1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RISC-V code 4 * 5 * Copyright (C) 2021 Western Digital Corporation or its affiliates. 6 */ 7 8 #include <linux/compiler.h> 9 #include <assert.h> 10 11 #include "kvm_util.h" 12 #include "processor.h" 13 14 #define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000 15 16 static uint64_t page_align(struct kvm_vm *vm, uint64_t v) 17 { 18 return (v + vm->page_size) & ~(vm->page_size - 1); 19 } 20 21 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry) 22 { 23 return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) << 24 PGTBL_PAGE_SIZE_SHIFT; 25 } 26 27 static uint64_t ptrs_per_pte(struct kvm_vm *vm) 28 { 29 return PGTBL_PAGE_SIZE / sizeof(uint64_t); 30 } 31 32 static uint64_t pte_index_mask[] = { 33 PGTBL_L0_INDEX_MASK, 34 PGTBL_L1_INDEX_MASK, 35 PGTBL_L2_INDEX_MASK, 36 PGTBL_L3_INDEX_MASK, 37 }; 38 39 static uint32_t pte_index_shift[] = { 40 PGTBL_L0_INDEX_SHIFT, 41 PGTBL_L1_INDEX_SHIFT, 42 PGTBL_L2_INDEX_SHIFT, 43 PGTBL_L3_INDEX_SHIFT, 44 }; 45 46 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level) 47 { 48 TEST_ASSERT(level > -1, 49 "Negative page table level (%d) not possible", level); 50 TEST_ASSERT(level < vm->pgtable_levels, 51 "Invalid page table level (%d)", level); 52 53 return (gva & pte_index_mask[level]) >> pte_index_shift[level]; 54 } 55 56 void virt_arch_pgd_alloc(struct kvm_vm *vm) 57 { 58 size_t nr_pages = page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size; 59 60 if (vm->pgd_created) 61 return; 62 63 vm->pgd = vm_phy_pages_alloc(vm, nr_pages, 64 KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0); 65 vm->pgd_created = true; 66 } 67 68 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 69 { 70 uint64_t *ptep, next_ppn; 71 int level = vm->pgtable_levels - 1; 72 73 TEST_ASSERT((vaddr % vm->page_size) == 0, 74 "Virtual address not on page boundary,\n" 75 " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size); 76 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 77 (vaddr >> vm->page_shift)), 78 "Invalid virtual address, vaddr: 0x%lx", vaddr); 79 TEST_ASSERT((paddr % vm->page_size) == 0, 80 "Physical address not on page boundary,\n" 81 " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size); 82 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 83 "Physical address beyond maximum supported,\n" 84 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 85 paddr, vm->max_gfn, vm->page_size); 86 87 ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8; 88 if (!*ptep) { 89 next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT; 90 *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) | 91 PGTBL_PTE_VALID_MASK; 92 } 93 level--; 94 95 while (level > -1) { 96 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + 97 pte_index(vm, vaddr, level) * 8; 98 if (!*ptep && level > 0) { 99 next_ppn = vm_alloc_page_table(vm) >> 100 PGTBL_PAGE_SIZE_SHIFT; 101 *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) | 102 PGTBL_PTE_VALID_MASK; 103 } 104 level--; 105 } 106 107 paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT; 108 *ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) | 109 PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK; 110 } 111 112 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 113 { 114 uint64_t *ptep; 115 int level = vm->pgtable_levels - 1; 116 117 if (!vm->pgd_created) 118 goto unmapped_gva; 119 120 ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8; 121 if (!ptep) 122 goto unmapped_gva; 123 level--; 124 125 while (level > -1) { 126 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + 127 pte_index(vm, gva, level) * 8; 128 if (!ptep) 129 goto unmapped_gva; 130 level--; 131 } 132 133 return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1)); 134 135 unmapped_gva: 136 TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d", 137 gva, level); 138 exit(1); 139 } 140 141 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, 142 uint64_t page, int level) 143 { 144 #ifdef DEBUG 145 static const char *const type[] = { "pte", "pmd", "pud", "p4d"}; 146 uint64_t pte, *ptep; 147 148 if (level < 0) 149 return; 150 151 for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) { 152 ptep = addr_gpa2hva(vm, pte); 153 if (!*ptep) 154 continue; 155 fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", 156 type[level], pte, *ptep, ptep); 157 pte_dump(stream, vm, indent + 1, 158 pte_addr(vm, *ptep), level - 1); 159 } 160 #endif 161 } 162 163 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 164 { 165 int level = vm->pgtable_levels - 1; 166 uint64_t pgd, *ptep; 167 168 if (!vm->pgd_created) 169 return; 170 171 for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) { 172 ptep = addr_gpa2hva(vm, pgd); 173 if (!*ptep) 174 continue; 175 fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", 176 pgd, *ptep, ptep); 177 pte_dump(stream, vm, indent + 1, 178 pte_addr(vm, *ptep), level - 1); 179 } 180 } 181 182 void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu) 183 { 184 struct kvm_vm *vm = vcpu->vm; 185 unsigned long satp; 186 187 /* 188 * The RISC-V Sv48 MMU mode supports 56-bit physical address 189 * for 48-bit virtual address with 4KB last level page size. 190 */ 191 switch (vm->mode) { 192 case VM_MODE_P52V48_4K: 193 case VM_MODE_P48V48_4K: 194 case VM_MODE_P40V48_4K: 195 break; 196 default: 197 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 198 } 199 200 satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN; 201 satp |= SATP_MODE_48; 202 203 vcpu_set_reg(vcpu, RISCV_CSR_REG(satp), satp); 204 } 205 206 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) 207 { 208 struct kvm_riscv_core core; 209 210 vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode); 211 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc); 212 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra); 213 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp); 214 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp); 215 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp); 216 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0); 217 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1); 218 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2); 219 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0); 220 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1); 221 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0); 222 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1); 223 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2); 224 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3); 225 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4); 226 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5); 227 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6); 228 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7); 229 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2); 230 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3); 231 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4); 232 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5); 233 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6); 234 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7); 235 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8); 236 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9); 237 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10); 238 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11); 239 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3); 240 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4); 241 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5); 242 vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6); 243 244 fprintf(stream, 245 " MODE: 0x%lx\n", core.mode); 246 fprintf(stream, 247 " PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n", 248 core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp); 249 fprintf(stream, 250 " TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n", 251 core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2); 252 fprintf(stream, 253 " S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n", 254 core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1); 255 fprintf(stream, 256 " A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n", 257 core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5); 258 fprintf(stream, 259 " A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n", 260 core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3); 261 fprintf(stream, 262 " S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n", 263 core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7); 264 fprintf(stream, 265 " S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n", 266 core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11); 267 fprintf(stream, 268 " T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n", 269 core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6); 270 } 271 272 static void __aligned(16) guest_unexp_trap(void) 273 { 274 sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT, 275 KVM_RISCV_SELFTESTS_SBI_UNEXP, 276 0, 0, 0, 0, 0, 0); 277 } 278 279 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 280 void *guest_code) 281 { 282 int r; 283 size_t stack_size; 284 unsigned long stack_vaddr; 285 unsigned long current_gp = 0; 286 struct kvm_mp_state mps; 287 struct kvm_vcpu *vcpu; 288 289 stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size : 290 vm->page_size; 291 stack_vaddr = vm_vaddr_alloc(vm, stack_size, 292 DEFAULT_RISCV_GUEST_STACK_VADDR_MIN); 293 294 vcpu = __vm_vcpu_add(vm, vcpu_id); 295 riscv_vcpu_mmu_setup(vcpu); 296 297 /* 298 * With SBI HSM support in KVM RISC-V, all secondary VCPUs are 299 * powered-off by default so we ensure that all secondary VCPUs 300 * are powered-on using KVM_SET_MP_STATE ioctl(). 301 */ 302 mps.mp_state = KVM_MP_STATE_RUNNABLE; 303 r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps); 304 TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r); 305 306 /* Setup global pointer of guest to be same as the host */ 307 asm volatile ( 308 "add %0, gp, zero" : "=r" (current_gp) : : "memory"); 309 vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp); 310 311 /* Setup stack pointer and program counter of guest */ 312 vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size); 313 vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code); 314 315 /* Setup default exception vector of guest */ 316 vcpu_set_reg(vcpu, RISCV_CSR_REG(stvec), (unsigned long)guest_unexp_trap); 317 318 return vcpu; 319 } 320 321 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) 322 { 323 va_list ap; 324 uint64_t id = RISCV_CORE_REG(regs.a0); 325 int i; 326 327 TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n" 328 " num: %u\n", num); 329 330 va_start(ap, num); 331 332 for (i = 0; i < num; i++) { 333 switch (i) { 334 case 0: 335 id = RISCV_CORE_REG(regs.a0); 336 break; 337 case 1: 338 id = RISCV_CORE_REG(regs.a1); 339 break; 340 case 2: 341 id = RISCV_CORE_REG(regs.a2); 342 break; 343 case 3: 344 id = RISCV_CORE_REG(regs.a3); 345 break; 346 case 4: 347 id = RISCV_CORE_REG(regs.a4); 348 break; 349 case 5: 350 id = RISCV_CORE_REG(regs.a5); 351 break; 352 case 6: 353 id = RISCV_CORE_REG(regs.a6); 354 break; 355 case 7: 356 id = RISCV_CORE_REG(regs.a7); 357 break; 358 } 359 vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t)); 360 } 361 362 va_end(ap); 363 } 364 365 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) 366 { 367 } 368