xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision f1bf3bc6cb932b2094c71d5b45cf4e56b8450852)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * tools/testing/selftests/kvm/lib/kvm_util.c
4   *
5   * Copyright (C) 2018, Google LLC.
6   */
7  
8  #define _GNU_SOURCE /* for program_invocation_name */
9  #include "test_util.h"
10  #include "kvm_util.h"
11  #include "processor.h"
12  
13  #include <assert.h>
14  #include <sched.h>
15  #include <sys/mman.h>
16  #include <sys/types.h>
17  #include <sys/stat.h>
18  #include <unistd.h>
19  #include <linux/kernel.h>
20  
21  #define KVM_UTIL_MIN_PFN	2
22  
23  static int vcpu_mmap_sz(void);
24  
25  int open_path_or_exit(const char *path, int flags)
26  {
27  	int fd;
28  
29  	fd = open(path, flags);
30  	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
31  	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
32  
33  	return fd;
34  }
35  
36  /*
37   * Open KVM_DEV_PATH if available, otherwise exit the entire program.
38   *
39   * Input Args:
40   *   flags - The flags to pass when opening KVM_DEV_PATH.
41   *
42   * Return:
43   *   The opened file descriptor of /dev/kvm.
44   */
45  static int _open_kvm_dev_path_or_exit(int flags)
46  {
47  	return open_path_or_exit(KVM_DEV_PATH, flags);
48  }
49  
50  int open_kvm_dev_path_or_exit(void)
51  {
52  	return _open_kvm_dev_path_or_exit(O_RDONLY);
53  }
54  
55  static ssize_t get_module_param(const char *module_name, const char *param,
56  				void *buffer, size_t buffer_size)
57  {
58  	const int path_size = 128;
59  	char path[path_size];
60  	ssize_t bytes_read;
61  	int fd, r;
62  
63  	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
64  		     module_name, param);
65  	TEST_ASSERT(r < path_size,
66  		    "Failed to construct sysfs path in %d bytes.", path_size);
67  
68  	fd = open_path_or_exit(path, O_RDONLY);
69  
70  	bytes_read = read(fd, buffer, buffer_size);
71  	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
72  		    path, bytes_read, buffer_size);
73  
74  	r = close(fd);
75  	TEST_ASSERT(!r, "close(%s) failed", path);
76  	return bytes_read;
77  }
78  
79  static int get_module_param_integer(const char *module_name, const char *param)
80  {
81  	/*
82  	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
83  	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
84  	 * at the end.
85  	 */
86  	char value[16 + 1 + 1];
87  	ssize_t r;
88  
89  	memset(value, '\0', sizeof(value));
90  
91  	r = get_module_param(module_name, param, value, sizeof(value));
92  	TEST_ASSERT(value[r - 1] == '\n',
93  		    "Expected trailing newline, got char '%c'", value[r - 1]);
94  
95  	/*
96  	 * Squash the newline, otherwise atoi_paranoid() will complain about
97  	 * trailing non-NUL characters in the string.
98  	 */
99  	value[r - 1] = '\0';
100  	return atoi_paranoid(value);
101  }
102  
103  static bool get_module_param_bool(const char *module_name, const char *param)
104  {
105  	char value;
106  	ssize_t r;
107  
108  	r = get_module_param(module_name, param, &value, sizeof(value));
109  	TEST_ASSERT_EQ(r, 1);
110  
111  	if (value == 'Y')
112  		return true;
113  	else if (value == 'N')
114  		return false;
115  
116  	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
117  }
118  
119  bool get_kvm_param_bool(const char *param)
120  {
121  	return get_module_param_bool("kvm", param);
122  }
123  
124  bool get_kvm_intel_param_bool(const char *param)
125  {
126  	return get_module_param_bool("kvm_intel", param);
127  }
128  
129  bool get_kvm_amd_param_bool(const char *param)
130  {
131  	return get_module_param_bool("kvm_amd", param);
132  }
133  
134  int get_kvm_param_integer(const char *param)
135  {
136  	return get_module_param_integer("kvm", param);
137  }
138  
139  int get_kvm_intel_param_integer(const char *param)
140  {
141  	return get_module_param_integer("kvm_intel", param);
142  }
143  
144  int get_kvm_amd_param_integer(const char *param)
145  {
146  	return get_module_param_integer("kvm_amd", param);
147  }
148  
149  /*
150   * Capability
151   *
152   * Input Args:
153   *   cap - Capability
154   *
155   * Output Args: None
156   *
157   * Return:
158   *   On success, the Value corresponding to the capability (KVM_CAP_*)
159   *   specified by the value of cap.  On failure a TEST_ASSERT failure
160   *   is produced.
161   *
162   * Looks up and returns the value corresponding to the capability
163   * (KVM_CAP_*) given by cap.
164   */
165  unsigned int kvm_check_cap(long cap)
166  {
167  	int ret;
168  	int kvm_fd;
169  
170  	kvm_fd = open_kvm_dev_path_or_exit();
171  	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
172  	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
173  
174  	close(kvm_fd);
175  
176  	return (unsigned int)ret;
177  }
178  
179  void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
180  {
181  	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
182  		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
183  	else
184  		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
185  	vm->dirty_ring_size = ring_size;
186  }
187  
188  static void vm_open(struct kvm_vm *vm)
189  {
190  	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
191  
192  	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
193  
194  	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
195  	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
196  }
197  
198  const char *vm_guest_mode_string(uint32_t i)
199  {
200  	static const char * const strings[] = {
201  		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
202  		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
203  		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
204  		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
205  		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
206  		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
207  		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
208  		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
209  		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
210  		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
211  		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
212  		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
213  		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
214  		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
215  		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
216  		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
217  	};
218  	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
219  		       "Missing new mode strings?");
220  
221  	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
222  
223  	return strings[i];
224  }
225  
226  const struct vm_guest_mode_params vm_guest_mode_params[] = {
227  	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
228  	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
229  	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
230  	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
231  	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
232  	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
233  	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
234  	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
235  	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
236  	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
237  	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
238  	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
239  	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
240  	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
241  	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
242  	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
243  };
244  _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
245  	       "Missing new mode params?");
246  
247  /*
248   * Initializes vm->vpages_valid to match the canonical VA space of the
249   * architecture.
250   *
251   * The default implementation is valid for architectures which split the
252   * range addressed by a single page table into a low and high region
253   * based on the MSB of the VA. On architectures with this behavior
254   * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
255   */
256  __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
257  {
258  	sparsebit_set_num(vm->vpages_valid,
259  		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
260  	sparsebit_set_num(vm->vpages_valid,
261  		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
262  		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263  }
264  
265  struct kvm_vm *____vm_create(struct vm_shape shape)
266  {
267  	struct kvm_vm *vm;
268  
269  	vm = calloc(1, sizeof(*vm));
270  	TEST_ASSERT(vm != NULL, "Insufficient Memory");
271  
272  	INIT_LIST_HEAD(&vm->vcpus);
273  	vm->regions.gpa_tree = RB_ROOT;
274  	vm->regions.hva_tree = RB_ROOT;
275  	hash_init(vm->regions.slot_hash);
276  
277  	vm->mode = shape.mode;
278  	vm->type = shape.type;
279  	vm->subtype = shape.subtype;
280  
281  	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
282  	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
283  	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
284  	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
285  
286  	/* Setup mode specific traits. */
287  	switch (vm->mode) {
288  	case VM_MODE_P52V48_4K:
289  		vm->pgtable_levels = 4;
290  		break;
291  	case VM_MODE_P52V48_64K:
292  		vm->pgtable_levels = 3;
293  		break;
294  	case VM_MODE_P48V48_4K:
295  		vm->pgtable_levels = 4;
296  		break;
297  	case VM_MODE_P48V48_64K:
298  		vm->pgtable_levels = 3;
299  		break;
300  	case VM_MODE_P40V48_4K:
301  	case VM_MODE_P36V48_4K:
302  		vm->pgtable_levels = 4;
303  		break;
304  	case VM_MODE_P40V48_64K:
305  	case VM_MODE_P36V48_64K:
306  		vm->pgtable_levels = 3;
307  		break;
308  	case VM_MODE_P52V48_16K:
309  	case VM_MODE_P48V48_16K:
310  	case VM_MODE_P40V48_16K:
311  	case VM_MODE_P36V48_16K:
312  		vm->pgtable_levels = 4;
313  		break;
314  	case VM_MODE_P36V47_16K:
315  		vm->pgtable_levels = 3;
316  		break;
317  	case VM_MODE_PXXV48_4K:
318  #ifdef __x86_64__
319  		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
320  		kvm_init_vm_address_properties(vm);
321  		/*
322  		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
323  		 * it doesn't take effect unless a CR4.LA57 is set, which it
324  		 * isn't for this mode (48-bit virtual address space).
325  		 */
326  		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
327  			    "Linear address width (%d bits) not supported",
328  			    vm->va_bits);
329  		pr_debug("Guest physical address width detected: %d\n",
330  			 vm->pa_bits);
331  		vm->pgtable_levels = 4;
332  		vm->va_bits = 48;
333  #else
334  		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
335  #endif
336  		break;
337  	case VM_MODE_P47V64_4K:
338  		vm->pgtable_levels = 5;
339  		break;
340  	case VM_MODE_P44V64_4K:
341  		vm->pgtable_levels = 5;
342  		break;
343  	default:
344  		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
345  	}
346  
347  #ifdef __aarch64__
348  	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
349  	if (vm->pa_bits != 40)
350  		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
351  #endif
352  
353  	vm_open(vm);
354  
355  	/* Limit to VA-bit canonical virtual addresses. */
356  	vm->vpages_valid = sparsebit_alloc();
357  	vm_vaddr_populate_bitmap(vm);
358  
359  	/* Limit physical addresses to PA-bits. */
360  	vm->max_gfn = vm_compute_max_gfn(vm);
361  
362  	/* Allocate and setup memory for guest. */
363  	vm->vpages_mapped = sparsebit_alloc();
364  
365  	return vm;
366  }
367  
368  static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
369  				     uint32_t nr_runnable_vcpus,
370  				     uint64_t extra_mem_pages)
371  {
372  	uint64_t page_size = vm_guest_mode_params[mode].page_size;
373  	uint64_t nr_pages;
374  
375  	TEST_ASSERT(nr_runnable_vcpus,
376  		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
377  
378  	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
379  		    "nr_vcpus = %d too large for host, max-vcpus = %d",
380  		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
381  
382  	/*
383  	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
384  	 * test code and other per-VM assets that will be loaded into memslot0.
385  	 */
386  	nr_pages = 512;
387  
388  	/* Account for the per-vCPU stacks on behalf of the test. */
389  	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
390  
391  	/*
392  	 * Account for the number of pages needed for the page tables.  The
393  	 * maximum page table size for a memory region will be when the
394  	 * smallest page size is used. Considering each page contains x page
395  	 * table descriptors, the total extra size for page tables (for extra
396  	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
397  	 * than N/x*2.
398  	 */
399  	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
400  
401  	/* Account for the number of pages needed by ucall. */
402  	nr_pages += ucall_nr_pages_required(page_size);
403  
404  	return vm_adjust_num_guest_pages(mode, nr_pages);
405  }
406  
407  struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
408  			   uint64_t nr_extra_pages)
409  {
410  	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
411  						 nr_extra_pages);
412  	struct userspace_mem_region *slot0;
413  	struct kvm_vm *vm;
414  	int i;
415  
416  	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
417  		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
418  
419  	vm = ____vm_create(shape);
420  
421  	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
422  	for (i = 0; i < NR_MEM_REGIONS; i++)
423  		vm->memslots[i] = 0;
424  
425  	kvm_vm_elf_load(vm, program_invocation_name);
426  
427  	/*
428  	 * TODO: Add proper defines to protect the library's memslots, and then
429  	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
430  	 * read-only memslots as MMIO, and creating a read-only memslot for the
431  	 * MMIO region would prevent silently clobbering the MMIO region.
432  	 */
433  	slot0 = memslot2region(vm, 0);
434  	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
435  
436  	kvm_arch_vm_post_create(vm);
437  
438  	return vm;
439  }
440  
441  /*
442   * VM Create with customized parameters
443   *
444   * Input Args:
445   *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
446   *   nr_vcpus - VCPU count
447   *   extra_mem_pages - Non-slot0 physical memory total size
448   *   guest_code - Guest entry point
449   *   vcpuids - VCPU IDs
450   *
451   * Output Args: None
452   *
453   * Return:
454   *   Pointer to opaque structure that describes the created VM.
455   *
456   * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
457   * extra_mem_pages is only used to calculate the maximum page table size,
458   * no real memory allocation for non-slot0 memory in this function.
459   */
460  struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
461  				      uint64_t extra_mem_pages,
462  				      void *guest_code, struct kvm_vcpu *vcpus[])
463  {
464  	struct kvm_vm *vm;
465  	int i;
466  
467  	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
468  
469  	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
470  
471  	for (i = 0; i < nr_vcpus; ++i)
472  		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
473  
474  	return vm;
475  }
476  
477  struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
478  					       struct kvm_vcpu **vcpu,
479  					       uint64_t extra_mem_pages,
480  					       void *guest_code)
481  {
482  	struct kvm_vcpu *vcpus[1];
483  	struct kvm_vm *vm;
484  
485  	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
486  
487  	*vcpu = vcpus[0];
488  	return vm;
489  }
490  
491  /*
492   * VM Restart
493   *
494   * Input Args:
495   *   vm - VM that has been released before
496   *
497   * Output Args: None
498   *
499   * Reopens the file descriptors associated to the VM and reinstates the
500   * global state, such as the irqchip and the memory regions that are mapped
501   * into the guest.
502   */
503  void kvm_vm_restart(struct kvm_vm *vmp)
504  {
505  	int ctr;
506  	struct userspace_mem_region *region;
507  
508  	vm_open(vmp);
509  	if (vmp->has_irqchip)
510  		vm_create_irqchip(vmp);
511  
512  	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
513  		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
514  
515  		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
516  			    "  rc: %i errno: %i\n"
517  			    "  slot: %u flags: 0x%x\n"
518  			    "  guest_phys_addr: 0x%llx size: 0x%llx",
519  			    ret, errno, region->region.slot,
520  			    region->region.flags,
521  			    region->region.guest_phys_addr,
522  			    region->region.memory_size);
523  	}
524  }
525  
526  __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
527  					      uint32_t vcpu_id)
528  {
529  	return __vm_vcpu_add(vm, vcpu_id);
530  }
531  
532  struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
533  {
534  	kvm_vm_restart(vm);
535  
536  	return vm_vcpu_recreate(vm, 0);
537  }
538  
539  void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
540  {
541  	cpu_set_t mask;
542  	int r;
543  
544  	CPU_ZERO(&mask);
545  	CPU_SET(pcpu, &mask);
546  	r = sched_setaffinity(0, sizeof(mask), &mask);
547  	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
548  }
549  
550  static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
551  {
552  	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
553  
554  	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
555  		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
556  	return pcpu;
557  }
558  
559  void kvm_print_vcpu_pinning_help(void)
560  {
561  	const char *name = program_invocation_name;
562  
563  	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
564  	       "     values (target pCPU), one for each vCPU, plus an optional\n"
565  	       "     entry for the main application task (specified via entry\n"
566  	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
567  	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
568  	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
569  	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
570  	       "         %s -v 3 -c 22,23,24,50\n\n"
571  	       "     To leave the application task unpinned, drop the final entry:\n\n"
572  	       "         %s -v 3 -c 22,23,24\n\n"
573  	       "     (default: no pinning)\n", name, name);
574  }
575  
576  void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
577  			    int nr_vcpus)
578  {
579  	cpu_set_t allowed_mask;
580  	char *cpu, *cpu_list;
581  	char delim[2] = ",";
582  	int i, r;
583  
584  	cpu_list = strdup(pcpus_string);
585  	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
586  
587  	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
588  	TEST_ASSERT(!r, "sched_getaffinity() failed");
589  
590  	cpu = strtok(cpu_list, delim);
591  
592  	/* 1. Get all pcpus for vcpus. */
593  	for (i = 0; i < nr_vcpus; i++) {
594  		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
595  		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
596  		cpu = strtok(NULL, delim);
597  	}
598  
599  	/* 2. Check if the main worker needs to be pinned. */
600  	if (cpu) {
601  		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
602  		cpu = strtok(NULL, delim);
603  	}
604  
605  	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
606  	free(cpu_list);
607  }
608  
609  /*
610   * Userspace Memory Region Find
611   *
612   * Input Args:
613   *   vm - Virtual Machine
614   *   start - Starting VM physical address
615   *   end - Ending VM physical address, inclusive.
616   *
617   * Output Args: None
618   *
619   * Return:
620   *   Pointer to overlapping region, NULL if no such region.
621   *
622   * Searches for a region with any physical memory that overlaps with
623   * any portion of the guest physical addresses from start to end
624   * inclusive.  If multiple overlapping regions exist, a pointer to any
625   * of the regions is returned.  Null is returned only when no overlapping
626   * region exists.
627   */
628  static struct userspace_mem_region *
629  userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
630  {
631  	struct rb_node *node;
632  
633  	for (node = vm->regions.gpa_tree.rb_node; node; ) {
634  		struct userspace_mem_region *region =
635  			container_of(node, struct userspace_mem_region, gpa_node);
636  		uint64_t existing_start = region->region.guest_phys_addr;
637  		uint64_t existing_end = region->region.guest_phys_addr
638  			+ region->region.memory_size - 1;
639  		if (start <= existing_end && end >= existing_start)
640  			return region;
641  
642  		if (start < existing_start)
643  			node = node->rb_left;
644  		else
645  			node = node->rb_right;
646  	}
647  
648  	return NULL;
649  }
650  
651  __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
652  {
653  
654  }
655  
656  /*
657   * VM VCPU Remove
658   *
659   * Input Args:
660   *   vcpu - VCPU to remove
661   *
662   * Output Args: None
663   *
664   * Return: None, TEST_ASSERT failures for all error conditions
665   *
666   * Removes a vCPU from a VM and frees its resources.
667   */
668  static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
669  {
670  	int ret;
671  
672  	if (vcpu->dirty_gfns) {
673  		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
674  		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
675  		vcpu->dirty_gfns = NULL;
676  	}
677  
678  	ret = munmap(vcpu->run, vcpu_mmap_sz());
679  	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
680  
681  	ret = close(vcpu->fd);
682  	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
683  
684  	list_del(&vcpu->list);
685  
686  	vcpu_arch_free(vcpu);
687  	free(vcpu);
688  }
689  
690  void kvm_vm_release(struct kvm_vm *vmp)
691  {
692  	struct kvm_vcpu *vcpu, *tmp;
693  	int ret;
694  
695  	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
696  		vm_vcpu_rm(vmp, vcpu);
697  
698  	ret = close(vmp->fd);
699  	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
700  
701  	ret = close(vmp->kvm_fd);
702  	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
703  }
704  
705  static void __vm_mem_region_delete(struct kvm_vm *vm,
706  				   struct userspace_mem_region *region,
707  				   bool unlink)
708  {
709  	int ret;
710  
711  	if (unlink) {
712  		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
713  		rb_erase(&region->hva_node, &vm->regions.hva_tree);
714  		hash_del(&region->slot_node);
715  	}
716  
717  	region->region.memory_size = 0;
718  	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
719  
720  	sparsebit_free(&region->unused_phy_pages);
721  	sparsebit_free(&region->protected_phy_pages);
722  	ret = munmap(region->mmap_start, region->mmap_size);
723  	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
724  	if (region->fd >= 0) {
725  		/* There's an extra map when using shared memory. */
726  		ret = munmap(region->mmap_alias, region->mmap_size);
727  		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
728  		close(region->fd);
729  	}
730  	if (region->region.guest_memfd >= 0)
731  		close(region->region.guest_memfd);
732  
733  	free(region);
734  }
735  
736  /*
737   * Destroys and frees the VM pointed to by vmp.
738   */
739  void kvm_vm_free(struct kvm_vm *vmp)
740  {
741  	int ctr;
742  	struct hlist_node *node;
743  	struct userspace_mem_region *region;
744  
745  	if (vmp == NULL)
746  		return;
747  
748  	/* Free cached stats metadata and close FD */
749  	if (vmp->stats_fd) {
750  		free(vmp->stats_desc);
751  		close(vmp->stats_fd);
752  	}
753  
754  	/* Free userspace_mem_regions. */
755  	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
756  		__vm_mem_region_delete(vmp, region, false);
757  
758  	/* Free sparsebit arrays. */
759  	sparsebit_free(&vmp->vpages_valid);
760  	sparsebit_free(&vmp->vpages_mapped);
761  
762  	kvm_vm_release(vmp);
763  
764  	/* Free the structure describing the VM. */
765  	free(vmp);
766  }
767  
768  int kvm_memfd_alloc(size_t size, bool hugepages)
769  {
770  	int memfd_flags = MFD_CLOEXEC;
771  	int fd, r;
772  
773  	if (hugepages)
774  		memfd_flags |= MFD_HUGETLB;
775  
776  	fd = memfd_create("kvm_selftest", memfd_flags);
777  	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
778  
779  	r = ftruncate(fd, size);
780  	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
781  
782  	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
783  	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
784  
785  	return fd;
786  }
787  
788  /*
789   * Memory Compare, host virtual to guest virtual
790   *
791   * Input Args:
792   *   hva - Starting host virtual address
793   *   vm - Virtual Machine
794   *   gva - Starting guest virtual address
795   *   len - number of bytes to compare
796   *
797   * Output Args: None
798   *
799   * Input/Output Args: None
800   *
801   * Return:
802   *   Returns 0 if the bytes starting at hva for a length of len
803   *   are equal the guest virtual bytes starting at gva.  Returns
804   *   a value < 0, if bytes at hva are less than those at gva.
805   *   Otherwise a value > 0 is returned.
806   *
807   * Compares the bytes starting at the host virtual address hva, for
808   * a length of len, to the guest bytes starting at the guest virtual
809   * address given by gva.
810   */
811  int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
812  {
813  	size_t amt;
814  
815  	/*
816  	 * Compare a batch of bytes until either a match is found
817  	 * or all the bytes have been compared.
818  	 */
819  	for (uintptr_t offset = 0; offset < len; offset += amt) {
820  		uintptr_t ptr1 = (uintptr_t)hva + offset;
821  
822  		/*
823  		 * Determine host address for guest virtual address
824  		 * at offset.
825  		 */
826  		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
827  
828  		/*
829  		 * Determine amount to compare on this pass.
830  		 * Don't allow the comparsion to cross a page boundary.
831  		 */
832  		amt = len - offset;
833  		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
834  			amt = vm->page_size - (ptr1 % vm->page_size);
835  		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
836  			amt = vm->page_size - (ptr2 % vm->page_size);
837  
838  		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
839  		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
840  
841  		/*
842  		 * Perform the comparison.  If there is a difference
843  		 * return that result to the caller, otherwise need
844  		 * to continue on looking for a mismatch.
845  		 */
846  		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
847  		if (ret != 0)
848  			return ret;
849  	}
850  
851  	/*
852  	 * No mismatch found.  Let the caller know the two memory
853  	 * areas are equal.
854  	 */
855  	return 0;
856  }
857  
858  static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
859  					       struct userspace_mem_region *region)
860  {
861  	struct rb_node **cur, *parent;
862  
863  	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
864  		struct userspace_mem_region *cregion;
865  
866  		cregion = container_of(*cur, typeof(*cregion), gpa_node);
867  		parent = *cur;
868  		if (region->region.guest_phys_addr <
869  		    cregion->region.guest_phys_addr)
870  			cur = &(*cur)->rb_left;
871  		else {
872  			TEST_ASSERT(region->region.guest_phys_addr !=
873  				    cregion->region.guest_phys_addr,
874  				    "Duplicate GPA in region tree");
875  
876  			cur = &(*cur)->rb_right;
877  		}
878  	}
879  
880  	rb_link_node(&region->gpa_node, parent, cur);
881  	rb_insert_color(&region->gpa_node, gpa_tree);
882  }
883  
884  static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
885  					       struct userspace_mem_region *region)
886  {
887  	struct rb_node **cur, *parent;
888  
889  	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
890  		struct userspace_mem_region *cregion;
891  
892  		cregion = container_of(*cur, typeof(*cregion), hva_node);
893  		parent = *cur;
894  		if (region->host_mem < cregion->host_mem)
895  			cur = &(*cur)->rb_left;
896  		else {
897  			TEST_ASSERT(region->host_mem !=
898  				    cregion->host_mem,
899  				    "Duplicate HVA in region tree");
900  
901  			cur = &(*cur)->rb_right;
902  		}
903  	}
904  
905  	rb_link_node(&region->hva_node, parent, cur);
906  	rb_insert_color(&region->hva_node, hva_tree);
907  }
908  
909  
910  int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
911  				uint64_t gpa, uint64_t size, void *hva)
912  {
913  	struct kvm_userspace_memory_region region = {
914  		.slot = slot,
915  		.flags = flags,
916  		.guest_phys_addr = gpa,
917  		.memory_size = size,
918  		.userspace_addr = (uintptr_t)hva,
919  	};
920  
921  	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
922  }
923  
924  void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
925  			       uint64_t gpa, uint64_t size, void *hva)
926  {
927  	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
928  
929  	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
930  		    errno, strerror(errno));
931  }
932  
933  int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934  				 uint64_t gpa, uint64_t size, void *hva,
935  				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
936  {
937  	struct kvm_userspace_memory_region2 region = {
938  		.slot = slot,
939  		.flags = flags,
940  		.guest_phys_addr = gpa,
941  		.memory_size = size,
942  		.userspace_addr = (uintptr_t)hva,
943  		.guest_memfd = guest_memfd,
944  		.guest_memfd_offset = guest_memfd_offset,
945  	};
946  
947  	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
948  }
949  
950  void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
951  				uint64_t gpa, uint64_t size, void *hva,
952  				uint32_t guest_memfd, uint64_t guest_memfd_offset)
953  {
954  	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
955  					       guest_memfd, guest_memfd_offset);
956  
957  	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
958  		    errno, strerror(errno));
959  }
960  
961  
962  /* FIXME: This thing needs to be ripped apart and rewritten. */
963  void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
964  		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
965  		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
966  {
967  	int ret;
968  	struct userspace_mem_region *region;
969  	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
970  	size_t mem_size = npages * vm->page_size;
971  	size_t alignment;
972  
973  	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
974  		"Number of guest pages is not compatible with the host. "
975  		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
976  
977  	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
978  		"address not on a page boundary.\n"
979  		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
980  		guest_paddr, vm->page_size);
981  	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
982  		<= vm->max_gfn, "Physical range beyond maximum "
983  		"supported physical address,\n"
984  		"  guest_paddr: 0x%lx npages: 0x%lx\n"
985  		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
986  		guest_paddr, npages, vm->max_gfn, vm->page_size);
987  
988  	/*
989  	 * Confirm a mem region with an overlapping address doesn't
990  	 * already exist.
991  	 */
992  	region = (struct userspace_mem_region *) userspace_mem_region_find(
993  		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
994  	if (region != NULL)
995  		TEST_FAIL("overlapping userspace_mem_region already "
996  			"exists\n"
997  			"  requested guest_paddr: 0x%lx npages: 0x%lx "
998  			"page_size: 0x%x\n"
999  			"  existing guest_paddr: 0x%lx size: 0x%lx",
1000  			guest_paddr, npages, vm->page_size,
1001  			(uint64_t) region->region.guest_phys_addr,
1002  			(uint64_t) region->region.memory_size);
1003  
1004  	/* Confirm no region with the requested slot already exists. */
1005  	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1006  			       slot) {
1007  		if (region->region.slot != slot)
1008  			continue;
1009  
1010  		TEST_FAIL("A mem region with the requested slot "
1011  			"already exists.\n"
1012  			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1013  			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1014  			slot, guest_paddr, npages,
1015  			region->region.slot,
1016  			(uint64_t) region->region.guest_phys_addr,
1017  			(uint64_t) region->region.memory_size);
1018  	}
1019  
1020  	/* Allocate and initialize new mem region structure. */
1021  	region = calloc(1, sizeof(*region));
1022  	TEST_ASSERT(region != NULL, "Insufficient Memory");
1023  	region->mmap_size = mem_size;
1024  
1025  #ifdef __s390x__
1026  	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1027  	alignment = 0x100000;
1028  #else
1029  	alignment = 1;
1030  #endif
1031  
1032  	/*
1033  	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1034  	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1035  	 * because mmap will always return an address aligned to the HugeTLB
1036  	 * page size.
1037  	 */
1038  	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1039  		alignment = max(backing_src_pagesz, alignment);
1040  
1041  	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1042  
1043  	/* Add enough memory to align up if necessary */
1044  	if (alignment > 1)
1045  		region->mmap_size += alignment;
1046  
1047  	region->fd = -1;
1048  	if (backing_src_is_shared(src_type))
1049  		region->fd = kvm_memfd_alloc(region->mmap_size,
1050  					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1051  
1052  	region->mmap_start = mmap(NULL, region->mmap_size,
1053  				  PROT_READ | PROT_WRITE,
1054  				  vm_mem_backing_src_alias(src_type)->flag,
1055  				  region->fd, 0);
1056  	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1057  		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1058  
1059  	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1060  		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1061  		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1062  		    region->mmap_start, backing_src_pagesz);
1063  
1064  	/* Align host address */
1065  	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1066  
1067  	/* As needed perform madvise */
1068  	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1069  	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1070  		ret = madvise(region->host_mem, mem_size,
1071  			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1072  		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1073  			    region->host_mem, mem_size,
1074  			    vm_mem_backing_src_alias(src_type)->name);
1075  	}
1076  
1077  	region->backing_src_type = src_type;
1078  
1079  	if (flags & KVM_MEM_GUEST_MEMFD) {
1080  		if (guest_memfd < 0) {
1081  			uint32_t guest_memfd_flags = 0;
1082  			TEST_ASSERT(!guest_memfd_offset,
1083  				    "Offset must be zero when creating new guest_memfd");
1084  			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1085  		} else {
1086  			/*
1087  			 * Install a unique fd for each memslot so that the fd
1088  			 * can be closed when the region is deleted without
1089  			 * needing to track if the fd is owned by the framework
1090  			 * or by the caller.
1091  			 */
1092  			guest_memfd = dup(guest_memfd);
1093  			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1094  		}
1095  
1096  		region->region.guest_memfd = guest_memfd;
1097  		region->region.guest_memfd_offset = guest_memfd_offset;
1098  	} else {
1099  		region->region.guest_memfd = -1;
1100  	}
1101  
1102  	region->unused_phy_pages = sparsebit_alloc();
1103  	if (vm_arch_has_protected_memory(vm))
1104  		region->protected_phy_pages = sparsebit_alloc();
1105  	sparsebit_set_num(region->unused_phy_pages,
1106  		guest_paddr >> vm->page_shift, npages);
1107  	region->region.slot = slot;
1108  	region->region.flags = flags;
1109  	region->region.guest_phys_addr = guest_paddr;
1110  	region->region.memory_size = npages * vm->page_size;
1111  	region->region.userspace_addr = (uintptr_t) region->host_mem;
1112  	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1113  	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1114  		"  rc: %i errno: %i\n"
1115  		"  slot: %u flags: 0x%x\n"
1116  		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1117  		ret, errno, slot, flags,
1118  		guest_paddr, (uint64_t) region->region.memory_size,
1119  		region->region.guest_memfd);
1120  
1121  	/* Add to quick lookup data structures */
1122  	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1123  	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1124  	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1125  
1126  	/* If shared memory, create an alias. */
1127  	if (region->fd >= 0) {
1128  		region->mmap_alias = mmap(NULL, region->mmap_size,
1129  					  PROT_READ | PROT_WRITE,
1130  					  vm_mem_backing_src_alias(src_type)->flag,
1131  					  region->fd, 0);
1132  		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1133  			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1134  
1135  		/* Align host alias address */
1136  		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1137  	}
1138  }
1139  
1140  void vm_userspace_mem_region_add(struct kvm_vm *vm,
1141  				 enum vm_mem_backing_src_type src_type,
1142  				 uint64_t guest_paddr, uint32_t slot,
1143  				 uint64_t npages, uint32_t flags)
1144  {
1145  	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1146  }
1147  
1148  /*
1149   * Memslot to region
1150   *
1151   * Input Args:
1152   *   vm - Virtual Machine
1153   *   memslot - KVM memory slot ID
1154   *
1155   * Output Args: None
1156   *
1157   * Return:
1158   *   Pointer to memory region structure that describe memory region
1159   *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1160   *   on error (e.g. currently no memory region using memslot as a KVM
1161   *   memory slot ID).
1162   */
1163  struct userspace_mem_region *
1164  memslot2region(struct kvm_vm *vm, uint32_t memslot)
1165  {
1166  	struct userspace_mem_region *region;
1167  
1168  	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1169  			       memslot)
1170  		if (region->region.slot == memslot)
1171  			return region;
1172  
1173  	fprintf(stderr, "No mem region with the requested slot found,\n"
1174  		"  requested slot: %u\n", memslot);
1175  	fputs("---- vm dump ----\n", stderr);
1176  	vm_dump(stderr, vm, 2);
1177  	TEST_FAIL("Mem region not found");
1178  	return NULL;
1179  }
1180  
1181  /*
1182   * VM Memory Region Flags Set
1183   *
1184   * Input Args:
1185   *   vm - Virtual Machine
1186   *   flags - Starting guest physical address
1187   *
1188   * Output Args: None
1189   *
1190   * Return: None
1191   *
1192   * Sets the flags of the memory region specified by the value of slot,
1193   * to the values given by flags.
1194   */
1195  void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1196  {
1197  	int ret;
1198  	struct userspace_mem_region *region;
1199  
1200  	region = memslot2region(vm, slot);
1201  
1202  	region->region.flags = flags;
1203  
1204  	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1205  
1206  	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1207  		"  rc: %i errno: %i slot: %u flags: 0x%x",
1208  		ret, errno, slot, flags);
1209  }
1210  
1211  /*
1212   * VM Memory Region Move
1213   *
1214   * Input Args:
1215   *   vm - Virtual Machine
1216   *   slot - Slot of the memory region to move
1217   *   new_gpa - Starting guest physical address
1218   *
1219   * Output Args: None
1220   *
1221   * Return: None
1222   *
1223   * Change the gpa of a memory region.
1224   */
1225  void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1226  {
1227  	struct userspace_mem_region *region;
1228  	int ret;
1229  
1230  	region = memslot2region(vm, slot);
1231  
1232  	region->region.guest_phys_addr = new_gpa;
1233  
1234  	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1235  
1236  	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1237  		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1238  		    ret, errno, slot, new_gpa);
1239  }
1240  
1241  /*
1242   * VM Memory Region Delete
1243   *
1244   * Input Args:
1245   *   vm - Virtual Machine
1246   *   slot - Slot of the memory region to delete
1247   *
1248   * Output Args: None
1249   *
1250   * Return: None
1251   *
1252   * Delete a memory region.
1253   */
1254  void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1255  {
1256  	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1257  }
1258  
1259  void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1260  			    bool punch_hole)
1261  {
1262  	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1263  	struct userspace_mem_region *region;
1264  	uint64_t end = base + size;
1265  	uint64_t gpa, len;
1266  	off_t fd_offset;
1267  	int ret;
1268  
1269  	for (gpa = base; gpa < end; gpa += len) {
1270  		uint64_t offset;
1271  
1272  		region = userspace_mem_region_find(vm, gpa, gpa);
1273  		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1274  			    "Private memory region not found for GPA 0x%lx", gpa);
1275  
1276  		offset = gpa - region->region.guest_phys_addr;
1277  		fd_offset = region->region.guest_memfd_offset + offset;
1278  		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1279  
1280  		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1281  		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1282  			    punch_hole ? "punch hole" : "allocate", gpa, len,
1283  			    region->region.guest_memfd, mode, fd_offset);
1284  	}
1285  }
1286  
1287  /* Returns the size of a vCPU's kvm_run structure. */
1288  static int vcpu_mmap_sz(void)
1289  {
1290  	int dev_fd, ret;
1291  
1292  	dev_fd = open_kvm_dev_path_or_exit();
1293  
1294  	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1295  	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1296  		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1297  
1298  	close(dev_fd);
1299  
1300  	return ret;
1301  }
1302  
1303  static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1304  {
1305  	struct kvm_vcpu *vcpu;
1306  
1307  	list_for_each_entry(vcpu, &vm->vcpus, list) {
1308  		if (vcpu->id == vcpu_id)
1309  			return true;
1310  	}
1311  
1312  	return false;
1313  }
1314  
1315  /*
1316   * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1317   * No additional vCPU setup is done.  Returns the vCPU.
1318   */
1319  struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1320  {
1321  	struct kvm_vcpu *vcpu;
1322  
1323  	/* Confirm a vcpu with the specified id doesn't already exist. */
1324  	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1325  
1326  	/* Allocate and initialize new vcpu structure. */
1327  	vcpu = calloc(1, sizeof(*vcpu));
1328  	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1329  
1330  	vcpu->vm = vm;
1331  	vcpu->id = vcpu_id;
1332  	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1333  	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1334  
1335  	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1336  		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1337  		vcpu_mmap_sz(), sizeof(*vcpu->run));
1338  	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1339  		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1340  	TEST_ASSERT(vcpu->run != MAP_FAILED,
1341  		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1342  
1343  	/* Add to linked-list of VCPUs. */
1344  	list_add(&vcpu->list, &vm->vcpus);
1345  
1346  	return vcpu;
1347  }
1348  
1349  /*
1350   * VM Virtual Address Unused Gap
1351   *
1352   * Input Args:
1353   *   vm - Virtual Machine
1354   *   sz - Size (bytes)
1355   *   vaddr_min - Minimum Virtual Address
1356   *
1357   * Output Args: None
1358   *
1359   * Return:
1360   *   Lowest virtual address at or below vaddr_min, with at least
1361   *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1362   *   size sz is available.
1363   *
1364   * Within the VM specified by vm, locates the lowest starting virtual
1365   * address >= vaddr_min, that has at least sz unallocated bytes.  A
1366   * TEST_ASSERT failure occurs for invalid input or no area of at least
1367   * sz unallocated bytes >= vaddr_min is available.
1368   */
1369  vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1370  			       vm_vaddr_t vaddr_min)
1371  {
1372  	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1373  
1374  	/* Determine lowest permitted virtual page index. */
1375  	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1376  	if ((pgidx_start * vm->page_size) < vaddr_min)
1377  		goto no_va_found;
1378  
1379  	/* Loop over section with enough valid virtual page indexes. */
1380  	if (!sparsebit_is_set_num(vm->vpages_valid,
1381  		pgidx_start, pages))
1382  		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1383  			pgidx_start, pages);
1384  	do {
1385  		/*
1386  		 * Are there enough unused virtual pages available at
1387  		 * the currently proposed starting virtual page index.
1388  		 * If not, adjust proposed starting index to next
1389  		 * possible.
1390  		 */
1391  		if (sparsebit_is_clear_num(vm->vpages_mapped,
1392  			pgidx_start, pages))
1393  			goto va_found;
1394  		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1395  			pgidx_start, pages);
1396  		if (pgidx_start == 0)
1397  			goto no_va_found;
1398  
1399  		/*
1400  		 * If needed, adjust proposed starting virtual address,
1401  		 * to next range of valid virtual addresses.
1402  		 */
1403  		if (!sparsebit_is_set_num(vm->vpages_valid,
1404  			pgidx_start, pages)) {
1405  			pgidx_start = sparsebit_next_set_num(
1406  				vm->vpages_valid, pgidx_start, pages);
1407  			if (pgidx_start == 0)
1408  				goto no_va_found;
1409  		}
1410  	} while (pgidx_start != 0);
1411  
1412  no_va_found:
1413  	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1414  
1415  	/* NOT REACHED */
1416  	return -1;
1417  
1418  va_found:
1419  	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1420  		pgidx_start, pages),
1421  		"Unexpected, invalid virtual page index range,\n"
1422  		"  pgidx_start: 0x%lx\n"
1423  		"  pages: 0x%lx",
1424  		pgidx_start, pages);
1425  	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1426  		pgidx_start, pages),
1427  		"Unexpected, pages already mapped,\n"
1428  		"  pgidx_start: 0x%lx\n"
1429  		"  pages: 0x%lx",
1430  		pgidx_start, pages);
1431  
1432  	return pgidx_start * vm->page_size;
1433  }
1434  
1435  static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1436  				     vm_vaddr_t vaddr_min,
1437  				     enum kvm_mem_region_type type,
1438  				     bool protected)
1439  {
1440  	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1441  
1442  	virt_pgd_alloc(vm);
1443  	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1444  						KVM_UTIL_MIN_PFN * vm->page_size,
1445  						vm->memslots[type], protected);
1446  
1447  	/*
1448  	 * Find an unused range of virtual page addresses of at least
1449  	 * pages in length.
1450  	 */
1451  	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1452  
1453  	/* Map the virtual pages. */
1454  	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1455  		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1456  
1457  		virt_pg_map(vm, vaddr, paddr);
1458  
1459  		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1460  	}
1461  
1462  	return vaddr_start;
1463  }
1464  
1465  vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1466  			    enum kvm_mem_region_type type)
1467  {
1468  	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1469  				  vm_arch_has_protected_memory(vm));
1470  }
1471  
1472  vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1473  				 vm_vaddr_t vaddr_min,
1474  				 enum kvm_mem_region_type type)
1475  {
1476  	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1477  }
1478  
1479  /*
1480   * VM Virtual Address Allocate
1481   *
1482   * Input Args:
1483   *   vm - Virtual Machine
1484   *   sz - Size in bytes
1485   *   vaddr_min - Minimum starting virtual address
1486   *
1487   * Output Args: None
1488   *
1489   * Return:
1490   *   Starting guest virtual address
1491   *
1492   * Allocates at least sz bytes within the virtual address space of the vm
1493   * given by vm.  The allocated bytes are mapped to a virtual address >=
1494   * the address given by vaddr_min.  Note that each allocation uses a
1495   * a unique set of pages, with the minimum real allocation being at least
1496   * a page. The allocated physical space comes from the TEST_DATA memory region.
1497   */
1498  vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1499  {
1500  	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1501  }
1502  
1503  /*
1504   * VM Virtual Address Allocate Pages
1505   *
1506   * Input Args:
1507   *   vm - Virtual Machine
1508   *
1509   * Output Args: None
1510   *
1511   * Return:
1512   *   Starting guest virtual address
1513   *
1514   * Allocates at least N system pages worth of bytes within the virtual address
1515   * space of the vm.
1516   */
1517  vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1518  {
1519  	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1520  }
1521  
1522  vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1523  {
1524  	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1525  }
1526  
1527  /*
1528   * VM Virtual Address Allocate Page
1529   *
1530   * Input Args:
1531   *   vm - Virtual Machine
1532   *
1533   * Output Args: None
1534   *
1535   * Return:
1536   *   Starting guest virtual address
1537   *
1538   * Allocates at least one system page worth of bytes within the virtual address
1539   * space of the vm.
1540   */
1541  vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1542  {
1543  	return vm_vaddr_alloc_pages(vm, 1);
1544  }
1545  
1546  /*
1547   * Map a range of VM virtual address to the VM's physical address
1548   *
1549   * Input Args:
1550   *   vm - Virtual Machine
1551   *   vaddr - Virtuall address to map
1552   *   paddr - VM Physical Address
1553   *   npages - The number of pages to map
1554   *
1555   * Output Args: None
1556   *
1557   * Return: None
1558   *
1559   * Within the VM given by @vm, creates a virtual translation for
1560   * @npages starting at @vaddr to the page range starting at @paddr.
1561   */
1562  void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1563  	      unsigned int npages)
1564  {
1565  	size_t page_size = vm->page_size;
1566  	size_t size = npages * page_size;
1567  
1568  	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1569  	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1570  
1571  	while (npages--) {
1572  		virt_pg_map(vm, vaddr, paddr);
1573  		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1574  
1575  		vaddr += page_size;
1576  		paddr += page_size;
1577  	}
1578  }
1579  
1580  /*
1581   * Address VM Physical to Host Virtual
1582   *
1583   * Input Args:
1584   *   vm - Virtual Machine
1585   *   gpa - VM physical address
1586   *
1587   * Output Args: None
1588   *
1589   * Return:
1590   *   Equivalent host virtual address
1591   *
1592   * Locates the memory region containing the VM physical address given
1593   * by gpa, within the VM given by vm.  When found, the host virtual
1594   * address providing the memory to the vm physical address is returned.
1595   * A TEST_ASSERT failure occurs if no region containing gpa exists.
1596   */
1597  void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1598  {
1599  	struct userspace_mem_region *region;
1600  
1601  	gpa = vm_untag_gpa(vm, gpa);
1602  
1603  	region = userspace_mem_region_find(vm, gpa, gpa);
1604  	if (!region) {
1605  		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1606  		return NULL;
1607  	}
1608  
1609  	return (void *)((uintptr_t)region->host_mem
1610  		+ (gpa - region->region.guest_phys_addr));
1611  }
1612  
1613  /*
1614   * Address Host Virtual to VM Physical
1615   *
1616   * Input Args:
1617   *   vm - Virtual Machine
1618   *   hva - Host virtual address
1619   *
1620   * Output Args: None
1621   *
1622   * Return:
1623   *   Equivalent VM physical address
1624   *
1625   * Locates the memory region containing the host virtual address given
1626   * by hva, within the VM given by vm.  When found, the equivalent
1627   * VM physical address is returned. A TEST_ASSERT failure occurs if no
1628   * region containing hva exists.
1629   */
1630  vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1631  {
1632  	struct rb_node *node;
1633  
1634  	for (node = vm->regions.hva_tree.rb_node; node; ) {
1635  		struct userspace_mem_region *region =
1636  			container_of(node, struct userspace_mem_region, hva_node);
1637  
1638  		if (hva >= region->host_mem) {
1639  			if (hva <= (region->host_mem
1640  				+ region->region.memory_size - 1))
1641  				return (vm_paddr_t)((uintptr_t)
1642  					region->region.guest_phys_addr
1643  					+ (hva - (uintptr_t)region->host_mem));
1644  
1645  			node = node->rb_right;
1646  		} else
1647  			node = node->rb_left;
1648  	}
1649  
1650  	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1651  	return -1;
1652  }
1653  
1654  /*
1655   * Address VM physical to Host Virtual *alias*.
1656   *
1657   * Input Args:
1658   *   vm - Virtual Machine
1659   *   gpa - VM physical address
1660   *
1661   * Output Args: None
1662   *
1663   * Return:
1664   *   Equivalent address within the host virtual *alias* area, or NULL
1665   *   (without failing the test) if the guest memory is not shared (so
1666   *   no alias exists).
1667   *
1668   * Create a writable, shared virtual=>physical alias for the specific GPA.
1669   * The primary use case is to allow the host selftest to manipulate guest
1670   * memory without mapping said memory in the guest's address space. And, for
1671   * userfaultfd-based demand paging, to do so without triggering userfaults.
1672   */
1673  void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1674  {
1675  	struct userspace_mem_region *region;
1676  	uintptr_t offset;
1677  
1678  	region = userspace_mem_region_find(vm, gpa, gpa);
1679  	if (!region)
1680  		return NULL;
1681  
1682  	if (!region->host_alias)
1683  		return NULL;
1684  
1685  	offset = gpa - region->region.guest_phys_addr;
1686  	return (void *) ((uintptr_t) region->host_alias + offset);
1687  }
1688  
1689  /* Create an interrupt controller chip for the specified VM. */
1690  void vm_create_irqchip(struct kvm_vm *vm)
1691  {
1692  	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1693  
1694  	vm->has_irqchip = true;
1695  }
1696  
1697  int _vcpu_run(struct kvm_vcpu *vcpu)
1698  {
1699  	int rc;
1700  
1701  	do {
1702  		rc = __vcpu_run(vcpu);
1703  	} while (rc == -1 && errno == EINTR);
1704  
1705  	assert_on_unhandled_exception(vcpu);
1706  
1707  	return rc;
1708  }
1709  
1710  /*
1711   * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1712   * Assert if the KVM returns an error (other than -EINTR).
1713   */
1714  void vcpu_run(struct kvm_vcpu *vcpu)
1715  {
1716  	int ret = _vcpu_run(vcpu);
1717  
1718  	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1719  }
1720  
1721  void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1722  {
1723  	int ret;
1724  
1725  	vcpu->run->immediate_exit = 1;
1726  	ret = __vcpu_run(vcpu);
1727  	vcpu->run->immediate_exit = 0;
1728  
1729  	TEST_ASSERT(ret == -1 && errno == EINTR,
1730  		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1731  		    ret, errno);
1732  }
1733  
1734  /*
1735   * Get the list of guest registers which are supported for
1736   * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1737   * it is the caller's responsibility to free the list.
1738   */
1739  struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1740  {
1741  	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1742  	int ret;
1743  
1744  	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1745  	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1746  
1747  	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1748  	reg_list->n = reg_list_n.n;
1749  	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1750  	return reg_list;
1751  }
1752  
1753  void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1754  {
1755  	uint32_t page_size = getpagesize();
1756  	uint32_t size = vcpu->vm->dirty_ring_size;
1757  
1758  	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1759  
1760  	if (!vcpu->dirty_gfns) {
1761  		void *addr;
1762  
1763  		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1764  			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1765  		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1766  
1767  		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1768  			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1769  		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1770  
1771  		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1772  			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1773  		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1774  
1775  		vcpu->dirty_gfns = addr;
1776  		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1777  	}
1778  
1779  	return vcpu->dirty_gfns;
1780  }
1781  
1782  /*
1783   * Device Ioctl
1784   */
1785  
1786  int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1787  {
1788  	struct kvm_device_attr attribute = {
1789  		.group = group,
1790  		.attr = attr,
1791  		.flags = 0,
1792  	};
1793  
1794  	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1795  }
1796  
1797  int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1798  {
1799  	struct kvm_create_device create_dev = {
1800  		.type = type,
1801  		.flags = KVM_CREATE_DEVICE_TEST,
1802  	};
1803  
1804  	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1805  }
1806  
1807  int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1808  {
1809  	struct kvm_create_device create_dev = {
1810  		.type = type,
1811  		.fd = -1,
1812  		.flags = 0,
1813  	};
1814  	int err;
1815  
1816  	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1817  	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1818  	return err ? : create_dev.fd;
1819  }
1820  
1821  int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1822  {
1823  	struct kvm_device_attr kvmattr = {
1824  		.group = group,
1825  		.attr = attr,
1826  		.flags = 0,
1827  		.addr = (uintptr_t)val,
1828  	};
1829  
1830  	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1831  }
1832  
1833  int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1834  {
1835  	struct kvm_device_attr kvmattr = {
1836  		.group = group,
1837  		.attr = attr,
1838  		.flags = 0,
1839  		.addr = (uintptr_t)val,
1840  	};
1841  
1842  	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1843  }
1844  
1845  /*
1846   * IRQ related functions.
1847   */
1848  
1849  int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1850  {
1851  	struct kvm_irq_level irq_level = {
1852  		.irq    = irq,
1853  		.level  = level,
1854  	};
1855  
1856  	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1857  }
1858  
1859  void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1860  {
1861  	int ret = _kvm_irq_line(vm, irq, level);
1862  
1863  	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1864  }
1865  
1866  struct kvm_irq_routing *kvm_gsi_routing_create(void)
1867  {
1868  	struct kvm_irq_routing *routing;
1869  	size_t size;
1870  
1871  	size = sizeof(struct kvm_irq_routing);
1872  	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1873  	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1874  	routing = calloc(1, size);
1875  	assert(routing);
1876  
1877  	return routing;
1878  }
1879  
1880  void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1881  		uint32_t gsi, uint32_t pin)
1882  {
1883  	int i;
1884  
1885  	assert(routing);
1886  	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1887  
1888  	i = routing->nr;
1889  	routing->entries[i].gsi = gsi;
1890  	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1891  	routing->entries[i].flags = 0;
1892  	routing->entries[i].u.irqchip.irqchip = 0;
1893  	routing->entries[i].u.irqchip.pin = pin;
1894  	routing->nr++;
1895  }
1896  
1897  int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1898  {
1899  	int ret;
1900  
1901  	assert(routing);
1902  	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1903  	free(routing);
1904  
1905  	return ret;
1906  }
1907  
1908  void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1909  {
1910  	int ret;
1911  
1912  	ret = _kvm_gsi_routing_write(vm, routing);
1913  	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1914  }
1915  
1916  /*
1917   * VM Dump
1918   *
1919   * Input Args:
1920   *   vm - Virtual Machine
1921   *   indent - Left margin indent amount
1922   *
1923   * Output Args:
1924   *   stream - Output FILE stream
1925   *
1926   * Return: None
1927   *
1928   * Dumps the current state of the VM given by vm, to the FILE stream
1929   * given by stream.
1930   */
1931  void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1932  {
1933  	int ctr;
1934  	struct userspace_mem_region *region;
1935  	struct kvm_vcpu *vcpu;
1936  
1937  	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1938  	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1939  	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1940  	fprintf(stream, "%*sMem Regions:\n", indent, "");
1941  	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1942  		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1943  			"host_virt: %p\n", indent + 2, "",
1944  			(uint64_t) region->region.guest_phys_addr,
1945  			(uint64_t) region->region.memory_size,
1946  			region->host_mem);
1947  		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1948  		sparsebit_dump(stream, region->unused_phy_pages, 0);
1949  		if (region->protected_phy_pages) {
1950  			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1951  			sparsebit_dump(stream, region->protected_phy_pages, 0);
1952  		}
1953  	}
1954  	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1955  	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1956  	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1957  		vm->pgd_created);
1958  	if (vm->pgd_created) {
1959  		fprintf(stream, "%*sVirtual Translation Tables:\n",
1960  			indent + 2, "");
1961  		virt_dump(stream, vm, indent + 4);
1962  	}
1963  	fprintf(stream, "%*sVCPUs:\n", indent, "");
1964  
1965  	list_for_each_entry(vcpu, &vm->vcpus, list)
1966  		vcpu_dump(stream, vcpu, indent + 2);
1967  }
1968  
1969  #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1970  
1971  /* Known KVM exit reasons */
1972  static struct exit_reason {
1973  	unsigned int reason;
1974  	const char *name;
1975  } exit_reasons_known[] = {
1976  	KVM_EXIT_STRING(UNKNOWN),
1977  	KVM_EXIT_STRING(EXCEPTION),
1978  	KVM_EXIT_STRING(IO),
1979  	KVM_EXIT_STRING(HYPERCALL),
1980  	KVM_EXIT_STRING(DEBUG),
1981  	KVM_EXIT_STRING(HLT),
1982  	KVM_EXIT_STRING(MMIO),
1983  	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1984  	KVM_EXIT_STRING(SHUTDOWN),
1985  	KVM_EXIT_STRING(FAIL_ENTRY),
1986  	KVM_EXIT_STRING(INTR),
1987  	KVM_EXIT_STRING(SET_TPR),
1988  	KVM_EXIT_STRING(TPR_ACCESS),
1989  	KVM_EXIT_STRING(S390_SIEIC),
1990  	KVM_EXIT_STRING(S390_RESET),
1991  	KVM_EXIT_STRING(DCR),
1992  	KVM_EXIT_STRING(NMI),
1993  	KVM_EXIT_STRING(INTERNAL_ERROR),
1994  	KVM_EXIT_STRING(OSI),
1995  	KVM_EXIT_STRING(PAPR_HCALL),
1996  	KVM_EXIT_STRING(S390_UCONTROL),
1997  	KVM_EXIT_STRING(WATCHDOG),
1998  	KVM_EXIT_STRING(S390_TSCH),
1999  	KVM_EXIT_STRING(EPR),
2000  	KVM_EXIT_STRING(SYSTEM_EVENT),
2001  	KVM_EXIT_STRING(S390_STSI),
2002  	KVM_EXIT_STRING(IOAPIC_EOI),
2003  	KVM_EXIT_STRING(HYPERV),
2004  	KVM_EXIT_STRING(ARM_NISV),
2005  	KVM_EXIT_STRING(X86_RDMSR),
2006  	KVM_EXIT_STRING(X86_WRMSR),
2007  	KVM_EXIT_STRING(DIRTY_RING_FULL),
2008  	KVM_EXIT_STRING(AP_RESET_HOLD),
2009  	KVM_EXIT_STRING(X86_BUS_LOCK),
2010  	KVM_EXIT_STRING(XEN),
2011  	KVM_EXIT_STRING(RISCV_SBI),
2012  	KVM_EXIT_STRING(RISCV_CSR),
2013  	KVM_EXIT_STRING(NOTIFY),
2014  #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2015  	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
2016  #endif
2017  };
2018  
2019  /*
2020   * Exit Reason String
2021   *
2022   * Input Args:
2023   *   exit_reason - Exit reason
2024   *
2025   * Output Args: None
2026   *
2027   * Return:
2028   *   Constant string pointer describing the exit reason.
2029   *
2030   * Locates and returns a constant string that describes the KVM exit
2031   * reason given by exit_reason.  If no such string is found, a constant
2032   * string of "Unknown" is returned.
2033   */
2034  const char *exit_reason_str(unsigned int exit_reason)
2035  {
2036  	unsigned int n1;
2037  
2038  	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2039  		if (exit_reason == exit_reasons_known[n1].reason)
2040  			return exit_reasons_known[n1].name;
2041  	}
2042  
2043  	return "Unknown";
2044  }
2045  
2046  /*
2047   * Physical Contiguous Page Allocator
2048   *
2049   * Input Args:
2050   *   vm - Virtual Machine
2051   *   num - number of pages
2052   *   paddr_min - Physical address minimum
2053   *   memslot - Memory region to allocate page from
2054   *   protected - True if the pages will be used as protected/private memory
2055   *
2056   * Output Args: None
2057   *
2058   * Return:
2059   *   Starting physical address
2060   *
2061   * Within the VM specified by vm, locates a range of available physical
2062   * pages at or above paddr_min. If found, the pages are marked as in use
2063   * and their base address is returned. A TEST_ASSERT failure occurs if
2064   * not enough pages are available at or above paddr_min.
2065   */
2066  vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2067  				vm_paddr_t paddr_min, uint32_t memslot,
2068  				bool protected)
2069  {
2070  	struct userspace_mem_region *region;
2071  	sparsebit_idx_t pg, base;
2072  
2073  	TEST_ASSERT(num > 0, "Must allocate at least one page");
2074  
2075  	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2076  		"not divisible by page size.\n"
2077  		"  paddr_min: 0x%lx page_size: 0x%x",
2078  		paddr_min, vm->page_size);
2079  
2080  	region = memslot2region(vm, memslot);
2081  	TEST_ASSERT(!protected || region->protected_phy_pages,
2082  		    "Region doesn't support protected memory");
2083  
2084  	base = pg = paddr_min >> vm->page_shift;
2085  	do {
2086  		for (; pg < base + num; ++pg) {
2087  			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2088  				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2089  				break;
2090  			}
2091  		}
2092  	} while (pg && pg != base + num);
2093  
2094  	if (pg == 0) {
2095  		fprintf(stderr, "No guest physical page available, "
2096  			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2097  			paddr_min, vm->page_size, memslot);
2098  		fputs("---- vm dump ----\n", stderr);
2099  		vm_dump(stderr, vm, 2);
2100  		abort();
2101  	}
2102  
2103  	for (pg = base; pg < base + num; ++pg) {
2104  		sparsebit_clear(region->unused_phy_pages, pg);
2105  		if (protected)
2106  			sparsebit_set(region->protected_phy_pages, pg);
2107  	}
2108  
2109  	return base * vm->page_size;
2110  }
2111  
2112  vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2113  			     uint32_t memslot)
2114  {
2115  	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2116  }
2117  
2118  vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2119  {
2120  	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2121  				 vm->memslots[MEM_REGION_PT]);
2122  }
2123  
2124  /*
2125   * Address Guest Virtual to Host Virtual
2126   *
2127   * Input Args:
2128   *   vm - Virtual Machine
2129   *   gva - VM virtual address
2130   *
2131   * Output Args: None
2132   *
2133   * Return:
2134   *   Equivalent host virtual address
2135   */
2136  void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2137  {
2138  	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2139  }
2140  
2141  unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2142  {
2143  	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2144  }
2145  
2146  static unsigned int vm_calc_num_pages(unsigned int num_pages,
2147  				      unsigned int page_shift,
2148  				      unsigned int new_page_shift,
2149  				      bool ceil)
2150  {
2151  	unsigned int n = 1 << (new_page_shift - page_shift);
2152  
2153  	if (page_shift >= new_page_shift)
2154  		return num_pages * (1 << (page_shift - new_page_shift));
2155  
2156  	return num_pages / n + !!(ceil && num_pages % n);
2157  }
2158  
2159  static inline int getpageshift(void)
2160  {
2161  	return __builtin_ffs(getpagesize()) - 1;
2162  }
2163  
2164  unsigned int
2165  vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2166  {
2167  	return vm_calc_num_pages(num_guest_pages,
2168  				 vm_guest_mode_params[mode].page_shift,
2169  				 getpageshift(), true);
2170  }
2171  
2172  unsigned int
2173  vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2174  {
2175  	return vm_calc_num_pages(num_host_pages, getpageshift(),
2176  				 vm_guest_mode_params[mode].page_shift, false);
2177  }
2178  
2179  unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2180  {
2181  	unsigned int n;
2182  	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2183  	return vm_adjust_num_guest_pages(mode, n);
2184  }
2185  
2186  /*
2187   * Read binary stats descriptors
2188   *
2189   * Input Args:
2190   *   stats_fd - the file descriptor for the binary stats file from which to read
2191   *   header - the binary stats metadata header corresponding to the given FD
2192   *
2193   * Output Args: None
2194   *
2195   * Return:
2196   *   A pointer to a newly allocated series of stat descriptors.
2197   *   Caller is responsible for freeing the returned kvm_stats_desc.
2198   *
2199   * Read the stats descriptors from the binary stats interface.
2200   */
2201  struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2202  					      struct kvm_stats_header *header)
2203  {
2204  	struct kvm_stats_desc *stats_desc;
2205  	ssize_t desc_size, total_size, ret;
2206  
2207  	desc_size = get_stats_descriptor_size(header);
2208  	total_size = header->num_desc * desc_size;
2209  
2210  	stats_desc = calloc(header->num_desc, desc_size);
2211  	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2212  
2213  	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2214  	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2215  
2216  	return stats_desc;
2217  }
2218  
2219  /*
2220   * Read stat data for a particular stat
2221   *
2222   * Input Args:
2223   *   stats_fd - the file descriptor for the binary stats file from which to read
2224   *   header - the binary stats metadata header corresponding to the given FD
2225   *   desc - the binary stat metadata for the particular stat to be read
2226   *   max_elements - the maximum number of 8-byte values to read into data
2227   *
2228   * Output Args:
2229   *   data - the buffer into which stat data should be read
2230   *
2231   * Read the data values of a specified stat from the binary stats interface.
2232   */
2233  void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2234  		    struct kvm_stats_desc *desc, uint64_t *data,
2235  		    size_t max_elements)
2236  {
2237  	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2238  	size_t size = nr_elements * sizeof(*data);
2239  	ssize_t ret;
2240  
2241  	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2242  	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2243  
2244  	ret = pread(stats_fd, data, size,
2245  		    header->data_offset + desc->offset);
2246  
2247  	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2248  		    desc->name, errno, strerror(errno));
2249  	TEST_ASSERT(ret == size,
2250  		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2251  		    desc->name, size, ret);
2252  }
2253  
2254  /*
2255   * Read the data of the named stat
2256   *
2257   * Input Args:
2258   *   vm - the VM for which the stat should be read
2259   *   stat_name - the name of the stat to read
2260   *   max_elements - the maximum number of 8-byte values to read into data
2261   *
2262   * Output Args:
2263   *   data - the buffer into which stat data should be read
2264   *
2265   * Read the data values of a specified stat from the binary stats interface.
2266   */
2267  void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2268  		   size_t max_elements)
2269  {
2270  	struct kvm_stats_desc *desc;
2271  	size_t size_desc;
2272  	int i;
2273  
2274  	if (!vm->stats_fd) {
2275  		vm->stats_fd = vm_get_stats_fd(vm);
2276  		read_stats_header(vm->stats_fd, &vm->stats_header);
2277  		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2278  							&vm->stats_header);
2279  	}
2280  
2281  	size_desc = get_stats_descriptor_size(&vm->stats_header);
2282  
2283  	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2284  		desc = (void *)vm->stats_desc + (i * size_desc);
2285  
2286  		if (strcmp(desc->name, stat_name))
2287  			continue;
2288  
2289  		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2290  			       data, max_elements);
2291  
2292  		break;
2293  	}
2294  }
2295  
2296  __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2297  {
2298  }
2299  
2300  __weak void kvm_selftest_arch_init(void)
2301  {
2302  }
2303  
2304  void __attribute((constructor)) kvm_selftest_init(void)
2305  {
2306  	/* Tell stdout not to buffer its content. */
2307  	setbuf(stdout, NULL);
2308  
2309  	kvm_selftest_arch_init();
2310  }
2311  
2312  bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2313  {
2314  	sparsebit_idx_t pg = 0;
2315  	struct userspace_mem_region *region;
2316  
2317  	if (!vm_arch_has_protected_memory(vm))
2318  		return false;
2319  
2320  	region = userspace_mem_region_find(vm, paddr, paddr);
2321  	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2322  
2323  	pg = paddr >> vm->page_shift;
2324  	return sparsebit_is_set(region->protected_phy_pages, pg);
2325  }
2326