains = true;
1185 				break;
1186 			}
1187 			nodep = nodep->left;
1188 		} else {
1189 			nodep = nodep->right;
1190 		}
1191 	}
1192 	if (!candidate)
1193 		return 0;
1194 
1195 	assert(candidate->mask != 0);
1196 
1197 	/* Does the candidate node describe the setting of lowest_possible? */
1198 	if (!contains) {
1199 		/*
1200 		 * Candidate doesn't describe setting of bit at lowest_possible.
1201 		 * Candidate points to the first node with a starting index
1202 		 * > lowest_possible.
1203 		 */
1204 		assert(candidate->idx > lowest_possible);
1205 
1206 		return node_first_set(candidate, 0);
1207 	}
1208 
1209 	/*
1210 	 * Candidate describes setting of bit at lowest_possible.
1211 	 * Note: although the node describes the setting of the bit
1212 	 * at lowest_possible, its possible that its setting and the
1213 	 * setting of all latter bits described by this node are 0.
1214 	 * For now, just handle the cases where this node describes
1215 	 * a bit at or after an index of lowest_possible that is set.
1216 	 */
1217 	start = lowest_possible - candidate->idx;
1218 
1219 	if (start < MASK_BITS && candidate->mask >= (1 << start))
1220 		return node_first_set(candidate, start);
1221 
1222 	if (candidate->num_after) {
1223 		sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
1224 
1225 		return lowest_possible < first_num_after_idx
1226 			? first_num_after_idx : lowest_possible;
1227 	}
1228 
1229 	/*
1230 	 * Although candidate node describes setting of bit at
1231 	 * the index of lowest_possible, all bits at that index and
1232 	 * latter that are described by candidate are cleared.  With
1233 	 * this, the next bit is the first bit in the next node, if
1234 	 * such a node exists.  If a next node doesn't exist, then
1235 	 * there is no next set bit.
1236 	 */
1237 	candidate = node_next(s, candidate);
1238 	if (!candidate)
1239 		return 0;
1240 
1241 	return node_first_set(candidate, 0);
1242 }
1243 
1244 /* Returns index of next bit cleared within s after the index given by prev.
1245  * Returns 0 if there are no bits after prev that are cleared.
1246  */
1247 sparsebit_idx_t sparsebit_next_clear(const struct sparsebit *s,
1248 	sparsebit_idx_t prev)
1249 {
1250 	sparsebit_idx_t lowest_possible = prev + 1;
1251 	sparsebit_idx_t idx;
1252 	struct node *nodep1, *nodep2;
1253 
1254 	/* A bit after the highest index can't be set. */
1255 	if (lowest_possible == 0)
1256 		return 0;
1257 
1258 	/*
1259 	 * Does a node describing the setting of lowest_possible exist?
1260 	 * If not, the bit at lowest_possible is cleared.
1261 	 */
1262 	nodep1 = node_find(s, lowest_possible);
1263 	if (!nodep1)
1264 		return lowest_possible;
1265 
1266 	/* Does a mask bit in node 1 describe the next cleared bit. */
1267 	for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
1268 		if (!(nodep1->mask & (1 << idx)))
1269 			return nodep1->idx + idx;
1270 
1271 	/*
1272 	 * Next cleared bit is not described by node 1.  If there
1273 	 * isn't a next node, then next cleared bit is described
1274 	 * by bit after the bits described by the first node.
1275 	 */
1276 	nodep2 = node_next(s, nodep1);
1277 	if (!nodep2)
1278 		return nodep1->idx + MASK_BITS + nodep1->num_after;
1279 
1280 	/*
1281 	 * There is a second node.
1282 	 * If it is not adjacent to the first node, then there is a gap
1283 	 * of cleared bits between the nodes, and the next cleared bit
1284 	 * is the first bit within the gap.
1285 	 */
1286 	if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
1287 		return nodep1->idx + MASK_BITS + nodep1->num_after;
1288 
1289 	/*
1290 	 * Second node is adjacent to the first node.
1291 	 * Because it is adjacent, its mask should be non-zero.  If all
1292 	 * its mask bits are set, then with it being adjacent, it should
1293 	 * have had the mask bits moved into the num_after setting of the
1294 	 * previous node.
1295 	 */
1296 	return node_first_clear(nodep2, 0);
1297 }
1298 
1299 /* Starting with the index 1 greater than the index given by start, finds
1300  * and returns the index of the first sequence of num consecutively set
1301  * bits.  Returns a value of 0 of no such sequence exists.
1302  */
1303 sparsebit_idx_t sparsebit_next_set_num(const struct sparsebit *s,
1304 	sparsebit_idx_t start, sparsebit_num_t num)
1305 {
1306 	sparsebit_idx_t idx;
1307 
1308 	assert(num >= 1);
1309 
1310 	for (idx = sparsebit_next_set(s, start);
1311 		idx != 0 && idx + num - 1 >= idx;
1312 		idx = sparsebit_next_set(s, idx)) {
1313 		assert(sparsebit_is_set(s, idx));
1314 
1315 		/*
1316 		 * Does the sequence of bits starting at idx consist of
1317 		 * num set bits?
1318 		 */
1319 		if (sparsebit_is_set_num(s, idx, num))
1320 			return idx;
1321 
1322 		/*
1323 		 * Sequence of set bits at idx isn't large enough.
1324 		 * Skip this entire sequence of set bits.
1325 		 */
1326 		idx = sparsebit_next_clear(s, idx);
1327 		if (idx == 0)
1328 			return 0;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 /* Starting with the index 1 greater than the index given by start, finds
1335  * and returns the index of the first sequence of num consecutively cleared
1336  * bits.  Returns a value of 0 of no such sequence exists.
1337  */
1338 sparsebit_idx_t sparsebit_next_clear_num(const struct sparsebit *s,
1339 	sparsebit_idx_t start, sparsebit_num_t num)
1340 {
1341 	sparsebit_idx_t idx;
1342 
1343 	assert(num >= 1);
1344 
1345 	for (idx = sparsebit_next_clear(s, start);
1346 		idx != 0 && idx + num - 1 >= idx;
1347 		idx = sparsebit_next_clear(s, idx)) {
1348 		assert(sparsebit_is_clear(s, idx));
1349 
1350 		/*
1351 		 * Does the sequence of bits starting at idx consist of
1352 		 * num cleared bits?
1353 		 */
1354 		if (sparsebit_is_clear_num(s, idx, num))
1355 			return idx;
1356 
1357 		/*
1358 		 * Sequence of cleared bits at idx isn't large enough.
1359 		 * Skip this entire sequence of cleared bits.
1360 		 */
1361 		idx = sparsebit_next_set(s, idx);
1362 		if (idx == 0)
1363 			return 0;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 /* Sets the bits * in the inclusive range idx through idx + num - 1.  */
1370 void sparsebit_set_num(struct sparsebit *s,
1371 	sparsebit_idx_t start, sparsebit_num_t num)
1372 {
1373 	struct node *nodep, *next;
1374 	unsigned int n1;
1375 	sparsebit_idx_t idx;
1376 	sparsebit_num_t n;
1377 	sparsebit_idx_t middle_start, middle_end;
1378 
1379 	assert(num > 0);
1380 	assert(start + num - 1 >= start);
1381 
1382 	/*
1383 	 * Leading - bits before first mask boundary.
1384 	 *
1385 	 * TODO(lhuemill): With some effort it may be possible to
1386 	 *   replace the following loop with a sequential sequence
1387 	 *   of statements.  High level sequence would be:
1388 	 *
1389 	 *     1. Use node_split() to force node that describes setting
1390 	 *        of idx to be within the mask portion of a node.
1391 	 *     2. Form mask of bits to be set.
1392 	 *     3. Determine number of mask bits already set in the node
1393 	 *        and store in a local variable named num_already_set.
1394 	 *     4. Set the appropriate mask bits within the node.
1395 	 *     5. Increment struct sparsebit_pvt num_set member
1396 	 *        by the number of bits that were actually set.
1397 	 *        Exclude from the counts bits that were already set.
1398 	 *     6. Before returning to the caller, use node_reduce() to
1399 	 *        handle the multiple corner cases that this method
1400 	 *        introduces.
1401 	 */
1402 	for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1403 		bit_set(s, idx);
1404 
1405 	/* Middle - bits spanning one or more entire mask */
1406 	middle_start = idx;
1407 	middle_end = middle_start + (n & -MASK_BITS) - 1;
1408 	if (n >= MASK_BITS) {
1409 		nodep = node_split(s, middle_start);
1410 
1411 		/*
1412 		 * As needed, split just after end of middle bits.
1413 		 * No split needed if end of middle bits is at highest
1414 		 * supported bit index.
1415 		 */
1416 		if (middle_end + 1 > middle_end)
1417 			(void) node_split(s, middle_end + 1);
1418 
1419 		/* Delete nodes that only describe bits within the middle. */
1420 		for (next = node_next(s, nodep);
1421 			next && (next->idx < middle_end);
1422 			next = node_next(s, nodep)) {
1423 			assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1424 			node_rm(s, next);
1425 			next = NULL;
1426 		}
1427 
1428 		/* As needed set each of the mask bits */
1429 		for (n1 = 0; n1 < MASK_BITS; n1++) {
1430 			if (!(nodep->mask & (1 << n1))) {
1431 				nodep->mask |= 1 << n1;
1432 				s->num_set++;
1433 			}
1434 		}
1435 
1436 		s->num_set -= nodep->num_after;
1437 		nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
1438 		s->num_set += nodep->num_after;
1439 
1440 		node_reduce(s, nodep);
1441 	}
1442 	idx = middle_end + 1;
1443 	n -= middle_end - middle_start + 1;
1444 
1445 	/* Trailing - bits at and beyond last mask boundary */
1446 	assert(n < MASK_BITS);
1447 	for (; n > 0; idx++, n--)
1448 		bit_set(s, idx);
1449 }
1450 
1451 /* Clears the bits * in the inclusive range idx through idx + num - 1.  */
1452 void sparsebit_clear_num(struct sparsebit *s,
1453 	sparsebit_idx_t start, sparsebit_num_t num)
1454 {
1455 	struct node *nodep, *next;
1456 	unsigned int n1;
1457 	sparsebit_idx_t idx;
1458 	sparsebit_num_t n;
1459 	sparsebit_idx_t middle_start, middle_end;
1460 
1461 	assert(num > 0);
1462 	assert(start + num - 1 >= start);
1463 
1464 	/* Leading - bits before first mask boundary */
1465 	for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
1466 		bit_clear(s, idx);
1467 
1468 	/* Middle - bits spanning one or more entire mask */
1469 	middle_start = idx;
1470 	middle_end = middle_start + (n & -MASK_BITS) - 1;
1471 	if (n >= MASK_BITS) {
1472 		nodep = node_split(s, middle_start);
1473 
1474 		/*
1475 		 * As needed, split just after end of middle bits.
1476 		 * No split needed if end of middle bits is at highest
1477 		 * supported bit index.
1478 		 */
1479 		if (middle_end + 1 > middle_end)
1480 			(void) node_split(s, middle_end + 1);
1481 
1482 		/* Delete nodes that only describe bits within the middle. */
1483 		for (next = node_next(s, nodep);
1484 			next && (next->idx < middle_end);
1485 			next = node_next(s, nodep)) {
1486 			assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
1487 			node_rm(s, next);
1488 			next = NULL;
1489 		}
1490 
1491 		/* As needed clear each of the mask bits */
1492 		for (n1 = 0; n1 < MASK_BITS; n1++) {
1493 			if (nodep->mask & (1 << n1)) {
1494 				nodep->mask &= ~(1 << n1);
1495 				s->num_set--;
1496 			}
1497 		}
1498 
1499 		/* Clear any bits described by num_after */
1500 		s->num_set -= nodep->num_after;
1501 		nodep->num_after = 0;
1502 
1503 		/*
1504 		 * Delete the node that describes the beginning of
1505 		 * the middle bits and perform any allowed reductions
1506 		 * with the nodes prev or next of nodep.
1507 		 */
1508 		node_reduce(s, nodep);
1509 		nodep = NULL;
1510 	}
1511 	idx = middle_end + 1;
1512 	n -= middle_end - middle_start + 1;
1513 
1514 	/* Trailing - bits at and beyond last mask boundary */
1515 	assert(n < MASK_BITS);
1516 	for (; n > 0; idx++, n--)
1517 		bit_clear(s, idx);
1518 }
1519 
1520 /* Sets the bit at the index given by idx.  */
1521 void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
1522 {
1523 	sparsebit_set_num(s, idx, 1);
1524 }
1525 
1526 /* Clears the bit at the index given by idx.  */
1527 void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
1528 {
1529 	sparsebit_clear_num(s, idx, 1);
1530 }
1531 
1532 /* Sets the bits in the entire addressable range of the sparsebit array.  */
1533 void sparsebit_set_all(struct sparsebit *s)
1534 {
1535 	sparsebit_set(s, 0);
1536 	sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
1537 	assert(sparsebit_all_set(s));
1538 }
1539 
1540 /* Clears the bits in the entire addressable range of the sparsebit array.  */
1541 void sparsebit_clear_all(struct sparsebit *s)
1542 {
1543 	sparsebit_clear(s, 0);
1544 	sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
1545 	assert(!sparsebit_any_set(s));
1546 }
1547 
1548 static size_t display_range(FILE *stream, sparsebit_idx_t low,
1549 	sparsebit_idx_t high, bool prepend_comma_space)
1550 {
1551 	char *fmt_str;
1552 	size_t sz;
1553 
1554 	/* Determine the printf format string */
1555 	if (low == high)
1556 		fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
1557 	else
1558 		fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
1559 
1560 	/*
1561 	 * When stream is NULL, just determine the size of what would
1562 	 * have been printed, else print the range.
1563 	 */
1564 	if (!stream)
1565 		sz = snprintf(NULL, 0, fmt_str, low, high);
1566 	else
1567 		sz = fprintf(stream, fmt_str, low, high);
1568 
1569 	return sz;
1570 }
1571 
1572 
1573 /* Dumps to the FILE stream given by stream, the bit settings
1574  * of s.  Each line of output is prefixed with the number of
1575  * spaces given by indent.  The length of each line is implementation
1576  * dependent and does not depend on the indent amount.  The following
1577  * is an example output of a sparsebit array that has bits:
1578  *
1579  *   0x5, 0x8, 0xa:0xe, 0x12
1580  *
1581  * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
1582  * are set.  Note that a ':', instead of a '-' is used to specify a range of
1583  * contiguous bits.  This is done because '-' is used to specify command-line
1584  * options, and sometimes ranges are specified as command-line arguments.
1585  */
1586 void sparsebit_dump(FILE *stream, const struct sparsebit *s,
1587 	unsigned int indent)
1588 {
1589 	size_t current_line_len = 0;
1590 	size_t sz;
1591 	struct node *nodep;
1592 
1593 	if (!sparsebit_any_set(s))
1594 		return;
1595 
1596 	/* Display initial indent */
1597 	fprintf(stream, "%*s", indent, "");
1598 
1599 	/* For each node */
1600 	for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
1601 		unsigned int n1;
1602 		sparsebit_idx_t low, high;
1603 
1604 		/* For each group of bits in the mask */
1605 		for (n1 = 0; n1 < MASK_BITS; n1++) {
1606 			if (nodep->mask & (1 << n1)) {
1607 				low = high = nodep->idx + n1;
1608 
1609 				for (; n1 < MASK_BITS; n1++) {
1610 					if (nodep->mask & (1 << n1))
1611 						high = nodep->idx + n1;
1612 					else
1613 						break;
1614 				}
1615 
1616 				if ((n1 == MASK_BITS) && nodep->num_after)
1617 					high += nodep->num_after;
1618 
1619 				/*
1620 				 * How much room will it take to display
1621 				 * this range.
1622 				 */
1623 				sz = display_range(NULL, low, high,
1624 					current_line_len != 0);
1625 
1626 				/*
1627 				 * If there is not enough room, display
1628 				 * a newline plus the indent of the next
1629 				 * line.
1630 				 */
1631 				if (current_line_len + sz > DUMP_LINE_MAX) {
1632 					fputs("\n", stream);
1633 					fprintf(stream, "%*s", indent, "");
1634 					current_line_len = 0;
1635 				}
1636 
1637 				/* Display the range */
1638 				sz = display_range(stream, low, high,
1639 					current_line_len != 0);
1640 				current_line_len += sz;
1641 			}
1642 		}
1643 
1644 		/*
1645 		 * If num_after and most significant-bit of mask is not
1646 		 * set, then still need to display a range for the bits
1647 		 * described by num_after.
1648 		 */
1649 		if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
1650 			low = nodep->idx + MASK_BITS;
1651 			high = nodep->idx + MASK_BITS + nodep->num_after - 1;
1652 
1653 			/*
1654 			 * How much room will it take to display
1655 			 * this range.
1656 			 */
1657 			sz = display_range(NULL, low, high,
1658 				current_line_len != 0);
1659 
1660 			/*
1661 			 * If there is not enough room, display
1662 			 * a newline plus the indent of the next
1663 			 * line.
1664 			 */
1665 			if (current_line_len + sz > DUMP_LINE_MAX) {
1666 				fputs("\n", stream);
1667 				fprintf(stream, "%*s", indent, "");
1668 				current_line_len = 0;
1669 			}
1670 
1671 			/* Display the range */
1672 			sz = display_range(stream, low, high,
1673 				current_line_len != 0);
1674 			current_line_len += sz;
1675 		}
1676 	}
1677 	fputs("\n", stream);
1678 }
1679 
1680 /* Validates the internal state of the sparsebit array given by
1681  * s.  On error, diagnostic information is printed to stderr and
1682  * abort is called.
1683  */
1684 void sparsebit_validate_internal(const struct sparsebit *s)
1685 {
1686 	bool error_detected = false;
1687 	struct node *nodep, *prev = NULL;
1688 	sparsebit_num_t total_bits_set = 0;
1689 	unsigned int n1;
1690 
1691 	/* For each node */
1692 	for (nodep = node_first(s); nodep;
1693 		prev = nodep, nodep = node_next(s, nodep)) {
1694 
1695 		/*
1696 		 * Increase total bits set by the number of bits set
1697 		 * in this node.
1698 		 */
1699 		for (n1 = 0; n1 < MASK_BITS; n1++)
1700 			if (nodep->mask & (1 << n1))
1701 				total_bits_set++;
1702 
1703 		total_bits_set += nodep->num_after;
1704 
1705 		/*
1706 		 * Arbitrary choice as to whether a mask of 0 is allowed
1707 		 * or not.  For diagnostic purposes it is beneficial to
1708 		 * have only one valid means to represent a set of bits.
1709 		 * To support this an arbitrary choice has been made
1710 		 * to not allow a mask of zero.
1711 		 */
1712 		if (nodep->mask == 0) {
1713 			fprintf(stderr, "Node mask of zero, "
1714 				"nodep: %p nodep->mask: 0x%x",
1715 				nodep, nodep->mask);
1716 			error_detected = true;
1717 			break;
1718 		}
1719 
1720 		/*
1721 		 * Validate num_after is not greater than the max index
1722 		 * - the number of mask bits.  The num_after member
1723 		 * uses 0-based indexing and thus has no value that
1724 		 * represents all bits set.  This limitation is handled
1725 		 * by requiring a non-zero mask.  With a non-zero mask,
1726 		 * MASK_BITS worth of bits are described by the mask,
1727 		 * which makes the largest needed num_after equal to:
1728 		 *
1729 		 *    (~(sparsebit_num_t) 0) - MASK_BITS + 1
1730 		 */
1731 		if (nodep->num_after
1732 			> (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
1733 			fprintf(stderr, "num_after too large, "
1734 				"nodep: %p nodep->num_after: 0x%lx",
1735 				nodep, nodep->num_after);
1736 			error_detected = true;
1737 			break;
1738 		}
1739 
1740 		/* Validate node index is divisible by the mask size */
1741 		if (nodep->idx % MASK_BITS) {
1742 			fprintf(stderr, "Node index not divisible by "
1743 				"mask size,\n"
1744 				"  nodep: %p nodep->idx: 0x%lx "
1745 				"MASK_BITS: %lu\n",
1746 				nodep, nodep->idx, MASK_BITS);
1747 			error_detected = true;
1748 			break;
1749 		}
1750 
1751 		/*
1752 		 * Validate bits described by node don't wrap beyond the
1753 		 * highest supported index.
1754 		 */
1755 		if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
1756 			fprintf(stderr, "Bits described by node wrap "
1757 				"beyond highest supported index,\n"
1758 				"  nodep: %p nodep->idx: 0x%lx\n"
1759 				"  MASK_BITS: %lu nodep->num_after: 0x%lx",
1760 				nodep, nodep->idx, MASK_BITS, nodep->num_after);
1761 			error_detected = true;
1762 			break;
1763 		}
1764 
1765 		/* Check parent pointers. */
1766 		if (nodep->left) {
1767 			if (nodep->left->parent != nodep) {
1768 				fprintf(stderr, "Left child parent pointer "
1769 					"doesn't point to this node,\n"
1770 					"  nodep: %p nodep->left: %p "
1771 					"nodep->left->parent: %p",
1772 					nodep, nodep->left,
1773 					nodep->left->parent);
1774 				error_detected = true;
1775 				break;
1776 			}
1777 		}
1778 
1779 		if (nodep->right) {
1780 			if (nodep->right->parent != nodep) {
1781 				fprintf(stderr, "Right child parent pointer "
1782 					"doesn't point to this node,\n"
1783 					"  nodep: %p nodep->right: %p "
1784 					"nodep->right->parent: %p",
1785 					nodep, nodep->right,
1786 					nodep->right->parent);
1787 				error_detected = true;
1788 				break;
1789 			}
1790 		}
1791 
1792 		if (!nodep->parent) {
1793 			if (s->root != nodep) {
1794 				fprintf(stderr, "Unexpected root node, "
1795 					"s->root: %p nodep: %p",
1796 					s->root, nodep);
1797 				error_detected = true;
1798 				break;
1799 			}
1800 		}
1801 
1802 		if (prev) {
1803 			/*
1804 			 * Is index of previous node before index of
1805 			 * current node?
1806 			 */
1807 			if (prev->idx >= nodep->idx) {
1808 				fprintf(stderr, "Previous node index "
1809 					">= current node index,\n"
1810 					"  prev: %p prev->idx: 0x%lx\n"
1811 					"  nodep: %p nodep->idx: 0x%lx",
1812 					prev, prev->idx, nodep, nodep->idx);
1813 				error_detected = true;
1814 				break;
1815 			}
1816 
1817 			/*
1818 			 * Nodes occur in asscending order, based on each
1819 			 * nodes starting index.
1820 			 */
1821 			if ((prev->idx + MASK_BITS + prev->num_after - 1)
1822 				>= nodep->idx) {
1823 				fprintf(stderr, "Previous node bit range "
1824 					"overlap with current node bit range,\n"
1825 					"  prev: %p prev->idx: 0x%lx "
1826 					"prev->num_after: 0x%lx\n"
1827 					"  nodep: %p nodep->idx: 0x%lx "
1828 					"nodep->num_after: 0x%lx\n"
1829 					"  MASK_BITS: %lu",
1830 					prev, prev->idx, prev->num_after,
1831 					nodep, nodep->idx, nodep->num_after,
1832 					MASK_BITS);
1833 				error_detected = true;
1834 				break;
1835 			}
1836 
1837 			/*
1838 			 * When the node has all mask bits set, it shouldn't
1839 			 * be adjacent to the last bit described by the
1840 			 * previous node.
1841 			 */
1842 			if (nodep->mask == ~(mask_t) 0 &&
1843 			    prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
1844 				fprintf(stderr, "Current node has mask with "
1845 					"all bits set and is adjacent to the "
1846 					"previous node,\n"
1847 					"  prev: %p prev->idx: 0x%lx "
1848 					"prev->num_after: 0x%lx\n"
1849 					"  nodep: %p nodep->idx: 0x%lx "
1850 					"nodep->num_after: 0x%lx\n"
1851 					"  MASK_BITS: %lu",
1852 					prev, prev->idx, prev->num_after,
1853 					nodep, nodep->idx, nodep->num_after,
1854 					MASK_BITS);
1855 
1856 				error_detected = true;
1857 				break;
1858 			}
1859 		}
1860 	}
1861 
1862 	if (!error_detected) {
1863 		/*
1864 		 * Is sum of bits set in each node equal to the count
1865 		 * of total bits set.
1866 		 */
1867 		if (s->num_set != total_bits_set) {
1868 			fprintf(stderr, "Number of bits set mismatch,\n"
1869 				"  s->num_set: 0x%lx total_bits_set: 0x%lx",
1870 				s->num_set, total_bits_set);
1871 
1872 			error_detected = true;
1873 		}
1874 	}
1875 
1876 	if (error_detected) {
1877 		fputs("  dump_internal:\n", stderr);
1878 		sparsebit_dump_internal(stderr, s, 4);
1879 		abort();
1880 	}
1881 }
1882 
1883 
1884 #ifdef FUZZ
1885 /* A simple but effective fuzzing driver.  Look for bugs with the help
1886  * of some invariants and of a trivial representation of sparsebit.
1887  * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
1888  * afl-fuzz do the magic. :)
1889  */
1890 
1891 #include <stdlib.h>
1892 
1893 struct range {
1894 	sparsebit_idx_t first, last;
1895 	bool set;
1896 };
1897 
1898 struct sparsebit *s;
1899 struct range ranges[1000];
1900 int num_ranges;
1901 
1902 static bool get_value(sparsebit_idx_t idx)
1903 {
1904 	int i;
1905 
1906 	for (i = num_ranges; --i >= 0; )
1907 		if (ranges[i].first <= idx && idx <= ranges[i].last)
1908 			return ranges[i].set;
1909 
1910 	return false;
1911 }
1912 
1913 static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
1914 {
1915 	sparsebit_num_t num;
1916 	sparsebit_idx_t next;
1917 
1918 	if (first < last) {
1919 		num = last - first + 1;
1920 	} else {
1921 		num = first - last + 1;
1922 		first = last;
1923 		last = first + num - 1;
1924 	}
1925 
1926 	switch (code) {
1927 	case 0:
1928 		sparsebit_set(s, first);
1929 		assert(sparsebit_is_set(s, first));
1930 		assert(!sparsebit_is_clear(s, first));
1931 		assert(sparsebit_any_set(s));
1932 		assert(!sparsebit_all_clear(s));
1933 		if (get_value(first))
1934 			return;
1935 		if (num_ranges == 1000)
1936 			exit(0);
1937 		ranges[num_ranges++] = (struct range)
1938 			{ .first = first, .last = first, .set = true };
1939 		break;
1940 	case 1:
1941 		sparsebit_clear(s, first);
1942 		assert(!sparsebit_is_set(s, first));
1943 		assert(sparsebit_is_clear(s, first));
1944 		assert(sparsebit_any_clear(s));
1945 		assert(!sparsebit_all_set(s));
1946 		if (!get_value(first))
1947 			return;
1948 		if (num_ranges == 1000)
1949 			exit(0);
1950 		ranges[num_ranges++] = (struct range)
1951 			{ .first = first, .last = first, .set = false };
1952 		break;
1953 	case 2:
1954 		assert(sparsebit_is_set(s, first) == get_value(first));
1955 		assert(sparsebit_is_clear(s, first) == !get_value(first));
1956 		break;
1957 	case 3:
1958 		if (sparsebit_any_set(s))
1959 			assert(get_value(sparsebit_first_set(s)));
1960 		if (sparsebit_any_clear(s))
1961 			assert(!get_value(sparsebit_first_clear(s)));
1962 		sparsebit_set_all(s);
1963 		assert(!sparsebit_any_clear(s));
1964 		assert(sparsebit_all_set(s));
1965 		num_ranges = 0;
1966 		ranges[num_ranges++] = (struct range)
1967 			{ .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
1968 		break;
1969 	case 4:
1970 		if (sparsebit_any_set(s))
1971 			assert(get_value(sparsebit_first_set(s)));
1972 		if (sparsebit_any_clear(s))
1973 			assert(!get_value(sparsebit_first_clear(s)));
1974 		sparsebit_clear_all(s);
1975 		assert(!sparsebit_any_set(s));
1976 		assert(sparsebit_all_clear(s));
1977 		num_ranges = 0;
1978 		break;
1979 	case 5:
1980 		next = sparsebit_next_set(s, first);
1981 		assert(next == 0 || next > first);
1982 		assert(next == 0 || get_value(next));
1983 		break;
1984 	case 6:
1985 		next = sparsebit_next_clear(s, first);
1986 		assert(next == 0 || next > first);
1987 		assert(next == 0 || !get_value(next));
1988 		break;
1989 	case 7:
1990 		next = sparsebit_next_clear(s, first);
1991 		if (sparsebit_is_set_num(s, first, num)) {
1992 			assert(next == 0 || next > last);
1993 			if (first)
1994 				next = sparsebit_next_set(s, first - 1);
1995 			else if (sparsebit_any_set(s))
1996 				next = sparsebit_first_set(s);
1997 			else
1998 				return;
1999 			assert(next == first);
2000 		} else {
2001 			assert(sparsebit_is_clear(s, first) || next <= last);
2002 		}
2003 		break;
2004 	case 8:
2005 		next = sparsebit_next_set(s, first);
2006 		if (sparsebit_is_clear_num(s, first, num)) {
2007 			assert(next == 0 || next > last);
2008 			if (first)
2009 				next = sparsebit_next_clear(s, first - 1);
2010 			else if (sparsebit_any_clear(s))
2011 				next = sparsebit_first_clear(s);
2012 			else
2013 				return;
2014 			assert(next == first);
2015 		} else {
2016 			assert(sparsebit_is_set(s, first) || next <= last);
2017 		}
2018 		break;
2019 	case 9:
2020 		sparsebit_set_num(s, first, num);
2021 		assert(sparsebit_is_set_num(s, first, num));
2022 		assert(!sparsebit_is_clear_num(s, first, num));
2023 		assert(sparsebit_any_set(s));
2024 		assert(!sparsebit_all_clear(s));
2025 		if (num_ranges == 1000)
2026 			exit(0);
2027 		ranges[num_ranges++] = (struct range)
2028 			{ .first = first, .last = last, .set = true };
2029 		break;
2030 	case 10:
2031 		sparsebit_clear_num(s, first, num);
2032 		assert(!sparsebit_is_set_num(s, first, num));
2033 		assert(sparsebit_is_clear_num(s, first, num));
2034 		assert(sparsebit_any_clear(s));
2035 		assert(!sparsebit_all_set(s));
2036 		if (num_ranges == 1000)
2037 			exit(0);
2038 		ranges[num_ranges++] = (struct range)
2039 			{ .first = first, .last = last, .set = false };
2040 		break;
2041 	case 11:
2042 		sparsebit_validate_internal(s);
2043 		break;
2044 	default:
2045 		break;
2046 	}
2047 }
2048 
2049 unsigned char get8(void)
2050 {
2051 	int ch;
2052 
2053 	ch = getchar();
2054 	if (ch == EOF)
2055 		exit(0);
2056 	return ch;
2057 }
2058 
2059 uint64_t get64(void)
2060 {
2061 	uint64_t x;
2062 
2063 	x = get8();
2064 	x = (x << 8) | get8();
2065 	x = (x << 8) | get8();
2066 	x = (x << 8) | get8();
2067 	x = (x << 8) | get8();
2068 	x = (x << 8) | get8();
2069 	x = (x << 8) | get8();
2070 	return (x << 8) | get8();
2071 }
2072 
2073 int main(void)
2074 {
2075 	s = sparsebit_alloc();
2076 	for (;;) {
2077 		uint8_t op = get8() & 0xf;
2078 		uint64_t first = get64();
2079 		uint64_t last = get64();
2080 
2081 		operate(op, first, last);
2082 	}
2083 }
2084 #endif
2085