xref: /linux/tools/testing/selftests/kvm/lib/riscv/processor.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V code
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7 
8 #include <linux/compiler.h>
9 #include <assert.h>
10 
11 #include "guest_modes.h"
12 #include "kvm_util.h"
13 #include "processor.h"
14 #include "ucall_common.h"
15 
16 #define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN	0xac0000
17 
18 static vm_vaddr_t exception_handlers;
19 
20 bool __vcpu_has_ext(struct kvm_vcpu *vcpu, uint64_t ext)
21 {
22 	unsigned long value = 0;
23 	int ret;
24 
25 	ret = __vcpu_get_reg(vcpu, ext, &value);
26 
27 	return !ret && !!value;
28 }
29 
30 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
31 {
32 	return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
33 		PGTBL_PAGE_SIZE_SHIFT;
34 }
35 
36 static uint64_t ptrs_per_pte(struct kvm_vm *vm)
37 {
38 	return PGTBL_PAGE_SIZE / sizeof(uint64_t);
39 }
40 
41 static uint64_t pte_index_mask[] = {
42 	PGTBL_L0_INDEX_MASK,
43 	PGTBL_L1_INDEX_MASK,
44 	PGTBL_L2_INDEX_MASK,
45 	PGTBL_L3_INDEX_MASK,
46 };
47 
48 static uint32_t pte_index_shift[] = {
49 	PGTBL_L0_INDEX_SHIFT,
50 	PGTBL_L1_INDEX_SHIFT,
51 	PGTBL_L2_INDEX_SHIFT,
52 	PGTBL_L3_INDEX_SHIFT,
53 };
54 
55 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
56 {
57 	TEST_ASSERT(level > -1,
58 		"Negative page table level (%d) not possible", level);
59 	TEST_ASSERT(level < vm->mmu.pgtable_levels,
60 		"Invalid page table level (%d)", level);
61 
62 	return (gva & pte_index_mask[level]) >> pte_index_shift[level];
63 }
64 
65 void virt_arch_pgd_alloc(struct kvm_vm *vm)
66 {
67 	size_t nr_pages = vm_page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size;
68 
69 	if (vm->mmu.pgd_created)
70 		return;
71 
72 	vm->mmu.pgd = vm_phy_pages_alloc(vm, nr_pages,
73 					 KVM_GUEST_PAGE_TABLE_MIN_PADDR,
74 					 vm->memslots[MEM_REGION_PT]);
75 	vm->mmu.pgd_created = true;
76 }
77 
78 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
79 {
80 	uint64_t *ptep, next_ppn;
81 	int level = vm->mmu.pgtable_levels - 1;
82 
83 	TEST_ASSERT((vaddr % vm->page_size) == 0,
84 		"Virtual address not on page boundary,\n"
85 		"  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
86 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
87 		(vaddr >> vm->page_shift)),
88 		"Invalid virtual address, vaddr: 0x%lx", vaddr);
89 	TEST_ASSERT((paddr % vm->page_size) == 0,
90 		"Physical address not on page boundary,\n"
91 		"  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
92 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
93 		"Physical address beyond maximum supported,\n"
94 		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
95 		paddr, vm->max_gfn, vm->page_size);
96 
97 	ptep = addr_gpa2hva(vm, vm->mmu.pgd) + pte_index(vm, vaddr, level) * 8;
98 	if (!*ptep) {
99 		next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
100 		*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
101 			PGTBL_PTE_VALID_MASK;
102 	}
103 	level--;
104 
105 	while (level > -1) {
106 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
107 		       pte_index(vm, vaddr, level) * 8;
108 		if (!*ptep && level > 0) {
109 			next_ppn = vm_alloc_page_table(vm) >>
110 				   PGTBL_PAGE_SIZE_SHIFT;
111 			*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
112 				PGTBL_PTE_VALID_MASK;
113 		}
114 		level--;
115 	}
116 
117 	paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
118 	*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
119 		PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
120 }
121 
122 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
123 {
124 	uint64_t *ptep;
125 	int level = vm->mmu.pgtable_levels - 1;
126 
127 	if (!vm->mmu.pgd_created)
128 		goto unmapped_gva;
129 
130 	ptep = addr_gpa2hva(vm, vm->mmu.pgd) + pte_index(vm, gva, level) * 8;
131 	if (!ptep)
132 		goto unmapped_gva;
133 	level--;
134 
135 	while (level > -1) {
136 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
137 		       pte_index(vm, gva, level) * 8;
138 		if (!ptep)
139 			goto unmapped_gva;
140 		level--;
141 	}
142 
143 	return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
144 
145 unmapped_gva:
146 	TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
147 		  gva, level);
148 	exit(1);
149 }
150 
151 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
152 		     uint64_t page, int level)
153 {
154 #ifdef DEBUG
155 	static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
156 	uint64_t pte, *ptep;
157 
158 	if (level < 0)
159 		return;
160 
161 	for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
162 		ptep = addr_gpa2hva(vm, pte);
163 		if (!*ptep)
164 			continue;
165 		fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
166 			type[level], pte, *ptep, ptep);
167 		pte_dump(stream, vm, indent + 1,
168 			 pte_addr(vm, *ptep), level - 1);
169 	}
170 #endif
171 }
172 
173 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
174 {
175 	struct kvm_mmu *mmu = &vm->mmu;
176 	int level = mmu->pgtable_levels - 1;
177 	uint64_t pgd, *ptep;
178 
179 	if (!mmu->pgd_created)
180 		return;
181 
182 	for (pgd = mmu->pgd; pgd < mmu->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
183 		ptep = addr_gpa2hva(vm, pgd);
184 		if (!*ptep)
185 			continue;
186 		fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
187 			pgd, *ptep, ptep);
188 		pte_dump(stream, vm, indent + 1,
189 			 pte_addr(vm, *ptep), level - 1);
190 	}
191 }
192 
193 void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
194 {
195 	struct kvm_vm *vm = vcpu->vm;
196 	unsigned long satp;
197 	unsigned long satp_mode;
198 	unsigned long max_satp_mode;
199 
200 	/*
201 	 * The RISC-V Sv48 MMU mode supports 56-bit physical address
202 	 * for 48-bit virtual address with 4KB last level page size.
203 	 */
204 	switch (vm->mode) {
205 	case VM_MODE_P56V57_4K:
206 	case VM_MODE_P50V57_4K:
207 	case VM_MODE_P41V57_4K:
208 		satp_mode = SATP_MODE_57;
209 		break;
210 	case VM_MODE_P56V48_4K:
211 	case VM_MODE_P50V48_4K:
212 	case VM_MODE_P41V48_4K:
213 		satp_mode = SATP_MODE_48;
214 		break;
215 	case VM_MODE_P56V39_4K:
216 	case VM_MODE_P50V39_4K:
217 	case VM_MODE_P41V39_4K:
218 		satp_mode = SATP_MODE_39;
219 		break;
220 	default:
221 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
222 	}
223 
224 	max_satp_mode = vcpu_get_reg(vcpu, RISCV_CONFIG_REG(satp_mode));
225 
226 	if ((satp_mode >> SATP_MODE_SHIFT) > max_satp_mode)
227 		TEST_FAIL("Unable to set satp mode 0x%lx, max mode 0x%lx\n",
228 			  satp_mode >> SATP_MODE_SHIFT, max_satp_mode);
229 
230 	satp = (vm->mmu.pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
231 	satp |= satp_mode;
232 
233 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(satp), satp);
234 }
235 
236 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
237 {
238 	struct kvm_riscv_core core;
239 
240 	core.mode = vcpu_get_reg(vcpu, RISCV_CORE_REG(mode));
241 	core.regs.pc = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc));
242 	core.regs.ra = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra));
243 	core.regs.sp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp));
244 	core.regs.gp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp));
245 	core.regs.tp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp));
246 	core.regs.t0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0));
247 	core.regs.t1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1));
248 	core.regs.t2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2));
249 	core.regs.s0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0));
250 	core.regs.s1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1));
251 	core.regs.a0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0));
252 	core.regs.a1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1));
253 	core.regs.a2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2));
254 	core.regs.a3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3));
255 	core.regs.a4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4));
256 	core.regs.a5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5));
257 	core.regs.a6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6));
258 	core.regs.a7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7));
259 	core.regs.s2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2));
260 	core.regs.s3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3));
261 	core.regs.s4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4));
262 	core.regs.s5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5));
263 	core.regs.s6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6));
264 	core.regs.s7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7));
265 	core.regs.s8 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8));
266 	core.regs.s9 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9));
267 	core.regs.s10 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10));
268 	core.regs.s11 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11));
269 	core.regs.t3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3));
270 	core.regs.t4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4));
271 	core.regs.t5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5));
272 	core.regs.t6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6));
273 
274 	fprintf(stream,
275 		" MODE:  0x%lx\n", core.mode);
276 	fprintf(stream,
277 		" PC: 0x%016lx   RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
278 		core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
279 	fprintf(stream,
280 		" TP: 0x%016lx   T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
281 		core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
282 	fprintf(stream,
283 		" S0: 0x%016lx   S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
284 		core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
285 	fprintf(stream,
286 		" A2: 0x%016lx   A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
287 		core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
288 	fprintf(stream,
289 		" A6: 0x%016lx   A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
290 		core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
291 	fprintf(stream,
292 		" S4: 0x%016lx   S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
293 		core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
294 	fprintf(stream,
295 		" S8: 0x%016lx   S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
296 		core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
297 	fprintf(stream,
298 		" T3: 0x%016lx   T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
299 		core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
300 }
301 
302 static void __aligned(16) guest_unexp_trap(void)
303 {
304 	sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
305 		  KVM_RISCV_SELFTESTS_SBI_UNEXP,
306 		  0, 0, 0, 0, 0, 0);
307 }
308 
309 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
310 {
311 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
312 }
313 
314 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
315 {
316 	int r;
317 	size_t stack_size;
318 	unsigned long stack_vaddr;
319 	unsigned long current_gp = 0;
320 	struct kvm_mp_state mps;
321 	struct kvm_vcpu *vcpu;
322 
323 	stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
324 					     vm->page_size;
325 	stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
326 				       DEFAULT_RISCV_GUEST_STACK_VADDR_MIN,
327 				       MEM_REGION_DATA);
328 
329 	vcpu = __vm_vcpu_add(vm, vcpu_id);
330 	riscv_vcpu_mmu_setup(vcpu);
331 
332 	/*
333 	 * With SBI HSM support in KVM RISC-V, all secondary VCPUs are
334 	 * powered-off by default so we ensure that all secondary VCPUs
335 	 * are powered-on using KVM_SET_MP_STATE ioctl().
336 	 */
337 	mps.mp_state = KVM_MP_STATE_RUNNABLE;
338 	r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
339 	TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
340 
341 	/* Setup global pointer of guest to be same as the host */
342 	asm volatile (
343 		"add %0, gp, zero" : "=r" (current_gp) : : "memory");
344 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
345 
346 	/* Setup stack pointer and program counter of guest */
347 	vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
348 
349 	/* Setup sscratch for guest_get_vcpuid() */
350 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(sscratch), vcpu_id);
351 
352 	/* Setup default exception vector of guest */
353 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
354 
355 	return vcpu;
356 }
357 
358 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
359 {
360 	va_list ap;
361 	uint64_t id = RISCV_CORE_REG(regs.a0);
362 	int i;
363 
364 	TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
365 		    "  num: %u", num);
366 
367 	va_start(ap, num);
368 
369 	for (i = 0; i < num; i++) {
370 		switch (i) {
371 		case 0:
372 			id = RISCV_CORE_REG(regs.a0);
373 			break;
374 		case 1:
375 			id = RISCV_CORE_REG(regs.a1);
376 			break;
377 		case 2:
378 			id = RISCV_CORE_REG(regs.a2);
379 			break;
380 		case 3:
381 			id = RISCV_CORE_REG(regs.a3);
382 			break;
383 		case 4:
384 			id = RISCV_CORE_REG(regs.a4);
385 			break;
386 		case 5:
387 			id = RISCV_CORE_REG(regs.a5);
388 			break;
389 		case 6:
390 			id = RISCV_CORE_REG(regs.a6);
391 			break;
392 		case 7:
393 			id = RISCV_CORE_REG(regs.a7);
394 			break;
395 		}
396 		vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
397 	}
398 
399 	va_end(ap);
400 }
401 
402 void kvm_exit_unexpected_exception(int vector, int ec)
403 {
404 	ucall(UCALL_UNHANDLED, 2, vector, ec);
405 }
406 
407 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
408 {
409 	struct ucall uc;
410 
411 	if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
412 		TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
413 			uc.args[0], uc.args[1]);
414 	}
415 }
416 
417 struct handlers {
418 	exception_handler_fn exception_handlers[NR_VECTORS][NR_EXCEPTIONS];
419 };
420 
421 void route_exception(struct pt_regs *regs)
422 {
423 	struct handlers *handlers = (struct handlers *)exception_handlers;
424 	int vector = 0, ec;
425 
426 	ec = regs->cause & ~CAUSE_IRQ_FLAG;
427 	if (ec >= NR_EXCEPTIONS)
428 		goto unexpected_exception;
429 
430 	/* Use the same handler for all the interrupts */
431 	if (regs->cause & CAUSE_IRQ_FLAG) {
432 		vector = 1;
433 		ec = 0;
434 	}
435 
436 	if (handlers && handlers->exception_handlers[vector][ec])
437 		return handlers->exception_handlers[vector][ec](regs);
438 
439 unexpected_exception:
440 	return kvm_exit_unexpected_exception(vector, ec);
441 }
442 
443 void vcpu_init_vector_tables(struct kvm_vcpu *vcpu)
444 {
445 	extern char exception_vectors;
446 
447 	vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)&exception_vectors);
448 }
449 
450 void vm_init_vector_tables(struct kvm_vm *vm)
451 {
452 	vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
453 				   vm->page_size, MEM_REGION_DATA);
454 
455 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
456 }
457 
458 void vm_install_exception_handler(struct kvm_vm *vm, int vector, exception_handler_fn handler)
459 {
460 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
461 
462 	assert(vector < NR_EXCEPTIONS);
463 	handlers->exception_handlers[0][vector] = handler;
464 }
465 
466 void vm_install_interrupt_handler(struct kvm_vm *vm, exception_handler_fn handler)
467 {
468 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
469 
470 	handlers->exception_handlers[1][0] = handler;
471 }
472 
473 uint32_t guest_get_vcpuid(void)
474 {
475 	return csr_read(CSR_SSCRATCH);
476 }
477 
478 struct sbiret sbi_ecall(int ext, int fid, unsigned long arg0,
479 			unsigned long arg1, unsigned long arg2,
480 			unsigned long arg3, unsigned long arg4,
481 			unsigned long arg5)
482 {
483 	register uintptr_t a0 asm ("a0") = (uintptr_t)(arg0);
484 	register uintptr_t a1 asm ("a1") = (uintptr_t)(arg1);
485 	register uintptr_t a2 asm ("a2") = (uintptr_t)(arg2);
486 	register uintptr_t a3 asm ("a3") = (uintptr_t)(arg3);
487 	register uintptr_t a4 asm ("a4") = (uintptr_t)(arg4);
488 	register uintptr_t a5 asm ("a5") = (uintptr_t)(arg5);
489 	register uintptr_t a6 asm ("a6") = (uintptr_t)(fid);
490 	register uintptr_t a7 asm ("a7") = (uintptr_t)(ext);
491 	struct sbiret ret;
492 
493 	asm volatile (
494 		"ecall"
495 		: "+r" (a0), "+r" (a1)
496 		: "r" (a2), "r" (a3), "r" (a4), "r" (a5), "r" (a6), "r" (a7)
497 		: "memory");
498 	ret.error = a0;
499 	ret.value = a1;
500 
501 	return ret;
502 }
503 
504 bool guest_sbi_probe_extension(int extid, long *out_val)
505 {
506 	struct sbiret ret;
507 
508 	ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_PROBE_EXT, extid,
509 			0, 0, 0, 0, 0);
510 
511 	__GUEST_ASSERT(!ret.error || ret.error == SBI_ERR_NOT_SUPPORTED,
512 		       "ret.error=%ld, ret.value=%ld\n", ret.error, ret.value);
513 
514 	if (ret.error == SBI_ERR_NOT_SUPPORTED)
515 		return false;
516 
517 	if (out_val)
518 		*out_val = ret.value;
519 
520 	return true;
521 }
522 
523 unsigned long get_host_sbi_spec_version(void)
524 {
525 	struct sbiret ret;
526 
527 	ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_GET_SPEC_VERSION, 0,
528 		       0, 0, 0, 0, 0);
529 
530 	GUEST_ASSERT(!ret.error);
531 
532 	return ret.value;
533 }
534 
535 void kvm_selftest_arch_init(void)
536 {
537 	/*
538 	 * riscv64 doesn't have a true default mode, so start by detecting the
539 	 * supported vm mode.
540 	 */
541 	guest_modes_append_default();
542 }
543 
544 unsigned long riscv64_get_satp_mode(void)
545 {
546 	int kvm_fd, vm_fd, vcpu_fd, err;
547 	uint64_t val;
548 	struct kvm_one_reg reg = {
549 		.id     = RISCV_CONFIG_REG(satp_mode),
550 		.addr   = (uint64_t)&val,
551 	};
552 
553 	kvm_fd = open_kvm_dev_path_or_exit();
554 	vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, NULL);
555 	TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
556 
557 	vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
558 	TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
559 
560 	err = ioctl(vcpu_fd, KVM_GET_ONE_REG, &reg);
561 	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
562 
563 	close(vcpu_fd);
564 	close(vm_fd);
565 	close(kvm_fd);
566 
567 	return val;
568 }
569