xref: /linux/tools/testing/selftests/kvm/lib/riscv/processor.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V code
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7 
8 #include <linux/compiler.h>
9 #include <assert.h>
10 
11 #include "kvm_util.h"
12 #include "processor.h"
13 
14 #define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN	0xac0000
15 
16 static vm_vaddr_t exception_handlers;
17 
18 bool __vcpu_has_ext(struct kvm_vcpu *vcpu, uint64_t ext)
19 {
20 	unsigned long value = 0;
21 	int ret;
22 
23 	ret = __vcpu_get_reg(vcpu, ext, &value);
24 
25 	return !ret && !!value;
26 }
27 
28 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
29 {
30 	return (v + vm->page_size) & ~(vm->page_size - 1);
31 }
32 
33 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
34 {
35 	return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
36 		PGTBL_PAGE_SIZE_SHIFT;
37 }
38 
39 static uint64_t ptrs_per_pte(struct kvm_vm *vm)
40 {
41 	return PGTBL_PAGE_SIZE / sizeof(uint64_t);
42 }
43 
44 static uint64_t pte_index_mask[] = {
45 	PGTBL_L0_INDEX_MASK,
46 	PGTBL_L1_INDEX_MASK,
47 	PGTBL_L2_INDEX_MASK,
48 	PGTBL_L3_INDEX_MASK,
49 };
50 
51 static uint32_t pte_index_shift[] = {
52 	PGTBL_L0_INDEX_SHIFT,
53 	PGTBL_L1_INDEX_SHIFT,
54 	PGTBL_L2_INDEX_SHIFT,
55 	PGTBL_L3_INDEX_SHIFT,
56 };
57 
58 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
59 {
60 	TEST_ASSERT(level > -1,
61 		"Negative page table level (%d) not possible", level);
62 	TEST_ASSERT(level < vm->pgtable_levels,
63 		"Invalid page table level (%d)", level);
64 
65 	return (gva & pte_index_mask[level]) >> pte_index_shift[level];
66 }
67 
68 void virt_arch_pgd_alloc(struct kvm_vm *vm)
69 {
70 	size_t nr_pages = page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size;
71 
72 	if (vm->pgd_created)
73 		return;
74 
75 	vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
76 				     KVM_GUEST_PAGE_TABLE_MIN_PADDR,
77 				     vm->memslots[MEM_REGION_PT]);
78 	vm->pgd_created = true;
79 }
80 
81 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
82 {
83 	uint64_t *ptep, next_ppn;
84 	int level = vm->pgtable_levels - 1;
85 
86 	TEST_ASSERT((vaddr % vm->page_size) == 0,
87 		"Virtual address not on page boundary,\n"
88 		"  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
89 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
90 		(vaddr >> vm->page_shift)),
91 		"Invalid virtual address, vaddr: 0x%lx", vaddr);
92 	TEST_ASSERT((paddr % vm->page_size) == 0,
93 		"Physical address not on page boundary,\n"
94 		"  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
95 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
96 		"Physical address beyond maximum supported,\n"
97 		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
98 		paddr, vm->max_gfn, vm->page_size);
99 
100 	ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
101 	if (!*ptep) {
102 		next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
103 		*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
104 			PGTBL_PTE_VALID_MASK;
105 	}
106 	level--;
107 
108 	while (level > -1) {
109 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
110 		       pte_index(vm, vaddr, level) * 8;
111 		if (!*ptep && level > 0) {
112 			next_ppn = vm_alloc_page_table(vm) >>
113 				   PGTBL_PAGE_SIZE_SHIFT;
114 			*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
115 				PGTBL_PTE_VALID_MASK;
116 		}
117 		level--;
118 	}
119 
120 	paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
121 	*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
122 		PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
123 }
124 
125 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
126 {
127 	uint64_t *ptep;
128 	int level = vm->pgtable_levels - 1;
129 
130 	if (!vm->pgd_created)
131 		goto unmapped_gva;
132 
133 	ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
134 	if (!ptep)
135 		goto unmapped_gva;
136 	level--;
137 
138 	while (level > -1) {
139 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
140 		       pte_index(vm, gva, level) * 8;
141 		if (!ptep)
142 			goto unmapped_gva;
143 		level--;
144 	}
145 
146 	return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
147 
148 unmapped_gva:
149 	TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
150 		  gva, level);
151 	exit(1);
152 }
153 
154 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
155 		     uint64_t page, int level)
156 {
157 #ifdef DEBUG
158 	static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
159 	uint64_t pte, *ptep;
160 
161 	if (level < 0)
162 		return;
163 
164 	for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
165 		ptep = addr_gpa2hva(vm, pte);
166 		if (!*ptep)
167 			continue;
168 		fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
169 			type[level], pte, *ptep, ptep);
170 		pte_dump(stream, vm, indent + 1,
171 			 pte_addr(vm, *ptep), level - 1);
172 	}
173 #endif
174 }
175 
176 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
177 {
178 	int level = vm->pgtable_levels - 1;
179 	uint64_t pgd, *ptep;
180 
181 	if (!vm->pgd_created)
182 		return;
183 
184 	for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
185 		ptep = addr_gpa2hva(vm, pgd);
186 		if (!*ptep)
187 			continue;
188 		fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
189 			pgd, *ptep, ptep);
190 		pte_dump(stream, vm, indent + 1,
191 			 pte_addr(vm, *ptep), level - 1);
192 	}
193 }
194 
195 void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
196 {
197 	struct kvm_vm *vm = vcpu->vm;
198 	unsigned long satp;
199 
200 	/*
201 	 * The RISC-V Sv48 MMU mode supports 56-bit physical address
202 	 * for 48-bit virtual address with 4KB last level page size.
203 	 */
204 	switch (vm->mode) {
205 	case VM_MODE_P52V48_4K:
206 	case VM_MODE_P48V48_4K:
207 	case VM_MODE_P40V48_4K:
208 		break;
209 	default:
210 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
211 	}
212 
213 	satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
214 	satp |= SATP_MODE_48;
215 
216 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(satp), satp);
217 }
218 
219 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
220 {
221 	struct kvm_riscv_core core;
222 
223 	vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode);
224 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc);
225 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra);
226 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp);
227 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp);
228 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp);
229 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0);
230 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1);
231 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2);
232 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0);
233 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1);
234 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0);
235 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1);
236 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2);
237 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3);
238 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4);
239 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5);
240 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6);
241 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7);
242 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2);
243 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3);
244 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4);
245 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5);
246 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6);
247 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7);
248 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8);
249 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9);
250 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10);
251 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11);
252 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3);
253 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4);
254 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5);
255 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6);
256 
257 	fprintf(stream,
258 		" MODE:  0x%lx\n", core.mode);
259 	fprintf(stream,
260 		" PC: 0x%016lx   RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
261 		core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
262 	fprintf(stream,
263 		" TP: 0x%016lx   T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
264 		core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
265 	fprintf(stream,
266 		" S0: 0x%016lx   S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
267 		core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
268 	fprintf(stream,
269 		" A2: 0x%016lx   A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
270 		core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
271 	fprintf(stream,
272 		" A6: 0x%016lx   A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
273 		core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
274 	fprintf(stream,
275 		" S4: 0x%016lx   S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
276 		core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
277 	fprintf(stream,
278 		" S8: 0x%016lx   S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
279 		core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
280 	fprintf(stream,
281 		" T3: 0x%016lx   T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
282 		core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
283 }
284 
285 static void __aligned(16) guest_unexp_trap(void)
286 {
287 	sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
288 		  KVM_RISCV_SELFTESTS_SBI_UNEXP,
289 		  0, 0, 0, 0, 0, 0);
290 }
291 
292 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
293 {
294 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
295 }
296 
297 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
298 {
299 	int r;
300 	size_t stack_size;
301 	unsigned long stack_vaddr;
302 	unsigned long current_gp = 0;
303 	struct kvm_mp_state mps;
304 	struct kvm_vcpu *vcpu;
305 
306 	stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
307 					     vm->page_size;
308 	stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
309 				       DEFAULT_RISCV_GUEST_STACK_VADDR_MIN,
310 				       MEM_REGION_DATA);
311 
312 	vcpu = __vm_vcpu_add(vm, vcpu_id);
313 	riscv_vcpu_mmu_setup(vcpu);
314 
315 	/*
316 	 * With SBI HSM support in KVM RISC-V, all secondary VCPUs are
317 	 * powered-off by default so we ensure that all secondary VCPUs
318 	 * are powered-on using KVM_SET_MP_STATE ioctl().
319 	 */
320 	mps.mp_state = KVM_MP_STATE_RUNNABLE;
321 	r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
322 	TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
323 
324 	/* Setup global pointer of guest to be same as the host */
325 	asm volatile (
326 		"add %0, gp, zero" : "=r" (current_gp) : : "memory");
327 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
328 
329 	/* Setup stack pointer and program counter of guest */
330 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
331 
332 	/* Setup sscratch for guest_get_vcpuid() */
333 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(sscratch), vcpu_id);
334 
335 	/* Setup default exception vector of guest */
336 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
337 
338 	return vcpu;
339 }
340 
341 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
342 {
343 	va_list ap;
344 	uint64_t id = RISCV_CORE_REG(regs.a0);
345 	int i;
346 
347 	TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
348 		    "  num: %u", num);
349 
350 	va_start(ap, num);
351 
352 	for (i = 0; i < num; i++) {
353 		switch (i) {
354 		case 0:
355 			id = RISCV_CORE_REG(regs.a0);
356 			break;
357 		case 1:
358 			id = RISCV_CORE_REG(regs.a1);
359 			break;
360 		case 2:
361 			id = RISCV_CORE_REG(regs.a2);
362 			break;
363 		case 3:
364 			id = RISCV_CORE_REG(regs.a3);
365 			break;
366 		case 4:
367 			id = RISCV_CORE_REG(regs.a4);
368 			break;
369 		case 5:
370 			id = RISCV_CORE_REG(regs.a5);
371 			break;
372 		case 6:
373 			id = RISCV_CORE_REG(regs.a6);
374 			break;
375 		case 7:
376 			id = RISCV_CORE_REG(regs.a7);
377 			break;
378 		}
379 		vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
380 	}
381 
382 	va_end(ap);
383 }
384 
385 void kvm_exit_unexpected_exception(int vector, int ec)
386 {
387 	ucall(UCALL_UNHANDLED, 2, vector, ec);
388 }
389 
390 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
391 {
392 	struct ucall uc;
393 
394 	if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
395 		TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
396 			uc.args[0], uc.args[1]);
397 	}
398 }
399 
400 struct handlers {
401 	exception_handler_fn exception_handlers[NR_VECTORS][NR_EXCEPTIONS];
402 };
403 
404 void route_exception(struct ex_regs *regs)
405 {
406 	struct handlers *handlers = (struct handlers *)exception_handlers;
407 	int vector = 0, ec;
408 
409 	ec = regs->cause & ~CAUSE_IRQ_FLAG;
410 	if (ec >= NR_EXCEPTIONS)
411 		goto unexpected_exception;
412 
413 	/* Use the same handler for all the interrupts */
414 	if (regs->cause & CAUSE_IRQ_FLAG) {
415 		vector = 1;
416 		ec = 0;
417 	}
418 
419 	if (handlers && handlers->exception_handlers[vector][ec])
420 		return handlers->exception_handlers[vector][ec](regs);
421 
422 unexpected_exception:
423 	return kvm_exit_unexpected_exception(vector, ec);
424 }
425 
426 void vcpu_init_vector_tables(struct kvm_vcpu *vcpu)
427 {
428 	extern char exception_vectors;
429 
430 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)&exception_vectors);
431 }
432 
433 void vm_init_vector_tables(struct kvm_vm *vm)
434 {
435 	vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
436 				   vm->page_size, MEM_REGION_DATA);
437 
438 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
439 }
440 
441 void vm_install_exception_handler(struct kvm_vm *vm, int vector, exception_handler_fn handler)
442 {
443 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
444 
445 	assert(vector < NR_EXCEPTIONS);
446 	handlers->exception_handlers[0][vector] = handler;
447 }
448 
449 void vm_install_interrupt_handler(struct kvm_vm *vm, exception_handler_fn handler)
450 {
451 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
452 
453 	handlers->exception_handlers[1][0] = handler;
454 }
455 
456 uint32_t guest_get_vcpuid(void)
457 {
458 	return csr_read(CSR_SSCRATCH);
459 }
460 
461 struct sbiret sbi_ecall(int ext, int fid, unsigned long arg0,
462 			unsigned long arg1, unsigned long arg2,
463 			unsigned long arg3, unsigned long arg4,
464 			unsigned long arg5)
465 {
466 	register uintptr_t a0 asm ("a0") = (uintptr_t)(arg0);
467 	register uintptr_t a1 asm ("a1") = (uintptr_t)(arg1);
468 	register uintptr_t a2 asm ("a2") = (uintptr_t)(arg2);
469 	register uintptr_t a3 asm ("a3") = (uintptr_t)(arg3);
470 	register uintptr_t a4 asm ("a4") = (uintptr_t)(arg4);
471 	register uintptr_t a5 asm ("a5") = (uintptr_t)(arg5);
472 	register uintptr_t a6 asm ("a6") = (uintptr_t)(fid);
473 	register uintptr_t a7 asm ("a7") = (uintptr_t)(ext);
474 	struct sbiret ret;
475 
476 	asm volatile (
477 		"ecall"
478 		: "+r" (a0), "+r" (a1)
479 		: "r" (a2), "r" (a3), "r" (a4), "r" (a5), "r" (a6), "r" (a7)
480 		: "memory");
481 	ret.error = a0;
482 	ret.value = a1;
483 
484 	return ret;
485 }
486 
487 bool guest_sbi_probe_extension(int extid, long *out_val)
488 {
489 	struct sbiret ret;
490 
491 	ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_PROBE_EXT, extid,
492 			0, 0, 0, 0, 0);
493 
494 	__GUEST_ASSERT(!ret.error || ret.error == SBI_ERR_NOT_SUPPORTED,
495 		       "ret.error=%ld, ret.value=%ld\n", ret.error, ret.value);
496 
497 	if (ret.error == SBI_ERR_NOT_SUPPORTED)
498 		return false;
499 
500 	if (out_val)
501 		*out_val = ret.value;
502 
503 	return true;
504 }
505