xref: /linux/tools/testing/selftests/kvm/lib/riscv/processor.c (revision 6a02124c87f0b61dcaaeb65e7fd406d8afb40fd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V code
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7 
8 #include <linux/compiler.h>
9 #include <assert.h>
10 
11 #include "kvm_util.h"
12 #include "processor.h"
13 
14 #define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN	0xac0000
15 
16 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
17 {
18 	return (v + vm->page_size) & ~(vm->page_size - 1);
19 }
20 
21 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
22 {
23 	return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
24 		PGTBL_PAGE_SIZE_SHIFT;
25 }
26 
27 static uint64_t ptrs_per_pte(struct kvm_vm *vm)
28 {
29 	return PGTBL_PAGE_SIZE / sizeof(uint64_t);
30 }
31 
32 static uint64_t pte_index_mask[] = {
33 	PGTBL_L0_INDEX_MASK,
34 	PGTBL_L1_INDEX_MASK,
35 	PGTBL_L2_INDEX_MASK,
36 	PGTBL_L3_INDEX_MASK,
37 };
38 
39 static uint32_t pte_index_shift[] = {
40 	PGTBL_L0_INDEX_SHIFT,
41 	PGTBL_L1_INDEX_SHIFT,
42 	PGTBL_L2_INDEX_SHIFT,
43 	PGTBL_L3_INDEX_SHIFT,
44 };
45 
46 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
47 {
48 	TEST_ASSERT(level > -1,
49 		"Negative page table level (%d) not possible", level);
50 	TEST_ASSERT(level < vm->pgtable_levels,
51 		"Invalid page table level (%d)", level);
52 
53 	return (gva & pte_index_mask[level]) >> pte_index_shift[level];
54 }
55 
56 void virt_arch_pgd_alloc(struct kvm_vm *vm)
57 {
58 	if (!vm->pgd_created) {
59 		vm_paddr_t paddr = vm_phy_pages_alloc(vm,
60 			page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size,
61 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
62 		vm->pgd = paddr;
63 		vm->pgd_created = true;
64 	}
65 }
66 
67 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
68 {
69 	uint64_t *ptep, next_ppn;
70 	int level = vm->pgtable_levels - 1;
71 
72 	TEST_ASSERT((vaddr % vm->page_size) == 0,
73 		"Virtual address not on page boundary,\n"
74 		"  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
75 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
76 		(vaddr >> vm->page_shift)),
77 		"Invalid virtual address, vaddr: 0x%lx", vaddr);
78 	TEST_ASSERT((paddr % vm->page_size) == 0,
79 		"Physical address not on page boundary,\n"
80 		"  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
81 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
82 		"Physical address beyond maximum supported,\n"
83 		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
84 		paddr, vm->max_gfn, vm->page_size);
85 
86 	ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
87 	if (!*ptep) {
88 		next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
89 		*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
90 			PGTBL_PTE_VALID_MASK;
91 	}
92 	level--;
93 
94 	while (level > -1) {
95 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
96 		       pte_index(vm, vaddr, level) * 8;
97 		if (!*ptep && level > 0) {
98 			next_ppn = vm_alloc_page_table(vm) >>
99 				   PGTBL_PAGE_SIZE_SHIFT;
100 			*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
101 				PGTBL_PTE_VALID_MASK;
102 		}
103 		level--;
104 	}
105 
106 	paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
107 	*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
108 		PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
109 }
110 
111 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
112 {
113 	uint64_t *ptep;
114 	int level = vm->pgtable_levels - 1;
115 
116 	if (!vm->pgd_created)
117 		goto unmapped_gva;
118 
119 	ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
120 	if (!ptep)
121 		goto unmapped_gva;
122 	level--;
123 
124 	while (level > -1) {
125 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
126 		       pte_index(vm, gva, level) * 8;
127 		if (!ptep)
128 			goto unmapped_gva;
129 		level--;
130 	}
131 
132 	return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
133 
134 unmapped_gva:
135 	TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
136 		  gva, level);
137 	exit(1);
138 }
139 
140 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
141 		     uint64_t page, int level)
142 {
143 #ifdef DEBUG
144 	static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
145 	uint64_t pte, *ptep;
146 
147 	if (level < 0)
148 		return;
149 
150 	for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
151 		ptep = addr_gpa2hva(vm, pte);
152 		if (!*ptep)
153 			continue;
154 		fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
155 			type[level], pte, *ptep, ptep);
156 		pte_dump(stream, vm, indent + 1,
157 			 pte_addr(vm, *ptep), level - 1);
158 	}
159 #endif
160 }
161 
162 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
163 {
164 	int level = vm->pgtable_levels - 1;
165 	uint64_t pgd, *ptep;
166 
167 	if (!vm->pgd_created)
168 		return;
169 
170 	for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
171 		ptep = addr_gpa2hva(vm, pgd);
172 		if (!*ptep)
173 			continue;
174 		fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
175 			pgd, *ptep, ptep);
176 		pte_dump(stream, vm, indent + 1,
177 			 pte_addr(vm, *ptep), level - 1);
178 	}
179 }
180 
181 void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
182 {
183 	struct kvm_vm *vm = vcpu->vm;
184 	unsigned long satp;
185 
186 	/*
187 	 * The RISC-V Sv48 MMU mode supports 56-bit physical address
188 	 * for 48-bit virtual address with 4KB last level page size.
189 	 */
190 	switch (vm->mode) {
191 	case VM_MODE_P52V48_4K:
192 	case VM_MODE_P48V48_4K:
193 	case VM_MODE_P40V48_4K:
194 		break;
195 	default:
196 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
197 	}
198 
199 	satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
200 	satp |= SATP_MODE_48;
201 
202 	vcpu_set_reg(vcpu, RISCV_CSR_REG(satp), satp);
203 }
204 
205 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
206 {
207 	struct kvm_riscv_core core;
208 
209 	vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode);
210 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc);
211 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra);
212 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp);
213 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp);
214 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp);
215 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0);
216 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1);
217 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2);
218 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0);
219 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1);
220 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0);
221 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1);
222 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2);
223 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3);
224 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4);
225 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5);
226 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6);
227 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7);
228 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2);
229 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3);
230 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4);
231 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5);
232 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6);
233 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7);
234 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8);
235 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9);
236 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10);
237 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11);
238 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3);
239 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4);
240 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5);
241 	vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6);
242 
243 	fprintf(stream,
244 		" MODE:  0x%lx\n", core.mode);
245 	fprintf(stream,
246 		" PC: 0x%016lx   RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
247 		core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
248 	fprintf(stream,
249 		" TP: 0x%016lx   T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
250 		core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
251 	fprintf(stream,
252 		" S0: 0x%016lx   S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
253 		core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
254 	fprintf(stream,
255 		" A2: 0x%016lx   A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
256 		core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
257 	fprintf(stream,
258 		" A6: 0x%016lx   A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
259 		core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
260 	fprintf(stream,
261 		" S4: 0x%016lx   S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
262 		core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
263 	fprintf(stream,
264 		" S8: 0x%016lx   S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
265 		core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
266 	fprintf(stream,
267 		" T3: 0x%016lx   T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
268 		core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
269 }
270 
271 static void __aligned(16) guest_unexp_trap(void)
272 {
273 	sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
274 		  KVM_RISCV_SELFTESTS_SBI_UNEXP,
275 		  0, 0, 0, 0, 0, 0);
276 }
277 
278 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
279 				  void *guest_code)
280 {
281 	int r;
282 	size_t stack_size = vm->page_size == 4096 ?
283 					DEFAULT_STACK_PGS * vm->page_size :
284 					vm->page_size;
285 	unsigned long stack_vaddr = vm_vaddr_alloc(vm, stack_size,
286 					DEFAULT_RISCV_GUEST_STACK_VADDR_MIN);
287 	unsigned long current_gp = 0;
288 	struct kvm_mp_state mps;
289 	struct kvm_vcpu *vcpu;
290 
291 	vcpu = __vm_vcpu_add(vm, vcpu_id);
292 	riscv_vcpu_mmu_setup(vcpu);
293 
294 	/*
295 	 * With SBI HSM support in KVM RISC-V, all secondary VCPUs are
296 	 * powered-off by default so we ensure that all secondary VCPUs
297 	 * are powered-on using KVM_SET_MP_STATE ioctl().
298 	 */
299 	mps.mp_state = KVM_MP_STATE_RUNNABLE;
300 	r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
301 	TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
302 
303 	/* Setup global pointer of guest to be same as the host */
304 	asm volatile (
305 		"add %0, gp, zero" : "=r" (current_gp) : : "memory");
306 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
307 
308 	/* Setup stack pointer and program counter of guest */
309 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
310 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
311 
312 	/* Setup default exception vector of guest */
313 	vcpu_set_reg(vcpu, RISCV_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
314 
315 	return vcpu;
316 }
317 
318 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
319 {
320 	va_list ap;
321 	uint64_t id = RISCV_CORE_REG(regs.a0);
322 	int i;
323 
324 	TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
325 		    "  num: %u\n", num);
326 
327 	va_start(ap, num);
328 
329 	for (i = 0; i < num; i++) {
330 		switch (i) {
331 		case 0:
332 			id = RISCV_CORE_REG(regs.a0);
333 			break;
334 		case 1:
335 			id = RISCV_CORE_REG(regs.a1);
336 			break;
337 		case 2:
338 			id = RISCV_CORE_REG(regs.a2);
339 			break;
340 		case 3:
341 			id = RISCV_CORE_REG(regs.a3);
342 			break;
343 		case 4:
344 			id = RISCV_CORE_REG(regs.a4);
345 			break;
346 		case 5:
347 			id = RISCV_CORE_REG(regs.a5);
348 			break;
349 		case 6:
350 			id = RISCV_CORE_REG(regs.a6);
351 			break;
352 		case 7:
353 			id = RISCV_CORE_REG(regs.a7);
354 			break;
355 		}
356 		vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
357 	}
358 
359 	va_end(ap);
360 }
361 
362 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
363 {
364 }
365