1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "processor.h" 12 13 #include <assert.h> 14 #include <sched.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 int open_path_or_exit(const char *path, int flags) 26 { 27 int fd; 28 29 fd = open(path, flags); 30 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno)); 31 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path); 32 33 return fd; 34 } 35 36 /* 37 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 38 * 39 * Input Args: 40 * flags - The flags to pass when opening KVM_DEV_PATH. 41 * 42 * Return: 43 * The opened file descriptor of /dev/kvm. 44 */ 45 static int _open_kvm_dev_path_or_exit(int flags) 46 { 47 return open_path_or_exit(KVM_DEV_PATH, flags); 48 } 49 50 int open_kvm_dev_path_or_exit(void) 51 { 52 return _open_kvm_dev_path_or_exit(O_RDONLY); 53 } 54 55 static bool get_module_param_bool(const char *module_name, const char *param) 56 { 57 const int path_size = 128; 58 char path[path_size]; 59 char value; 60 ssize_t r; 61 int fd; 62 63 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 64 module_name, param); 65 TEST_ASSERT(r < path_size, 66 "Failed to construct sysfs path in %d bytes.", path_size); 67 68 fd = open_path_or_exit(path, O_RDONLY); 69 70 r = read(fd, &value, 1); 71 TEST_ASSERT(r == 1, "read(%s) failed", path); 72 73 r = close(fd); 74 TEST_ASSERT(!r, "close(%s) failed", path); 75 76 if (value == 'Y') 77 return true; 78 else if (value == 'N') 79 return false; 80 81 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 82 } 83 84 bool get_kvm_param_bool(const char *param) 85 { 86 return get_module_param_bool("kvm", param); 87 } 88 89 bool get_kvm_intel_param_bool(const char *param) 90 { 91 return get_module_param_bool("kvm_intel", param); 92 } 93 94 bool get_kvm_amd_param_bool(const char *param) 95 { 96 return get_module_param_bool("kvm_amd", param); 97 } 98 99 /* 100 * Capability 101 * 102 * Input Args: 103 * cap - Capability 104 * 105 * Output Args: None 106 * 107 * Return: 108 * On success, the Value corresponding to the capability (KVM_CAP_*) 109 * specified by the value of cap. On failure a TEST_ASSERT failure 110 * is produced. 111 * 112 * Looks up and returns the value corresponding to the capability 113 * (KVM_CAP_*) given by cap. 114 */ 115 unsigned int kvm_check_cap(long cap) 116 { 117 int ret; 118 int kvm_fd; 119 120 kvm_fd = open_kvm_dev_path_or_exit(); 121 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 122 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 123 124 close(kvm_fd); 125 126 return (unsigned int)ret; 127 } 128 129 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 130 { 131 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 132 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 133 else 134 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 135 vm->dirty_ring_size = ring_size; 136 } 137 138 static void vm_open(struct kvm_vm *vm) 139 { 140 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 141 142 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 143 144 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 145 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 146 } 147 148 const char *vm_guest_mode_string(uint32_t i) 149 { 150 static const char * const strings[] = { 151 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 152 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 153 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 154 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 155 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 156 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 157 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 158 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 159 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 160 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 161 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 162 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 163 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 164 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 165 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 166 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 167 }; 168 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 169 "Missing new mode strings?"); 170 171 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 172 173 return strings[i]; 174 } 175 176 const struct vm_guest_mode_params vm_guest_mode_params[] = { 177 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 178 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 179 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 180 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 181 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 182 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 183 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 184 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 185 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 186 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 187 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 188 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 189 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 190 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 191 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 192 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 193 }; 194 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 195 "Missing new mode params?"); 196 197 /* 198 * Initializes vm->vpages_valid to match the canonical VA space of the 199 * architecture. 200 * 201 * The default implementation is valid for architectures which split the 202 * range addressed by a single page table into a low and high region 203 * based on the MSB of the VA. On architectures with this behavior 204 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 205 */ 206 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 207 { 208 sparsebit_set_num(vm->vpages_valid, 209 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 210 sparsebit_set_num(vm->vpages_valid, 211 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 212 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 213 } 214 215 struct kvm_vm *____vm_create(struct vm_shape shape) 216 { 217 struct kvm_vm *vm; 218 219 vm = calloc(1, sizeof(*vm)); 220 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 221 222 INIT_LIST_HEAD(&vm->vcpus); 223 vm->regions.gpa_tree = RB_ROOT; 224 vm->regions.hva_tree = RB_ROOT; 225 hash_init(vm->regions.slot_hash); 226 227 vm->mode = shape.mode; 228 vm->type = shape.type; 229 230 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 231 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 232 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 233 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 234 235 /* Setup mode specific traits. */ 236 switch (vm->mode) { 237 case VM_MODE_P52V48_4K: 238 vm->pgtable_levels = 4; 239 break; 240 case VM_MODE_P52V48_64K: 241 vm->pgtable_levels = 3; 242 break; 243 case VM_MODE_P48V48_4K: 244 vm->pgtable_levels = 4; 245 break; 246 case VM_MODE_P48V48_64K: 247 vm->pgtable_levels = 3; 248 break; 249 case VM_MODE_P40V48_4K: 250 case VM_MODE_P36V48_4K: 251 vm->pgtable_levels = 4; 252 break; 253 case VM_MODE_P40V48_64K: 254 case VM_MODE_P36V48_64K: 255 vm->pgtable_levels = 3; 256 break; 257 case VM_MODE_P52V48_16K: 258 case VM_MODE_P48V48_16K: 259 case VM_MODE_P40V48_16K: 260 case VM_MODE_P36V48_16K: 261 vm->pgtable_levels = 4; 262 break; 263 case VM_MODE_P36V47_16K: 264 vm->pgtable_levels = 3; 265 break; 266 case VM_MODE_PXXV48_4K: 267 #ifdef __x86_64__ 268 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 269 /* 270 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 271 * it doesn't take effect unless a CR4.LA57 is set, which it 272 * isn't for this mode (48-bit virtual address space). 273 */ 274 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 275 "Linear address width (%d bits) not supported", 276 vm->va_bits); 277 pr_debug("Guest physical address width detected: %d\n", 278 vm->pa_bits); 279 vm->pgtable_levels = 4; 280 vm->va_bits = 48; 281 #else 282 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 283 #endif 284 break; 285 case VM_MODE_P47V64_4K: 286 vm->pgtable_levels = 5; 287 break; 288 case VM_MODE_P44V64_4K: 289 vm->pgtable_levels = 5; 290 break; 291 default: 292 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 293 } 294 295 #ifdef __aarch64__ 296 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 297 if (vm->pa_bits != 40) 298 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 299 #endif 300 301 vm_open(vm); 302 303 /* Limit to VA-bit canonical virtual addresses. */ 304 vm->vpages_valid = sparsebit_alloc(); 305 vm_vaddr_populate_bitmap(vm); 306 307 /* Limit physical addresses to PA-bits. */ 308 vm->max_gfn = vm_compute_max_gfn(vm); 309 310 /* Allocate and setup memory for guest. */ 311 vm->vpages_mapped = sparsebit_alloc(); 312 313 return vm; 314 } 315 316 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 317 uint32_t nr_runnable_vcpus, 318 uint64_t extra_mem_pages) 319 { 320 uint64_t page_size = vm_guest_mode_params[mode].page_size; 321 uint64_t nr_pages; 322 323 TEST_ASSERT(nr_runnable_vcpus, 324 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 325 326 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 327 "nr_vcpus = %d too large for host, max-vcpus = %d", 328 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 329 330 /* 331 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 332 * test code and other per-VM assets that will be loaded into memslot0. 333 */ 334 nr_pages = 512; 335 336 /* Account for the per-vCPU stacks on behalf of the test. */ 337 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 338 339 /* 340 * Account for the number of pages needed for the page tables. The 341 * maximum page table size for a memory region will be when the 342 * smallest page size is used. Considering each page contains x page 343 * table descriptors, the total extra size for page tables (for extra 344 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 345 * than N/x*2. 346 */ 347 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 348 349 /* Account for the number of pages needed by ucall. */ 350 nr_pages += ucall_nr_pages_required(page_size); 351 352 return vm_adjust_num_guest_pages(mode, nr_pages); 353 } 354 355 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 356 uint64_t nr_extra_pages) 357 { 358 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 359 nr_extra_pages); 360 struct userspace_mem_region *slot0; 361 struct kvm_vm *vm; 362 int i; 363 364 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 365 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 366 367 vm = ____vm_create(shape); 368 369 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0); 370 for (i = 0; i < NR_MEM_REGIONS; i++) 371 vm->memslots[i] = 0; 372 373 kvm_vm_elf_load(vm, program_invocation_name); 374 375 /* 376 * TODO: Add proper defines to protect the library's memslots, and then 377 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 378 * read-only memslots as MMIO, and creating a read-only memslot for the 379 * MMIO region would prevent silently clobbering the MMIO region. 380 */ 381 slot0 = memslot2region(vm, 0); 382 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 383 384 kvm_arch_vm_post_create(vm); 385 386 return vm; 387 } 388 389 /* 390 * VM Create with customized parameters 391 * 392 * Input Args: 393 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 394 * nr_vcpus - VCPU count 395 * extra_mem_pages - Non-slot0 physical memory total size 396 * guest_code - Guest entry point 397 * vcpuids - VCPU IDs 398 * 399 * Output Args: None 400 * 401 * Return: 402 * Pointer to opaque structure that describes the created VM. 403 * 404 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 405 * extra_mem_pages is only used to calculate the maximum page table size, 406 * no real memory allocation for non-slot0 memory in this function. 407 */ 408 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 409 uint64_t extra_mem_pages, 410 void *guest_code, struct kvm_vcpu *vcpus[]) 411 { 412 struct kvm_vm *vm; 413 int i; 414 415 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 416 417 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 418 419 for (i = 0; i < nr_vcpus; ++i) 420 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 421 422 return vm; 423 } 424 425 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 426 struct kvm_vcpu **vcpu, 427 uint64_t extra_mem_pages, 428 void *guest_code) 429 { 430 struct kvm_vcpu *vcpus[1]; 431 struct kvm_vm *vm; 432 433 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 434 435 *vcpu = vcpus[0]; 436 return vm; 437 } 438 439 /* 440 * VM Restart 441 * 442 * Input Args: 443 * vm - VM that has been released before 444 * 445 * Output Args: None 446 * 447 * Reopens the file descriptors associated to the VM and reinstates the 448 * global state, such as the irqchip and the memory regions that are mapped 449 * into the guest. 450 */ 451 void kvm_vm_restart(struct kvm_vm *vmp) 452 { 453 int ctr; 454 struct userspace_mem_region *region; 455 456 vm_open(vmp); 457 if (vmp->has_irqchip) 458 vm_create_irqchip(vmp); 459 460 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 461 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 462 463 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 464 " rc: %i errno: %i\n" 465 " slot: %u flags: 0x%x\n" 466 " guest_phys_addr: 0x%llx size: 0x%llx", 467 ret, errno, region->region.slot, 468 region->region.flags, 469 region->region.guest_phys_addr, 470 region->region.memory_size); 471 } 472 } 473 474 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 475 uint32_t vcpu_id) 476 { 477 return __vm_vcpu_add(vm, vcpu_id); 478 } 479 480 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 481 { 482 kvm_vm_restart(vm); 483 484 return vm_vcpu_recreate(vm, 0); 485 } 486 487 void kvm_pin_this_task_to_pcpu(uint32_t pcpu) 488 { 489 cpu_set_t mask; 490 int r; 491 492 CPU_ZERO(&mask); 493 CPU_SET(pcpu, &mask); 494 r = sched_setaffinity(0, sizeof(mask), &mask); 495 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu); 496 } 497 498 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 499 { 500 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 501 502 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 503 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 504 return pcpu; 505 } 506 507 void kvm_print_vcpu_pinning_help(void) 508 { 509 const char *name = program_invocation_name; 510 511 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 512 " values (target pCPU), one for each vCPU, plus an optional\n" 513 " entry for the main application task (specified via entry\n" 514 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 515 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 516 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 517 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 518 " %s -v 3 -c 22,23,24,50\n\n" 519 " To leave the application task unpinned, drop the final entry:\n\n" 520 " %s -v 3 -c 22,23,24\n\n" 521 " (default: no pinning)\n", name, name); 522 } 523 524 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 525 int nr_vcpus) 526 { 527 cpu_set_t allowed_mask; 528 char *cpu, *cpu_list; 529 char delim[2] = ","; 530 int i, r; 531 532 cpu_list = strdup(pcpus_string); 533 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 534 535 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 536 TEST_ASSERT(!r, "sched_getaffinity() failed"); 537 538 cpu = strtok(cpu_list, delim); 539 540 /* 1. Get all pcpus for vcpus. */ 541 for (i = 0; i < nr_vcpus; i++) { 542 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 543 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 544 cpu = strtok(NULL, delim); 545 } 546 547 /* 2. Check if the main worker needs to be pinned. */ 548 if (cpu) { 549 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); 550 cpu = strtok(NULL, delim); 551 } 552 553 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 554 free(cpu_list); 555 } 556 557 /* 558 * Userspace Memory Region Find 559 * 560 * Input Args: 561 * vm - Virtual Machine 562 * start - Starting VM physical address 563 * end - Ending VM physical address, inclusive. 564 * 565 * Output Args: None 566 * 567 * Return: 568 * Pointer to overlapping region, NULL if no such region. 569 * 570 * Searches for a region with any physical memory that overlaps with 571 * any portion of the guest physical addresses from start to end 572 * inclusive. If multiple overlapping regions exist, a pointer to any 573 * of the regions is returned. Null is returned only when no overlapping 574 * region exists. 575 */ 576 static struct userspace_mem_region * 577 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 578 { 579 struct rb_node *node; 580 581 for (node = vm->regions.gpa_tree.rb_node; node; ) { 582 struct userspace_mem_region *region = 583 container_of(node, struct userspace_mem_region, gpa_node); 584 uint64_t existing_start = region->region.guest_phys_addr; 585 uint64_t existing_end = region->region.guest_phys_addr 586 + region->region.memory_size - 1; 587 if (start <= existing_end && end >= existing_start) 588 return region; 589 590 if (start < existing_start) 591 node = node->rb_left; 592 else 593 node = node->rb_right; 594 } 595 596 return NULL; 597 } 598 599 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 600 { 601 602 } 603 604 /* 605 * VM VCPU Remove 606 * 607 * Input Args: 608 * vcpu - VCPU to remove 609 * 610 * Output Args: None 611 * 612 * Return: None, TEST_ASSERT failures for all error conditions 613 * 614 * Removes a vCPU from a VM and frees its resources. 615 */ 616 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 617 { 618 int ret; 619 620 if (vcpu->dirty_gfns) { 621 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 622 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 623 vcpu->dirty_gfns = NULL; 624 } 625 626 ret = munmap(vcpu->run, vcpu_mmap_sz()); 627 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 628 629 ret = close(vcpu->fd); 630 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 631 632 list_del(&vcpu->list); 633 634 vcpu_arch_free(vcpu); 635 free(vcpu); 636 } 637 638 void kvm_vm_release(struct kvm_vm *vmp) 639 { 640 struct kvm_vcpu *vcpu, *tmp; 641 int ret; 642 643 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 644 vm_vcpu_rm(vmp, vcpu); 645 646 ret = close(vmp->fd); 647 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 648 649 ret = close(vmp->kvm_fd); 650 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 651 } 652 653 static void __vm_mem_region_delete(struct kvm_vm *vm, 654 struct userspace_mem_region *region, 655 bool unlink) 656 { 657 int ret; 658 659 if (unlink) { 660 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 661 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 662 hash_del(®ion->slot_node); 663 } 664 665 region->region.memory_size = 0; 666 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 667 668 sparsebit_free(®ion->unused_phy_pages); 669 ret = munmap(region->mmap_start, region->mmap_size); 670 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 671 if (region->fd >= 0) { 672 /* There's an extra map when using shared memory. */ 673 ret = munmap(region->mmap_alias, region->mmap_size); 674 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 675 close(region->fd); 676 } 677 if (region->region.guest_memfd >= 0) 678 close(region->region.guest_memfd); 679 680 free(region); 681 } 682 683 /* 684 * Destroys and frees the VM pointed to by vmp. 685 */ 686 void kvm_vm_free(struct kvm_vm *vmp) 687 { 688 int ctr; 689 struct hlist_node *node; 690 struct userspace_mem_region *region; 691 692 if (vmp == NULL) 693 return; 694 695 /* Free cached stats metadata and close FD */ 696 if (vmp->stats_fd) { 697 free(vmp->stats_desc); 698 close(vmp->stats_fd); 699 } 700 701 /* Free userspace_mem_regions. */ 702 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 703 __vm_mem_region_delete(vmp, region, false); 704 705 /* Free sparsebit arrays. */ 706 sparsebit_free(&vmp->vpages_valid); 707 sparsebit_free(&vmp->vpages_mapped); 708 709 kvm_vm_release(vmp); 710 711 /* Free the structure describing the VM. */ 712 free(vmp); 713 } 714 715 int kvm_memfd_alloc(size_t size, bool hugepages) 716 { 717 int memfd_flags = MFD_CLOEXEC; 718 int fd, r; 719 720 if (hugepages) 721 memfd_flags |= MFD_HUGETLB; 722 723 fd = memfd_create("kvm_selftest", memfd_flags); 724 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 725 726 r = ftruncate(fd, size); 727 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 728 729 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 730 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 731 732 return fd; 733 } 734 735 /* 736 * Memory Compare, host virtual to guest virtual 737 * 738 * Input Args: 739 * hva - Starting host virtual address 740 * vm - Virtual Machine 741 * gva - Starting guest virtual address 742 * len - number of bytes to compare 743 * 744 * Output Args: None 745 * 746 * Input/Output Args: None 747 * 748 * Return: 749 * Returns 0 if the bytes starting at hva for a length of len 750 * are equal the guest virtual bytes starting at gva. Returns 751 * a value < 0, if bytes at hva are less than those at gva. 752 * Otherwise a value > 0 is returned. 753 * 754 * Compares the bytes starting at the host virtual address hva, for 755 * a length of len, to the guest bytes starting at the guest virtual 756 * address given by gva. 757 */ 758 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 759 { 760 size_t amt; 761 762 /* 763 * Compare a batch of bytes until either a match is found 764 * or all the bytes have been compared. 765 */ 766 for (uintptr_t offset = 0; offset < len; offset += amt) { 767 uintptr_t ptr1 = (uintptr_t)hva + offset; 768 769 /* 770 * Determine host address for guest virtual address 771 * at offset. 772 */ 773 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 774 775 /* 776 * Determine amount to compare on this pass. 777 * Don't allow the comparsion to cross a page boundary. 778 */ 779 amt = len - offset; 780 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 781 amt = vm->page_size - (ptr1 % vm->page_size); 782 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 783 amt = vm->page_size - (ptr2 % vm->page_size); 784 785 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 786 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 787 788 /* 789 * Perform the comparison. If there is a difference 790 * return that result to the caller, otherwise need 791 * to continue on looking for a mismatch. 792 */ 793 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 794 if (ret != 0) 795 return ret; 796 } 797 798 /* 799 * No mismatch found. Let the caller know the two memory 800 * areas are equal. 801 */ 802 return 0; 803 } 804 805 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 806 struct userspace_mem_region *region) 807 { 808 struct rb_node **cur, *parent; 809 810 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 811 struct userspace_mem_region *cregion; 812 813 cregion = container_of(*cur, typeof(*cregion), gpa_node); 814 parent = *cur; 815 if (region->region.guest_phys_addr < 816 cregion->region.guest_phys_addr) 817 cur = &(*cur)->rb_left; 818 else { 819 TEST_ASSERT(region->region.guest_phys_addr != 820 cregion->region.guest_phys_addr, 821 "Duplicate GPA in region tree"); 822 823 cur = &(*cur)->rb_right; 824 } 825 } 826 827 rb_link_node(®ion->gpa_node, parent, cur); 828 rb_insert_color(®ion->gpa_node, gpa_tree); 829 } 830 831 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 832 struct userspace_mem_region *region) 833 { 834 struct rb_node **cur, *parent; 835 836 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 837 struct userspace_mem_region *cregion; 838 839 cregion = container_of(*cur, typeof(*cregion), hva_node); 840 parent = *cur; 841 if (region->host_mem < cregion->host_mem) 842 cur = &(*cur)->rb_left; 843 else { 844 TEST_ASSERT(region->host_mem != 845 cregion->host_mem, 846 "Duplicate HVA in region tree"); 847 848 cur = &(*cur)->rb_right; 849 } 850 } 851 852 rb_link_node(®ion->hva_node, parent, cur); 853 rb_insert_color(®ion->hva_node, hva_tree); 854 } 855 856 857 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 858 uint64_t gpa, uint64_t size, void *hva) 859 { 860 struct kvm_userspace_memory_region region = { 861 .slot = slot, 862 .flags = flags, 863 .guest_phys_addr = gpa, 864 .memory_size = size, 865 .userspace_addr = (uintptr_t)hva, 866 }; 867 868 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 869 } 870 871 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 872 uint64_t gpa, uint64_t size, void *hva) 873 { 874 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 875 876 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 877 errno, strerror(errno)); 878 } 879 880 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 881 uint64_t gpa, uint64_t size, void *hva, 882 uint32_t guest_memfd, uint64_t guest_memfd_offset) 883 { 884 struct kvm_userspace_memory_region2 region = { 885 .slot = slot, 886 .flags = flags, 887 .guest_phys_addr = gpa, 888 .memory_size = size, 889 .userspace_addr = (uintptr_t)hva, 890 .guest_memfd = guest_memfd, 891 .guest_memfd_offset = guest_memfd_offset, 892 }; 893 894 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 895 } 896 897 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 898 uint64_t gpa, uint64_t size, void *hva, 899 uint32_t guest_memfd, uint64_t guest_memfd_offset) 900 { 901 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 902 guest_memfd, guest_memfd_offset); 903 904 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 905 errno, strerror(errno)); 906 } 907 908 909 /* FIXME: This thing needs to be ripped apart and rewritten. */ 910 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 911 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 912 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 913 { 914 int ret; 915 struct userspace_mem_region *region; 916 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 917 size_t mem_size = npages * vm->page_size; 918 size_t alignment; 919 920 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 921 "Number of guest pages is not compatible with the host. " 922 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 923 924 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 925 "address not on a page boundary.\n" 926 " guest_paddr: 0x%lx vm->page_size: 0x%x", 927 guest_paddr, vm->page_size); 928 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 929 <= vm->max_gfn, "Physical range beyond maximum " 930 "supported physical address,\n" 931 " guest_paddr: 0x%lx npages: 0x%lx\n" 932 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 933 guest_paddr, npages, vm->max_gfn, vm->page_size); 934 935 /* 936 * Confirm a mem region with an overlapping address doesn't 937 * already exist. 938 */ 939 region = (struct userspace_mem_region *) userspace_mem_region_find( 940 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 941 if (region != NULL) 942 TEST_FAIL("overlapping userspace_mem_region already " 943 "exists\n" 944 " requested guest_paddr: 0x%lx npages: 0x%lx " 945 "page_size: 0x%x\n" 946 " existing guest_paddr: 0x%lx size: 0x%lx", 947 guest_paddr, npages, vm->page_size, 948 (uint64_t) region->region.guest_phys_addr, 949 (uint64_t) region->region.memory_size); 950 951 /* Confirm no region with the requested slot already exists. */ 952 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 953 slot) { 954 if (region->region.slot != slot) 955 continue; 956 957 TEST_FAIL("A mem region with the requested slot " 958 "already exists.\n" 959 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 960 " existing slot: %u paddr: 0x%lx size: 0x%lx", 961 slot, guest_paddr, npages, 962 region->region.slot, 963 (uint64_t) region->region.guest_phys_addr, 964 (uint64_t) region->region.memory_size); 965 } 966 967 /* Allocate and initialize new mem region structure. */ 968 region = calloc(1, sizeof(*region)); 969 TEST_ASSERT(region != NULL, "Insufficient Memory"); 970 region->mmap_size = mem_size; 971 972 #ifdef __s390x__ 973 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 974 alignment = 0x100000; 975 #else 976 alignment = 1; 977 #endif 978 979 /* 980 * When using THP mmap is not guaranteed to returned a hugepage aligned 981 * address so we have to pad the mmap. Padding is not needed for HugeTLB 982 * because mmap will always return an address aligned to the HugeTLB 983 * page size. 984 */ 985 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 986 alignment = max(backing_src_pagesz, alignment); 987 988 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 989 990 /* Add enough memory to align up if necessary */ 991 if (alignment > 1) 992 region->mmap_size += alignment; 993 994 region->fd = -1; 995 if (backing_src_is_shared(src_type)) 996 region->fd = kvm_memfd_alloc(region->mmap_size, 997 src_type == VM_MEM_SRC_SHARED_HUGETLB); 998 999 region->mmap_start = mmap(NULL, region->mmap_size, 1000 PROT_READ | PROT_WRITE, 1001 vm_mem_backing_src_alias(src_type)->flag, 1002 region->fd, 0); 1003 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1004 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1005 1006 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1007 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1008 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1009 region->mmap_start, backing_src_pagesz); 1010 1011 /* Align host address */ 1012 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1013 1014 /* As needed perform madvise */ 1015 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1016 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1017 ret = madvise(region->host_mem, mem_size, 1018 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1019 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1020 region->host_mem, mem_size, 1021 vm_mem_backing_src_alias(src_type)->name); 1022 } 1023 1024 region->backing_src_type = src_type; 1025 1026 if (flags & KVM_MEM_GUEST_MEMFD) { 1027 if (guest_memfd < 0) { 1028 uint32_t guest_memfd_flags = 0; 1029 TEST_ASSERT(!guest_memfd_offset, 1030 "Offset must be zero when creating new guest_memfd"); 1031 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1032 } else { 1033 /* 1034 * Install a unique fd for each memslot so that the fd 1035 * can be closed when the region is deleted without 1036 * needing to track if the fd is owned by the framework 1037 * or by the caller. 1038 */ 1039 guest_memfd = dup(guest_memfd); 1040 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1041 } 1042 1043 region->region.guest_memfd = guest_memfd; 1044 region->region.guest_memfd_offset = guest_memfd_offset; 1045 } else { 1046 region->region.guest_memfd = -1; 1047 } 1048 1049 region->unused_phy_pages = sparsebit_alloc(); 1050 sparsebit_set_num(region->unused_phy_pages, 1051 guest_paddr >> vm->page_shift, npages); 1052 region->region.slot = slot; 1053 region->region.flags = flags; 1054 region->region.guest_phys_addr = guest_paddr; 1055 region->region.memory_size = npages * vm->page_size; 1056 region->region.userspace_addr = (uintptr_t) region->host_mem; 1057 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1058 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1059 " rc: %i errno: %i\n" 1060 " slot: %u flags: 0x%x\n" 1061 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1062 ret, errno, slot, flags, 1063 guest_paddr, (uint64_t) region->region.memory_size, 1064 region->region.guest_memfd); 1065 1066 /* Add to quick lookup data structures */ 1067 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1068 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1069 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1070 1071 /* If shared memory, create an alias. */ 1072 if (region->fd >= 0) { 1073 region->mmap_alias = mmap(NULL, region->mmap_size, 1074 PROT_READ | PROT_WRITE, 1075 vm_mem_backing_src_alias(src_type)->flag, 1076 region->fd, 0); 1077 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1078 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1079 1080 /* Align host alias address */ 1081 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1082 } 1083 } 1084 1085 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1086 enum vm_mem_backing_src_type src_type, 1087 uint64_t guest_paddr, uint32_t slot, 1088 uint64_t npages, uint32_t flags) 1089 { 1090 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1091 } 1092 1093 /* 1094 * Memslot to region 1095 * 1096 * Input Args: 1097 * vm - Virtual Machine 1098 * memslot - KVM memory slot ID 1099 * 1100 * Output Args: None 1101 * 1102 * Return: 1103 * Pointer to memory region structure that describe memory region 1104 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1105 * on error (e.g. currently no memory region using memslot as a KVM 1106 * memory slot ID). 1107 */ 1108 struct userspace_mem_region * 1109 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1110 { 1111 struct userspace_mem_region *region; 1112 1113 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1114 memslot) 1115 if (region->region.slot == memslot) 1116 return region; 1117 1118 fprintf(stderr, "No mem region with the requested slot found,\n" 1119 " requested slot: %u\n", memslot); 1120 fputs("---- vm dump ----\n", stderr); 1121 vm_dump(stderr, vm, 2); 1122 TEST_FAIL("Mem region not found"); 1123 return NULL; 1124 } 1125 1126 /* 1127 * VM Memory Region Flags Set 1128 * 1129 * Input Args: 1130 * vm - Virtual Machine 1131 * flags - Starting guest physical address 1132 * 1133 * Output Args: None 1134 * 1135 * Return: None 1136 * 1137 * Sets the flags of the memory region specified by the value of slot, 1138 * to the values given by flags. 1139 */ 1140 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1141 { 1142 int ret; 1143 struct userspace_mem_region *region; 1144 1145 region = memslot2region(vm, slot); 1146 1147 region->region.flags = flags; 1148 1149 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1150 1151 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1152 " rc: %i errno: %i slot: %u flags: 0x%x", 1153 ret, errno, slot, flags); 1154 } 1155 1156 /* 1157 * VM Memory Region Move 1158 * 1159 * Input Args: 1160 * vm - Virtual Machine 1161 * slot - Slot of the memory region to move 1162 * new_gpa - Starting guest physical address 1163 * 1164 * Output Args: None 1165 * 1166 * Return: None 1167 * 1168 * Change the gpa of a memory region. 1169 */ 1170 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1171 { 1172 struct userspace_mem_region *region; 1173 int ret; 1174 1175 region = memslot2region(vm, slot); 1176 1177 region->region.guest_phys_addr = new_gpa; 1178 1179 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1180 1181 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1182 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1183 ret, errno, slot, new_gpa); 1184 } 1185 1186 /* 1187 * VM Memory Region Delete 1188 * 1189 * Input Args: 1190 * vm - Virtual Machine 1191 * slot - Slot of the memory region to delete 1192 * 1193 * Output Args: None 1194 * 1195 * Return: None 1196 * 1197 * Delete a memory region. 1198 */ 1199 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1200 { 1201 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1202 } 1203 1204 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1205 bool punch_hole) 1206 { 1207 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1208 struct userspace_mem_region *region; 1209 uint64_t end = base + size; 1210 uint64_t gpa, len; 1211 off_t fd_offset; 1212 int ret; 1213 1214 for (gpa = base; gpa < end; gpa += len) { 1215 uint64_t offset; 1216 1217 region = userspace_mem_region_find(vm, gpa, gpa); 1218 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1219 "Private memory region not found for GPA 0x%lx", gpa); 1220 1221 offset = gpa - region->region.guest_phys_addr; 1222 fd_offset = region->region.guest_memfd_offset + offset; 1223 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1224 1225 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1226 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1227 punch_hole ? "punch hole" : "allocate", gpa, len, 1228 region->region.guest_memfd, mode, fd_offset); 1229 } 1230 } 1231 1232 /* Returns the size of a vCPU's kvm_run structure. */ 1233 static int vcpu_mmap_sz(void) 1234 { 1235 int dev_fd, ret; 1236 1237 dev_fd = open_kvm_dev_path_or_exit(); 1238 1239 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1240 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1241 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1242 1243 close(dev_fd); 1244 1245 return ret; 1246 } 1247 1248 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1249 { 1250 struct kvm_vcpu *vcpu; 1251 1252 list_for_each_entry(vcpu, &vm->vcpus, list) { 1253 if (vcpu->id == vcpu_id) 1254 return true; 1255 } 1256 1257 return false; 1258 } 1259 1260 /* 1261 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1262 * No additional vCPU setup is done. Returns the vCPU. 1263 */ 1264 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1265 { 1266 struct kvm_vcpu *vcpu; 1267 1268 /* Confirm a vcpu with the specified id doesn't already exist. */ 1269 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1270 1271 /* Allocate and initialize new vcpu structure. */ 1272 vcpu = calloc(1, sizeof(*vcpu)); 1273 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1274 1275 vcpu->vm = vm; 1276 vcpu->id = vcpu_id; 1277 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1278 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1279 1280 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1281 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1282 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1283 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1284 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1285 TEST_ASSERT(vcpu->run != MAP_FAILED, 1286 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1287 1288 /* Add to linked-list of VCPUs. */ 1289 list_add(&vcpu->list, &vm->vcpus); 1290 1291 return vcpu; 1292 } 1293 1294 /* 1295 * VM Virtual Address Unused Gap 1296 * 1297 * Input Args: 1298 * vm - Virtual Machine 1299 * sz - Size (bytes) 1300 * vaddr_min - Minimum Virtual Address 1301 * 1302 * Output Args: None 1303 * 1304 * Return: 1305 * Lowest virtual address at or below vaddr_min, with at least 1306 * sz unused bytes. TEST_ASSERT failure if no area of at least 1307 * size sz is available. 1308 * 1309 * Within the VM specified by vm, locates the lowest starting virtual 1310 * address >= vaddr_min, that has at least sz unallocated bytes. A 1311 * TEST_ASSERT failure occurs for invalid input or no area of at least 1312 * sz unallocated bytes >= vaddr_min is available. 1313 */ 1314 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1315 vm_vaddr_t vaddr_min) 1316 { 1317 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1318 1319 /* Determine lowest permitted virtual page index. */ 1320 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1321 if ((pgidx_start * vm->page_size) < vaddr_min) 1322 goto no_va_found; 1323 1324 /* Loop over section with enough valid virtual page indexes. */ 1325 if (!sparsebit_is_set_num(vm->vpages_valid, 1326 pgidx_start, pages)) 1327 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1328 pgidx_start, pages); 1329 do { 1330 /* 1331 * Are there enough unused virtual pages available at 1332 * the currently proposed starting virtual page index. 1333 * If not, adjust proposed starting index to next 1334 * possible. 1335 */ 1336 if (sparsebit_is_clear_num(vm->vpages_mapped, 1337 pgidx_start, pages)) 1338 goto va_found; 1339 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1340 pgidx_start, pages); 1341 if (pgidx_start == 0) 1342 goto no_va_found; 1343 1344 /* 1345 * If needed, adjust proposed starting virtual address, 1346 * to next range of valid virtual addresses. 1347 */ 1348 if (!sparsebit_is_set_num(vm->vpages_valid, 1349 pgidx_start, pages)) { 1350 pgidx_start = sparsebit_next_set_num( 1351 vm->vpages_valid, pgidx_start, pages); 1352 if (pgidx_start == 0) 1353 goto no_va_found; 1354 } 1355 } while (pgidx_start != 0); 1356 1357 no_va_found: 1358 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1359 1360 /* NOT REACHED */ 1361 return -1; 1362 1363 va_found: 1364 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1365 pgidx_start, pages), 1366 "Unexpected, invalid virtual page index range,\n" 1367 " pgidx_start: 0x%lx\n" 1368 " pages: 0x%lx", 1369 pgidx_start, pages); 1370 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1371 pgidx_start, pages), 1372 "Unexpected, pages already mapped,\n" 1373 " pgidx_start: 0x%lx\n" 1374 " pages: 0x%lx", 1375 pgidx_start, pages); 1376 1377 return pgidx_start * vm->page_size; 1378 } 1379 1380 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1381 enum kvm_mem_region_type type) 1382 { 1383 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1384 1385 virt_pgd_alloc(vm); 1386 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1387 KVM_UTIL_MIN_PFN * vm->page_size, 1388 vm->memslots[type]); 1389 1390 /* 1391 * Find an unused range of virtual page addresses of at least 1392 * pages in length. 1393 */ 1394 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1395 1396 /* Map the virtual pages. */ 1397 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1398 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1399 1400 virt_pg_map(vm, vaddr, paddr); 1401 1402 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1403 } 1404 1405 return vaddr_start; 1406 } 1407 1408 /* 1409 * VM Virtual Address Allocate 1410 * 1411 * Input Args: 1412 * vm - Virtual Machine 1413 * sz - Size in bytes 1414 * vaddr_min - Minimum starting virtual address 1415 * 1416 * Output Args: None 1417 * 1418 * Return: 1419 * Starting guest virtual address 1420 * 1421 * Allocates at least sz bytes within the virtual address space of the vm 1422 * given by vm. The allocated bytes are mapped to a virtual address >= 1423 * the address given by vaddr_min. Note that each allocation uses a 1424 * a unique set of pages, with the minimum real allocation being at least 1425 * a page. The allocated physical space comes from the TEST_DATA memory region. 1426 */ 1427 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1428 { 1429 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1430 } 1431 1432 /* 1433 * VM Virtual Address Allocate Pages 1434 * 1435 * Input Args: 1436 * vm - Virtual Machine 1437 * 1438 * Output Args: None 1439 * 1440 * Return: 1441 * Starting guest virtual address 1442 * 1443 * Allocates at least N system pages worth of bytes within the virtual address 1444 * space of the vm. 1445 */ 1446 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1447 { 1448 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1449 } 1450 1451 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1452 { 1453 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1454 } 1455 1456 /* 1457 * VM Virtual Address Allocate Page 1458 * 1459 * Input Args: 1460 * vm - Virtual Machine 1461 * 1462 * Output Args: None 1463 * 1464 * Return: 1465 * Starting guest virtual address 1466 * 1467 * Allocates at least one system page worth of bytes within the virtual address 1468 * space of the vm. 1469 */ 1470 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1471 { 1472 return vm_vaddr_alloc_pages(vm, 1); 1473 } 1474 1475 /* 1476 * Map a range of VM virtual address to the VM's physical address 1477 * 1478 * Input Args: 1479 * vm - Virtual Machine 1480 * vaddr - Virtuall address to map 1481 * paddr - VM Physical Address 1482 * npages - The number of pages to map 1483 * 1484 * Output Args: None 1485 * 1486 * Return: None 1487 * 1488 * Within the VM given by @vm, creates a virtual translation for 1489 * @npages starting at @vaddr to the page range starting at @paddr. 1490 */ 1491 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1492 unsigned int npages) 1493 { 1494 size_t page_size = vm->page_size; 1495 size_t size = npages * page_size; 1496 1497 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1498 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1499 1500 while (npages--) { 1501 virt_pg_map(vm, vaddr, paddr); 1502 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1503 1504 vaddr += page_size; 1505 paddr += page_size; 1506 } 1507 } 1508 1509 /* 1510 * Address VM Physical to Host Virtual 1511 * 1512 * Input Args: 1513 * vm - Virtual Machine 1514 * gpa - VM physical address 1515 * 1516 * Output Args: None 1517 * 1518 * Return: 1519 * Equivalent host virtual address 1520 * 1521 * Locates the memory region containing the VM physical address given 1522 * by gpa, within the VM given by vm. When found, the host virtual 1523 * address providing the memory to the vm physical address is returned. 1524 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1525 */ 1526 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1527 { 1528 struct userspace_mem_region *region; 1529 1530 region = userspace_mem_region_find(vm, gpa, gpa); 1531 if (!region) { 1532 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1533 return NULL; 1534 } 1535 1536 return (void *)((uintptr_t)region->host_mem 1537 + (gpa - region->region.guest_phys_addr)); 1538 } 1539 1540 /* 1541 * Address Host Virtual to VM Physical 1542 * 1543 * Input Args: 1544 * vm - Virtual Machine 1545 * hva - Host virtual address 1546 * 1547 * Output Args: None 1548 * 1549 * Return: 1550 * Equivalent VM physical address 1551 * 1552 * Locates the memory region containing the host virtual address given 1553 * by hva, within the VM given by vm. When found, the equivalent 1554 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1555 * region containing hva exists. 1556 */ 1557 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1558 { 1559 struct rb_node *node; 1560 1561 for (node = vm->regions.hva_tree.rb_node; node; ) { 1562 struct userspace_mem_region *region = 1563 container_of(node, struct userspace_mem_region, hva_node); 1564 1565 if (hva >= region->host_mem) { 1566 if (hva <= (region->host_mem 1567 + region->region.memory_size - 1)) 1568 return (vm_paddr_t)((uintptr_t) 1569 region->region.guest_phys_addr 1570 + (hva - (uintptr_t)region->host_mem)); 1571 1572 node = node->rb_right; 1573 } else 1574 node = node->rb_left; 1575 } 1576 1577 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1578 return -1; 1579 } 1580 1581 /* 1582 * Address VM physical to Host Virtual *alias*. 1583 * 1584 * Input Args: 1585 * vm - Virtual Machine 1586 * gpa - VM physical address 1587 * 1588 * Output Args: None 1589 * 1590 * Return: 1591 * Equivalent address within the host virtual *alias* area, or NULL 1592 * (without failing the test) if the guest memory is not shared (so 1593 * no alias exists). 1594 * 1595 * Create a writable, shared virtual=>physical alias for the specific GPA. 1596 * The primary use case is to allow the host selftest to manipulate guest 1597 * memory without mapping said memory in the guest's address space. And, for 1598 * userfaultfd-based demand paging, to do so without triggering userfaults. 1599 */ 1600 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1601 { 1602 struct userspace_mem_region *region; 1603 uintptr_t offset; 1604 1605 region = userspace_mem_region_find(vm, gpa, gpa); 1606 if (!region) 1607 return NULL; 1608 1609 if (!region->host_alias) 1610 return NULL; 1611 1612 offset = gpa - region->region.guest_phys_addr; 1613 return (void *) ((uintptr_t) region->host_alias + offset); 1614 } 1615 1616 /* Create an interrupt controller chip for the specified VM. */ 1617 void vm_create_irqchip(struct kvm_vm *vm) 1618 { 1619 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1620 1621 vm->has_irqchip = true; 1622 } 1623 1624 int _vcpu_run(struct kvm_vcpu *vcpu) 1625 { 1626 int rc; 1627 1628 do { 1629 rc = __vcpu_run(vcpu); 1630 } while (rc == -1 && errno == EINTR); 1631 1632 assert_on_unhandled_exception(vcpu); 1633 1634 return rc; 1635 } 1636 1637 /* 1638 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1639 * Assert if the KVM returns an error (other than -EINTR). 1640 */ 1641 void vcpu_run(struct kvm_vcpu *vcpu) 1642 { 1643 int ret = _vcpu_run(vcpu); 1644 1645 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1646 } 1647 1648 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1649 { 1650 int ret; 1651 1652 vcpu->run->immediate_exit = 1; 1653 ret = __vcpu_run(vcpu); 1654 vcpu->run->immediate_exit = 0; 1655 1656 TEST_ASSERT(ret == -1 && errno == EINTR, 1657 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1658 ret, errno); 1659 } 1660 1661 /* 1662 * Get the list of guest registers which are supported for 1663 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1664 * it is the caller's responsibility to free the list. 1665 */ 1666 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1667 { 1668 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1669 int ret; 1670 1671 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1672 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1673 1674 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1675 reg_list->n = reg_list_n.n; 1676 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1677 return reg_list; 1678 } 1679 1680 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1681 { 1682 uint32_t page_size = getpagesize(); 1683 uint32_t size = vcpu->vm->dirty_ring_size; 1684 1685 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1686 1687 if (!vcpu->dirty_gfns) { 1688 void *addr; 1689 1690 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1691 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1692 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1693 1694 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1695 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1696 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1697 1698 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1699 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1700 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1701 1702 vcpu->dirty_gfns = addr; 1703 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1704 } 1705 1706 return vcpu->dirty_gfns; 1707 } 1708 1709 /* 1710 * Device Ioctl 1711 */ 1712 1713 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1714 { 1715 struct kvm_device_attr attribute = { 1716 .group = group, 1717 .attr = attr, 1718 .flags = 0, 1719 }; 1720 1721 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1722 } 1723 1724 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1725 { 1726 struct kvm_create_device create_dev = { 1727 .type = type, 1728 .flags = KVM_CREATE_DEVICE_TEST, 1729 }; 1730 1731 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1732 } 1733 1734 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1735 { 1736 struct kvm_create_device create_dev = { 1737 .type = type, 1738 .fd = -1, 1739 .flags = 0, 1740 }; 1741 int err; 1742 1743 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1744 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1745 return err ? : create_dev.fd; 1746 } 1747 1748 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1749 { 1750 struct kvm_device_attr kvmattr = { 1751 .group = group, 1752 .attr = attr, 1753 .flags = 0, 1754 .addr = (uintptr_t)val, 1755 }; 1756 1757 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1758 } 1759 1760 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1761 { 1762 struct kvm_device_attr kvmattr = { 1763 .group = group, 1764 .attr = attr, 1765 .flags = 0, 1766 .addr = (uintptr_t)val, 1767 }; 1768 1769 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1770 } 1771 1772 /* 1773 * IRQ related functions. 1774 */ 1775 1776 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1777 { 1778 struct kvm_irq_level irq_level = { 1779 .irq = irq, 1780 .level = level, 1781 }; 1782 1783 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1784 } 1785 1786 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1787 { 1788 int ret = _kvm_irq_line(vm, irq, level); 1789 1790 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1791 } 1792 1793 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1794 { 1795 struct kvm_irq_routing *routing; 1796 size_t size; 1797 1798 size = sizeof(struct kvm_irq_routing); 1799 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1800 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1801 routing = calloc(1, size); 1802 assert(routing); 1803 1804 return routing; 1805 } 1806 1807 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1808 uint32_t gsi, uint32_t pin) 1809 { 1810 int i; 1811 1812 assert(routing); 1813 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1814 1815 i = routing->nr; 1816 routing->entries[i].gsi = gsi; 1817 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1818 routing->entries[i].flags = 0; 1819 routing->entries[i].u.irqchip.irqchip = 0; 1820 routing->entries[i].u.irqchip.pin = pin; 1821 routing->nr++; 1822 } 1823 1824 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1825 { 1826 int ret; 1827 1828 assert(routing); 1829 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1830 free(routing); 1831 1832 return ret; 1833 } 1834 1835 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1836 { 1837 int ret; 1838 1839 ret = _kvm_gsi_routing_write(vm, routing); 1840 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1841 } 1842 1843 /* 1844 * VM Dump 1845 * 1846 * Input Args: 1847 * vm - Virtual Machine 1848 * indent - Left margin indent amount 1849 * 1850 * Output Args: 1851 * stream - Output FILE stream 1852 * 1853 * Return: None 1854 * 1855 * Dumps the current state of the VM given by vm, to the FILE stream 1856 * given by stream. 1857 */ 1858 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1859 { 1860 int ctr; 1861 struct userspace_mem_region *region; 1862 struct kvm_vcpu *vcpu; 1863 1864 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1865 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1866 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1867 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1868 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1869 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1870 "host_virt: %p\n", indent + 2, "", 1871 (uint64_t) region->region.guest_phys_addr, 1872 (uint64_t) region->region.memory_size, 1873 region->host_mem); 1874 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1875 sparsebit_dump(stream, region->unused_phy_pages, 0); 1876 } 1877 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1878 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1879 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1880 vm->pgd_created); 1881 if (vm->pgd_created) { 1882 fprintf(stream, "%*sVirtual Translation Tables:\n", 1883 indent + 2, ""); 1884 virt_dump(stream, vm, indent + 4); 1885 } 1886 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1887 1888 list_for_each_entry(vcpu, &vm->vcpus, list) 1889 vcpu_dump(stream, vcpu, indent + 2); 1890 } 1891 1892 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1893 1894 /* Known KVM exit reasons */ 1895 static struct exit_reason { 1896 unsigned int reason; 1897 const char *name; 1898 } exit_reasons_known[] = { 1899 KVM_EXIT_STRING(UNKNOWN), 1900 KVM_EXIT_STRING(EXCEPTION), 1901 KVM_EXIT_STRING(IO), 1902 KVM_EXIT_STRING(HYPERCALL), 1903 KVM_EXIT_STRING(DEBUG), 1904 KVM_EXIT_STRING(HLT), 1905 KVM_EXIT_STRING(MMIO), 1906 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 1907 KVM_EXIT_STRING(SHUTDOWN), 1908 KVM_EXIT_STRING(FAIL_ENTRY), 1909 KVM_EXIT_STRING(INTR), 1910 KVM_EXIT_STRING(SET_TPR), 1911 KVM_EXIT_STRING(TPR_ACCESS), 1912 KVM_EXIT_STRING(S390_SIEIC), 1913 KVM_EXIT_STRING(S390_RESET), 1914 KVM_EXIT_STRING(DCR), 1915 KVM_EXIT_STRING(NMI), 1916 KVM_EXIT_STRING(INTERNAL_ERROR), 1917 KVM_EXIT_STRING(OSI), 1918 KVM_EXIT_STRING(PAPR_HCALL), 1919 KVM_EXIT_STRING(S390_UCONTROL), 1920 KVM_EXIT_STRING(WATCHDOG), 1921 KVM_EXIT_STRING(S390_TSCH), 1922 KVM_EXIT_STRING(EPR), 1923 KVM_EXIT_STRING(SYSTEM_EVENT), 1924 KVM_EXIT_STRING(S390_STSI), 1925 KVM_EXIT_STRING(IOAPIC_EOI), 1926 KVM_EXIT_STRING(HYPERV), 1927 KVM_EXIT_STRING(ARM_NISV), 1928 KVM_EXIT_STRING(X86_RDMSR), 1929 KVM_EXIT_STRING(X86_WRMSR), 1930 KVM_EXIT_STRING(DIRTY_RING_FULL), 1931 KVM_EXIT_STRING(AP_RESET_HOLD), 1932 KVM_EXIT_STRING(X86_BUS_LOCK), 1933 KVM_EXIT_STRING(XEN), 1934 KVM_EXIT_STRING(RISCV_SBI), 1935 KVM_EXIT_STRING(RISCV_CSR), 1936 KVM_EXIT_STRING(NOTIFY), 1937 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 1938 KVM_EXIT_STRING(MEMORY_NOT_PRESENT), 1939 #endif 1940 }; 1941 1942 /* 1943 * Exit Reason String 1944 * 1945 * Input Args: 1946 * exit_reason - Exit reason 1947 * 1948 * Output Args: None 1949 * 1950 * Return: 1951 * Constant string pointer describing the exit reason. 1952 * 1953 * Locates and returns a constant string that describes the KVM exit 1954 * reason given by exit_reason. If no such string is found, a constant 1955 * string of "Unknown" is returned. 1956 */ 1957 const char *exit_reason_str(unsigned int exit_reason) 1958 { 1959 unsigned int n1; 1960 1961 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 1962 if (exit_reason == exit_reasons_known[n1].reason) 1963 return exit_reasons_known[n1].name; 1964 } 1965 1966 return "Unknown"; 1967 } 1968 1969 /* 1970 * Physical Contiguous Page Allocator 1971 * 1972 * Input Args: 1973 * vm - Virtual Machine 1974 * num - number of pages 1975 * paddr_min - Physical address minimum 1976 * memslot - Memory region to allocate page from 1977 * 1978 * Output Args: None 1979 * 1980 * Return: 1981 * Starting physical address 1982 * 1983 * Within the VM specified by vm, locates a range of available physical 1984 * pages at or above paddr_min. If found, the pages are marked as in use 1985 * and their base address is returned. A TEST_ASSERT failure occurs if 1986 * not enough pages are available at or above paddr_min. 1987 */ 1988 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 1989 vm_paddr_t paddr_min, uint32_t memslot) 1990 { 1991 struct userspace_mem_region *region; 1992 sparsebit_idx_t pg, base; 1993 1994 TEST_ASSERT(num > 0, "Must allocate at least one page"); 1995 1996 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 1997 "not divisible by page size.\n" 1998 " paddr_min: 0x%lx page_size: 0x%x", 1999 paddr_min, vm->page_size); 2000 2001 region = memslot2region(vm, memslot); 2002 base = pg = paddr_min >> vm->page_shift; 2003 2004 do { 2005 for (; pg < base + num; ++pg) { 2006 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2007 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2008 break; 2009 } 2010 } 2011 } while (pg && pg != base + num); 2012 2013 if (pg == 0) { 2014 fprintf(stderr, "No guest physical page available, " 2015 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2016 paddr_min, vm->page_size, memslot); 2017 fputs("---- vm dump ----\n", stderr); 2018 vm_dump(stderr, vm, 2); 2019 abort(); 2020 } 2021 2022 for (pg = base; pg < base + num; ++pg) 2023 sparsebit_clear(region->unused_phy_pages, pg); 2024 2025 return base * vm->page_size; 2026 } 2027 2028 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2029 uint32_t memslot) 2030 { 2031 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2032 } 2033 2034 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2035 { 2036 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2037 vm->memslots[MEM_REGION_PT]); 2038 } 2039 2040 /* 2041 * Address Guest Virtual to Host Virtual 2042 * 2043 * Input Args: 2044 * vm - Virtual Machine 2045 * gva - VM virtual address 2046 * 2047 * Output Args: None 2048 * 2049 * Return: 2050 * Equivalent host virtual address 2051 */ 2052 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2053 { 2054 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2055 } 2056 2057 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2058 { 2059 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2060 } 2061 2062 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2063 unsigned int page_shift, 2064 unsigned int new_page_shift, 2065 bool ceil) 2066 { 2067 unsigned int n = 1 << (new_page_shift - page_shift); 2068 2069 if (page_shift >= new_page_shift) 2070 return num_pages * (1 << (page_shift - new_page_shift)); 2071 2072 return num_pages / n + !!(ceil && num_pages % n); 2073 } 2074 2075 static inline int getpageshift(void) 2076 { 2077 return __builtin_ffs(getpagesize()) - 1; 2078 } 2079 2080 unsigned int 2081 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2082 { 2083 return vm_calc_num_pages(num_guest_pages, 2084 vm_guest_mode_params[mode].page_shift, 2085 getpageshift(), true); 2086 } 2087 2088 unsigned int 2089 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2090 { 2091 return vm_calc_num_pages(num_host_pages, getpageshift(), 2092 vm_guest_mode_params[mode].page_shift, false); 2093 } 2094 2095 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2096 { 2097 unsigned int n; 2098 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2099 return vm_adjust_num_guest_pages(mode, n); 2100 } 2101 2102 /* 2103 * Read binary stats descriptors 2104 * 2105 * Input Args: 2106 * stats_fd - the file descriptor for the binary stats file from which to read 2107 * header - the binary stats metadata header corresponding to the given FD 2108 * 2109 * Output Args: None 2110 * 2111 * Return: 2112 * A pointer to a newly allocated series of stat descriptors. 2113 * Caller is responsible for freeing the returned kvm_stats_desc. 2114 * 2115 * Read the stats descriptors from the binary stats interface. 2116 */ 2117 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2118 struct kvm_stats_header *header) 2119 { 2120 struct kvm_stats_desc *stats_desc; 2121 ssize_t desc_size, total_size, ret; 2122 2123 desc_size = get_stats_descriptor_size(header); 2124 total_size = header->num_desc * desc_size; 2125 2126 stats_desc = calloc(header->num_desc, desc_size); 2127 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2128 2129 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2130 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2131 2132 return stats_desc; 2133 } 2134 2135 /* 2136 * Read stat data for a particular stat 2137 * 2138 * Input Args: 2139 * stats_fd - the file descriptor for the binary stats file from which to read 2140 * header - the binary stats metadata header corresponding to the given FD 2141 * desc - the binary stat metadata for the particular stat to be read 2142 * max_elements - the maximum number of 8-byte values to read into data 2143 * 2144 * Output Args: 2145 * data - the buffer into which stat data should be read 2146 * 2147 * Read the data values of a specified stat from the binary stats interface. 2148 */ 2149 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2150 struct kvm_stats_desc *desc, uint64_t *data, 2151 size_t max_elements) 2152 { 2153 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2154 size_t size = nr_elements * sizeof(*data); 2155 ssize_t ret; 2156 2157 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2158 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2159 2160 ret = pread(stats_fd, data, size, 2161 header->data_offset + desc->offset); 2162 2163 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2164 desc->name, errno, strerror(errno)); 2165 TEST_ASSERT(ret == size, 2166 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2167 desc->name, size, ret); 2168 } 2169 2170 /* 2171 * Read the data of the named stat 2172 * 2173 * Input Args: 2174 * vm - the VM for which the stat should be read 2175 * stat_name - the name of the stat to read 2176 * max_elements - the maximum number of 8-byte values to read into data 2177 * 2178 * Output Args: 2179 * data - the buffer into which stat data should be read 2180 * 2181 * Read the data values of a specified stat from the binary stats interface. 2182 */ 2183 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 2184 size_t max_elements) 2185 { 2186 struct kvm_stats_desc *desc; 2187 size_t size_desc; 2188 int i; 2189 2190 if (!vm->stats_fd) { 2191 vm->stats_fd = vm_get_stats_fd(vm); 2192 read_stats_header(vm->stats_fd, &vm->stats_header); 2193 vm->stats_desc = read_stats_descriptors(vm->stats_fd, 2194 &vm->stats_header); 2195 } 2196 2197 size_desc = get_stats_descriptor_size(&vm->stats_header); 2198 2199 for (i = 0; i < vm->stats_header.num_desc; ++i) { 2200 desc = (void *)vm->stats_desc + (i * size_desc); 2201 2202 if (strcmp(desc->name, stat_name)) 2203 continue; 2204 2205 read_stat_data(vm->stats_fd, &vm->stats_header, desc, 2206 data, max_elements); 2207 2208 break; 2209 } 2210 } 2211 2212 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2213 { 2214 } 2215 2216 __weak void kvm_selftest_arch_init(void) 2217 { 2218 } 2219 2220 void __attribute((constructor)) kvm_selftest_init(void) 2221 { 2222 /* Tell stdout not to buffer its content. */ 2223 setbuf(stdout, NULL); 2224 2225 kvm_selftest_arch_init(); 2226 } 2227