xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision eb7cca1faf9883d7b4da792281147dbedc449238)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sched.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
31 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
32 
33 	return fd;
34 }
35 
36 /*
37  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
38  *
39  * Input Args:
40  *   flags - The flags to pass when opening KVM_DEV_PATH.
41  *
42  * Return:
43  *   The opened file descriptor of /dev/kvm.
44  */
45 static int _open_kvm_dev_path_or_exit(int flags)
46 {
47 	return open_path_or_exit(KVM_DEV_PATH, flags);
48 }
49 
50 int open_kvm_dev_path_or_exit(void)
51 {
52 	return _open_kvm_dev_path_or_exit(O_RDONLY);
53 }
54 
55 static bool get_module_param_bool(const char *module_name, const char *param)
56 {
57 	const int path_size = 128;
58 	char path[path_size];
59 	char value;
60 	ssize_t r;
61 	int fd;
62 
63 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
64 		     module_name, param);
65 	TEST_ASSERT(r < path_size,
66 		    "Failed to construct sysfs path in %d bytes.", path_size);
67 
68 	fd = open_path_or_exit(path, O_RDONLY);
69 
70 	r = read(fd, &value, 1);
71 	TEST_ASSERT(r == 1, "read(%s) failed", path);
72 
73 	r = close(fd);
74 	TEST_ASSERT(!r, "close(%s) failed", path);
75 
76 	if (value == 'Y')
77 		return true;
78 	else if (value == 'N')
79 		return false;
80 
81 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
82 }
83 
84 bool get_kvm_param_bool(const char *param)
85 {
86 	return get_module_param_bool("kvm", param);
87 }
88 
89 bool get_kvm_intel_param_bool(const char *param)
90 {
91 	return get_module_param_bool("kvm_intel", param);
92 }
93 
94 bool get_kvm_amd_param_bool(const char *param)
95 {
96 	return get_module_param_bool("kvm_amd", param);
97 }
98 
99 /*
100  * Capability
101  *
102  * Input Args:
103  *   cap - Capability
104  *
105  * Output Args: None
106  *
107  * Return:
108  *   On success, the Value corresponding to the capability (KVM_CAP_*)
109  *   specified by the value of cap.  On failure a TEST_ASSERT failure
110  *   is produced.
111  *
112  * Looks up and returns the value corresponding to the capability
113  * (KVM_CAP_*) given by cap.
114  */
115 unsigned int kvm_check_cap(long cap)
116 {
117 	int ret;
118 	int kvm_fd;
119 
120 	kvm_fd = open_kvm_dev_path_or_exit();
121 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
122 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
123 
124 	close(kvm_fd);
125 
126 	return (unsigned int)ret;
127 }
128 
129 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
130 {
131 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
132 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
133 	else
134 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
135 	vm->dirty_ring_size = ring_size;
136 }
137 
138 static void vm_open(struct kvm_vm *vm)
139 {
140 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
141 
142 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
143 
144 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
145 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
146 }
147 
148 const char *vm_guest_mode_string(uint32_t i)
149 {
150 	static const char * const strings[] = {
151 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
152 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
153 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
154 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
155 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
156 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
157 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
158 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
159 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
160 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
161 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
162 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
163 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
164 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
165 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
166 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
167 	};
168 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
169 		       "Missing new mode strings?");
170 
171 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
172 
173 	return strings[i];
174 }
175 
176 const struct vm_guest_mode_params vm_guest_mode_params[] = {
177 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
178 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
179 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
180 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
181 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
182 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
183 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
184 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
185 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
186 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
187 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
188 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
189 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
190 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
191 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
192 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
193 };
194 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
195 	       "Missing new mode params?");
196 
197 /*
198  * Initializes vm->vpages_valid to match the canonical VA space of the
199  * architecture.
200  *
201  * The default implementation is valid for architectures which split the
202  * range addressed by a single page table into a low and high region
203  * based on the MSB of the VA. On architectures with this behavior
204  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
205  */
206 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
207 {
208 	sparsebit_set_num(vm->vpages_valid,
209 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
210 	sparsebit_set_num(vm->vpages_valid,
211 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
212 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
213 }
214 
215 struct kvm_vm *____vm_create(struct vm_shape shape)
216 {
217 	struct kvm_vm *vm;
218 
219 	vm = calloc(1, sizeof(*vm));
220 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
221 
222 	INIT_LIST_HEAD(&vm->vcpus);
223 	vm->regions.gpa_tree = RB_ROOT;
224 	vm->regions.hva_tree = RB_ROOT;
225 	hash_init(vm->regions.slot_hash);
226 
227 	vm->mode = shape.mode;
228 	vm->type = shape.type;
229 
230 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
231 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
232 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
233 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
234 
235 	/* Setup mode specific traits. */
236 	switch (vm->mode) {
237 	case VM_MODE_P52V48_4K:
238 		vm->pgtable_levels = 4;
239 		break;
240 	case VM_MODE_P52V48_64K:
241 		vm->pgtable_levels = 3;
242 		break;
243 	case VM_MODE_P48V48_4K:
244 		vm->pgtable_levels = 4;
245 		break;
246 	case VM_MODE_P48V48_64K:
247 		vm->pgtable_levels = 3;
248 		break;
249 	case VM_MODE_P40V48_4K:
250 	case VM_MODE_P36V48_4K:
251 		vm->pgtable_levels = 4;
252 		break;
253 	case VM_MODE_P40V48_64K:
254 	case VM_MODE_P36V48_64K:
255 		vm->pgtable_levels = 3;
256 		break;
257 	case VM_MODE_P52V48_16K:
258 	case VM_MODE_P48V48_16K:
259 	case VM_MODE_P40V48_16K:
260 	case VM_MODE_P36V48_16K:
261 		vm->pgtable_levels = 4;
262 		break;
263 	case VM_MODE_P36V47_16K:
264 		vm->pgtable_levels = 3;
265 		break;
266 	case VM_MODE_PXXV48_4K:
267 #ifdef __x86_64__
268 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
269 		/*
270 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
271 		 * it doesn't take effect unless a CR4.LA57 is set, which it
272 		 * isn't for this mode (48-bit virtual address space).
273 		 */
274 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
275 			    "Linear address width (%d bits) not supported",
276 			    vm->va_bits);
277 		pr_debug("Guest physical address width detected: %d\n",
278 			 vm->pa_bits);
279 		vm->pgtable_levels = 4;
280 		vm->va_bits = 48;
281 #else
282 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
283 #endif
284 		break;
285 	case VM_MODE_P47V64_4K:
286 		vm->pgtable_levels = 5;
287 		break;
288 	case VM_MODE_P44V64_4K:
289 		vm->pgtable_levels = 5;
290 		break;
291 	default:
292 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
293 	}
294 
295 #ifdef __aarch64__
296 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
297 	if (vm->pa_bits != 40)
298 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
299 #endif
300 
301 	vm_open(vm);
302 
303 	/* Limit to VA-bit canonical virtual addresses. */
304 	vm->vpages_valid = sparsebit_alloc();
305 	vm_vaddr_populate_bitmap(vm);
306 
307 	/* Limit physical addresses to PA-bits. */
308 	vm->max_gfn = vm_compute_max_gfn(vm);
309 
310 	/* Allocate and setup memory for guest. */
311 	vm->vpages_mapped = sparsebit_alloc();
312 
313 	return vm;
314 }
315 
316 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
317 				     uint32_t nr_runnable_vcpus,
318 				     uint64_t extra_mem_pages)
319 {
320 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
321 	uint64_t nr_pages;
322 
323 	TEST_ASSERT(nr_runnable_vcpus,
324 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
325 
326 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
327 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
328 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
329 
330 	/*
331 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
332 	 * test code and other per-VM assets that will be loaded into memslot0.
333 	 */
334 	nr_pages = 512;
335 
336 	/* Account for the per-vCPU stacks on behalf of the test. */
337 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
338 
339 	/*
340 	 * Account for the number of pages needed for the page tables.  The
341 	 * maximum page table size for a memory region will be when the
342 	 * smallest page size is used. Considering each page contains x page
343 	 * table descriptors, the total extra size for page tables (for extra
344 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
345 	 * than N/x*2.
346 	 */
347 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
348 
349 	/* Account for the number of pages needed by ucall. */
350 	nr_pages += ucall_nr_pages_required(page_size);
351 
352 	return vm_adjust_num_guest_pages(mode, nr_pages);
353 }
354 
355 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
356 			   uint64_t nr_extra_pages)
357 {
358 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
359 						 nr_extra_pages);
360 	struct userspace_mem_region *slot0;
361 	struct kvm_vm *vm;
362 	int i;
363 
364 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
365 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
366 
367 	vm = ____vm_create(shape);
368 
369 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
370 	for (i = 0; i < NR_MEM_REGIONS; i++)
371 		vm->memslots[i] = 0;
372 
373 	kvm_vm_elf_load(vm, program_invocation_name);
374 
375 	/*
376 	 * TODO: Add proper defines to protect the library's memslots, and then
377 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
378 	 * read-only memslots as MMIO, and creating a read-only memslot for the
379 	 * MMIO region would prevent silently clobbering the MMIO region.
380 	 */
381 	slot0 = memslot2region(vm, 0);
382 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
383 
384 	kvm_arch_vm_post_create(vm);
385 
386 	return vm;
387 }
388 
389 /*
390  * VM Create with customized parameters
391  *
392  * Input Args:
393  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
394  *   nr_vcpus - VCPU count
395  *   extra_mem_pages - Non-slot0 physical memory total size
396  *   guest_code - Guest entry point
397  *   vcpuids - VCPU IDs
398  *
399  * Output Args: None
400  *
401  * Return:
402  *   Pointer to opaque structure that describes the created VM.
403  *
404  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
405  * extra_mem_pages is only used to calculate the maximum page table size,
406  * no real memory allocation for non-slot0 memory in this function.
407  */
408 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
409 				      uint64_t extra_mem_pages,
410 				      void *guest_code, struct kvm_vcpu *vcpus[])
411 {
412 	struct kvm_vm *vm;
413 	int i;
414 
415 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
416 
417 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
418 
419 	for (i = 0; i < nr_vcpus; ++i)
420 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
421 
422 	return vm;
423 }
424 
425 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
426 					       struct kvm_vcpu **vcpu,
427 					       uint64_t extra_mem_pages,
428 					       void *guest_code)
429 {
430 	struct kvm_vcpu *vcpus[1];
431 	struct kvm_vm *vm;
432 
433 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
434 
435 	*vcpu = vcpus[0];
436 	return vm;
437 }
438 
439 /*
440  * VM Restart
441  *
442  * Input Args:
443  *   vm - VM that has been released before
444  *
445  * Output Args: None
446  *
447  * Reopens the file descriptors associated to the VM and reinstates the
448  * global state, such as the irqchip and the memory regions that are mapped
449  * into the guest.
450  */
451 void kvm_vm_restart(struct kvm_vm *vmp)
452 {
453 	int ctr;
454 	struct userspace_mem_region *region;
455 
456 	vm_open(vmp);
457 	if (vmp->has_irqchip)
458 		vm_create_irqchip(vmp);
459 
460 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
461 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
462 
463 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
464 			    "  rc: %i errno: %i\n"
465 			    "  slot: %u flags: 0x%x\n"
466 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
467 			    ret, errno, region->region.slot,
468 			    region->region.flags,
469 			    region->region.guest_phys_addr,
470 			    region->region.memory_size);
471 	}
472 }
473 
474 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
475 					      uint32_t vcpu_id)
476 {
477 	return __vm_vcpu_add(vm, vcpu_id);
478 }
479 
480 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
481 {
482 	kvm_vm_restart(vm);
483 
484 	return vm_vcpu_recreate(vm, 0);
485 }
486 
487 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
488 {
489 	cpu_set_t mask;
490 	int r;
491 
492 	CPU_ZERO(&mask);
493 	CPU_SET(pcpu, &mask);
494 	r = sched_setaffinity(0, sizeof(mask), &mask);
495 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
496 }
497 
498 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
499 {
500 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
501 
502 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
503 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
504 	return pcpu;
505 }
506 
507 void kvm_print_vcpu_pinning_help(void)
508 {
509 	const char *name = program_invocation_name;
510 
511 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
512 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
513 	       "     entry for the main application task (specified via entry\n"
514 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
515 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
516 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
517 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
518 	       "         %s -v 3 -c 22,23,24,50\n\n"
519 	       "     To leave the application task unpinned, drop the final entry:\n\n"
520 	       "         %s -v 3 -c 22,23,24\n\n"
521 	       "     (default: no pinning)\n", name, name);
522 }
523 
524 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
525 			    int nr_vcpus)
526 {
527 	cpu_set_t allowed_mask;
528 	char *cpu, *cpu_list;
529 	char delim[2] = ",";
530 	int i, r;
531 
532 	cpu_list = strdup(pcpus_string);
533 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
534 
535 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
536 	TEST_ASSERT(!r, "sched_getaffinity() failed");
537 
538 	cpu = strtok(cpu_list, delim);
539 
540 	/* 1. Get all pcpus for vcpus. */
541 	for (i = 0; i < nr_vcpus; i++) {
542 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
543 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
544 		cpu = strtok(NULL, delim);
545 	}
546 
547 	/* 2. Check if the main worker needs to be pinned. */
548 	if (cpu) {
549 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
550 		cpu = strtok(NULL, delim);
551 	}
552 
553 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
554 	free(cpu_list);
555 }
556 
557 /*
558  * Userspace Memory Region Find
559  *
560  * Input Args:
561  *   vm - Virtual Machine
562  *   start - Starting VM physical address
563  *   end - Ending VM physical address, inclusive.
564  *
565  * Output Args: None
566  *
567  * Return:
568  *   Pointer to overlapping region, NULL if no such region.
569  *
570  * Searches for a region with any physical memory that overlaps with
571  * any portion of the guest physical addresses from start to end
572  * inclusive.  If multiple overlapping regions exist, a pointer to any
573  * of the regions is returned.  Null is returned only when no overlapping
574  * region exists.
575  */
576 static struct userspace_mem_region *
577 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
578 {
579 	struct rb_node *node;
580 
581 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
582 		struct userspace_mem_region *region =
583 			container_of(node, struct userspace_mem_region, gpa_node);
584 		uint64_t existing_start = region->region.guest_phys_addr;
585 		uint64_t existing_end = region->region.guest_phys_addr
586 			+ region->region.memory_size - 1;
587 		if (start <= existing_end && end >= existing_start)
588 			return region;
589 
590 		if (start < existing_start)
591 			node = node->rb_left;
592 		else
593 			node = node->rb_right;
594 	}
595 
596 	return NULL;
597 }
598 
599 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
600 {
601 
602 }
603 
604 /*
605  * VM VCPU Remove
606  *
607  * Input Args:
608  *   vcpu - VCPU to remove
609  *
610  * Output Args: None
611  *
612  * Return: None, TEST_ASSERT failures for all error conditions
613  *
614  * Removes a vCPU from a VM and frees its resources.
615  */
616 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
617 {
618 	int ret;
619 
620 	if (vcpu->dirty_gfns) {
621 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
622 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
623 		vcpu->dirty_gfns = NULL;
624 	}
625 
626 	ret = munmap(vcpu->run, vcpu_mmap_sz());
627 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
628 
629 	ret = close(vcpu->fd);
630 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
631 
632 	list_del(&vcpu->list);
633 
634 	vcpu_arch_free(vcpu);
635 	free(vcpu);
636 }
637 
638 void kvm_vm_release(struct kvm_vm *vmp)
639 {
640 	struct kvm_vcpu *vcpu, *tmp;
641 	int ret;
642 
643 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
644 		vm_vcpu_rm(vmp, vcpu);
645 
646 	ret = close(vmp->fd);
647 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
648 
649 	ret = close(vmp->kvm_fd);
650 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
651 }
652 
653 static void __vm_mem_region_delete(struct kvm_vm *vm,
654 				   struct userspace_mem_region *region,
655 				   bool unlink)
656 {
657 	int ret;
658 
659 	if (unlink) {
660 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
661 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
662 		hash_del(&region->slot_node);
663 	}
664 
665 	region->region.memory_size = 0;
666 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
667 
668 	sparsebit_free(&region->unused_phy_pages);
669 	ret = munmap(region->mmap_start, region->mmap_size);
670 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
671 	if (region->fd >= 0) {
672 		/* There's an extra map when using shared memory. */
673 		ret = munmap(region->mmap_alias, region->mmap_size);
674 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
675 		close(region->fd);
676 	}
677 	if (region->region.guest_memfd >= 0)
678 		close(region->region.guest_memfd);
679 
680 	free(region);
681 }
682 
683 /*
684  * Destroys and frees the VM pointed to by vmp.
685  */
686 void kvm_vm_free(struct kvm_vm *vmp)
687 {
688 	int ctr;
689 	struct hlist_node *node;
690 	struct userspace_mem_region *region;
691 
692 	if (vmp == NULL)
693 		return;
694 
695 	/* Free cached stats metadata and close FD */
696 	if (vmp->stats_fd) {
697 		free(vmp->stats_desc);
698 		close(vmp->stats_fd);
699 	}
700 
701 	/* Free userspace_mem_regions. */
702 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
703 		__vm_mem_region_delete(vmp, region, false);
704 
705 	/* Free sparsebit arrays. */
706 	sparsebit_free(&vmp->vpages_valid);
707 	sparsebit_free(&vmp->vpages_mapped);
708 
709 	kvm_vm_release(vmp);
710 
711 	/* Free the structure describing the VM. */
712 	free(vmp);
713 }
714 
715 int kvm_memfd_alloc(size_t size, bool hugepages)
716 {
717 	int memfd_flags = MFD_CLOEXEC;
718 	int fd, r;
719 
720 	if (hugepages)
721 		memfd_flags |= MFD_HUGETLB;
722 
723 	fd = memfd_create("kvm_selftest", memfd_flags);
724 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
725 
726 	r = ftruncate(fd, size);
727 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
728 
729 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
730 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
731 
732 	return fd;
733 }
734 
735 /*
736  * Memory Compare, host virtual to guest virtual
737  *
738  * Input Args:
739  *   hva - Starting host virtual address
740  *   vm - Virtual Machine
741  *   gva - Starting guest virtual address
742  *   len - number of bytes to compare
743  *
744  * Output Args: None
745  *
746  * Input/Output Args: None
747  *
748  * Return:
749  *   Returns 0 if the bytes starting at hva for a length of len
750  *   are equal the guest virtual bytes starting at gva.  Returns
751  *   a value < 0, if bytes at hva are less than those at gva.
752  *   Otherwise a value > 0 is returned.
753  *
754  * Compares the bytes starting at the host virtual address hva, for
755  * a length of len, to the guest bytes starting at the guest virtual
756  * address given by gva.
757  */
758 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
759 {
760 	size_t amt;
761 
762 	/*
763 	 * Compare a batch of bytes until either a match is found
764 	 * or all the bytes have been compared.
765 	 */
766 	for (uintptr_t offset = 0; offset < len; offset += amt) {
767 		uintptr_t ptr1 = (uintptr_t)hva + offset;
768 
769 		/*
770 		 * Determine host address for guest virtual address
771 		 * at offset.
772 		 */
773 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
774 
775 		/*
776 		 * Determine amount to compare on this pass.
777 		 * Don't allow the comparsion to cross a page boundary.
778 		 */
779 		amt = len - offset;
780 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
781 			amt = vm->page_size - (ptr1 % vm->page_size);
782 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
783 			amt = vm->page_size - (ptr2 % vm->page_size);
784 
785 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
786 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
787 
788 		/*
789 		 * Perform the comparison.  If there is a difference
790 		 * return that result to the caller, otherwise need
791 		 * to continue on looking for a mismatch.
792 		 */
793 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
794 		if (ret != 0)
795 			return ret;
796 	}
797 
798 	/*
799 	 * No mismatch found.  Let the caller know the two memory
800 	 * areas are equal.
801 	 */
802 	return 0;
803 }
804 
805 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
806 					       struct userspace_mem_region *region)
807 {
808 	struct rb_node **cur, *parent;
809 
810 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
811 		struct userspace_mem_region *cregion;
812 
813 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
814 		parent = *cur;
815 		if (region->region.guest_phys_addr <
816 		    cregion->region.guest_phys_addr)
817 			cur = &(*cur)->rb_left;
818 		else {
819 			TEST_ASSERT(region->region.guest_phys_addr !=
820 				    cregion->region.guest_phys_addr,
821 				    "Duplicate GPA in region tree");
822 
823 			cur = &(*cur)->rb_right;
824 		}
825 	}
826 
827 	rb_link_node(&region->gpa_node, parent, cur);
828 	rb_insert_color(&region->gpa_node, gpa_tree);
829 }
830 
831 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
832 					       struct userspace_mem_region *region)
833 {
834 	struct rb_node **cur, *parent;
835 
836 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
837 		struct userspace_mem_region *cregion;
838 
839 		cregion = container_of(*cur, typeof(*cregion), hva_node);
840 		parent = *cur;
841 		if (region->host_mem < cregion->host_mem)
842 			cur = &(*cur)->rb_left;
843 		else {
844 			TEST_ASSERT(region->host_mem !=
845 				    cregion->host_mem,
846 				    "Duplicate HVA in region tree");
847 
848 			cur = &(*cur)->rb_right;
849 		}
850 	}
851 
852 	rb_link_node(&region->hva_node, parent, cur);
853 	rb_insert_color(&region->hva_node, hva_tree);
854 }
855 
856 
857 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
858 				uint64_t gpa, uint64_t size, void *hva)
859 {
860 	struct kvm_userspace_memory_region region = {
861 		.slot = slot,
862 		.flags = flags,
863 		.guest_phys_addr = gpa,
864 		.memory_size = size,
865 		.userspace_addr = (uintptr_t)hva,
866 	};
867 
868 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
869 }
870 
871 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
872 			       uint64_t gpa, uint64_t size, void *hva)
873 {
874 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
875 
876 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
877 		    errno, strerror(errno));
878 }
879 
880 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
881 				 uint64_t gpa, uint64_t size, void *hva,
882 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
883 {
884 	struct kvm_userspace_memory_region2 region = {
885 		.slot = slot,
886 		.flags = flags,
887 		.guest_phys_addr = gpa,
888 		.memory_size = size,
889 		.userspace_addr = (uintptr_t)hva,
890 		.guest_memfd = guest_memfd,
891 		.guest_memfd_offset = guest_memfd_offset,
892 	};
893 
894 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
895 }
896 
897 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
898 				uint64_t gpa, uint64_t size, void *hva,
899 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
900 {
901 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
902 					       guest_memfd, guest_memfd_offset);
903 
904 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
905 		    errno, strerror(errno));
906 }
907 
908 
909 /* FIXME: This thing needs to be ripped apart and rewritten. */
910 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
911 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
912 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
913 {
914 	int ret;
915 	struct userspace_mem_region *region;
916 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
917 	size_t mem_size = npages * vm->page_size;
918 	size_t alignment;
919 
920 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
921 		"Number of guest pages is not compatible with the host. "
922 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
923 
924 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
925 		"address not on a page boundary.\n"
926 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
927 		guest_paddr, vm->page_size);
928 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
929 		<= vm->max_gfn, "Physical range beyond maximum "
930 		"supported physical address,\n"
931 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
932 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
933 		guest_paddr, npages, vm->max_gfn, vm->page_size);
934 
935 	/*
936 	 * Confirm a mem region with an overlapping address doesn't
937 	 * already exist.
938 	 */
939 	region = (struct userspace_mem_region *) userspace_mem_region_find(
940 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
941 	if (region != NULL)
942 		TEST_FAIL("overlapping userspace_mem_region already "
943 			"exists\n"
944 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
945 			"page_size: 0x%x\n"
946 			"  existing guest_paddr: 0x%lx size: 0x%lx",
947 			guest_paddr, npages, vm->page_size,
948 			(uint64_t) region->region.guest_phys_addr,
949 			(uint64_t) region->region.memory_size);
950 
951 	/* Confirm no region with the requested slot already exists. */
952 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
953 			       slot) {
954 		if (region->region.slot != slot)
955 			continue;
956 
957 		TEST_FAIL("A mem region with the requested slot "
958 			"already exists.\n"
959 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
960 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
961 			slot, guest_paddr, npages,
962 			region->region.slot,
963 			(uint64_t) region->region.guest_phys_addr,
964 			(uint64_t) region->region.memory_size);
965 	}
966 
967 	/* Allocate and initialize new mem region structure. */
968 	region = calloc(1, sizeof(*region));
969 	TEST_ASSERT(region != NULL, "Insufficient Memory");
970 	region->mmap_size = mem_size;
971 
972 #ifdef __s390x__
973 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
974 	alignment = 0x100000;
975 #else
976 	alignment = 1;
977 #endif
978 
979 	/*
980 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
981 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
982 	 * because mmap will always return an address aligned to the HugeTLB
983 	 * page size.
984 	 */
985 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
986 		alignment = max(backing_src_pagesz, alignment);
987 
988 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
989 
990 	/* Add enough memory to align up if necessary */
991 	if (alignment > 1)
992 		region->mmap_size += alignment;
993 
994 	region->fd = -1;
995 	if (backing_src_is_shared(src_type))
996 		region->fd = kvm_memfd_alloc(region->mmap_size,
997 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
998 
999 	region->mmap_start = mmap(NULL, region->mmap_size,
1000 				  PROT_READ | PROT_WRITE,
1001 				  vm_mem_backing_src_alias(src_type)->flag,
1002 				  region->fd, 0);
1003 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1004 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1005 
1006 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1007 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1008 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1009 		    region->mmap_start, backing_src_pagesz);
1010 
1011 	/* Align host address */
1012 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1013 
1014 	/* As needed perform madvise */
1015 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1016 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1017 		ret = madvise(region->host_mem, mem_size,
1018 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1019 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1020 			    region->host_mem, mem_size,
1021 			    vm_mem_backing_src_alias(src_type)->name);
1022 	}
1023 
1024 	region->backing_src_type = src_type;
1025 
1026 	if (flags & KVM_MEM_GUEST_MEMFD) {
1027 		if (guest_memfd < 0) {
1028 			uint32_t guest_memfd_flags = 0;
1029 			TEST_ASSERT(!guest_memfd_offset,
1030 				    "Offset must be zero when creating new guest_memfd");
1031 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1032 		} else {
1033 			/*
1034 			 * Install a unique fd for each memslot so that the fd
1035 			 * can be closed when the region is deleted without
1036 			 * needing to track if the fd is owned by the framework
1037 			 * or by the caller.
1038 			 */
1039 			guest_memfd = dup(guest_memfd);
1040 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1041 		}
1042 
1043 		region->region.guest_memfd = guest_memfd;
1044 		region->region.guest_memfd_offset = guest_memfd_offset;
1045 	} else {
1046 		region->region.guest_memfd = -1;
1047 	}
1048 
1049 	region->unused_phy_pages = sparsebit_alloc();
1050 	sparsebit_set_num(region->unused_phy_pages,
1051 		guest_paddr >> vm->page_shift, npages);
1052 	region->region.slot = slot;
1053 	region->region.flags = flags;
1054 	region->region.guest_phys_addr = guest_paddr;
1055 	region->region.memory_size = npages * vm->page_size;
1056 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1057 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1058 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1059 		"  rc: %i errno: %i\n"
1060 		"  slot: %u flags: 0x%x\n"
1061 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1062 		ret, errno, slot, flags,
1063 		guest_paddr, (uint64_t) region->region.memory_size,
1064 		region->region.guest_memfd);
1065 
1066 	/* Add to quick lookup data structures */
1067 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1068 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1069 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1070 
1071 	/* If shared memory, create an alias. */
1072 	if (region->fd >= 0) {
1073 		region->mmap_alias = mmap(NULL, region->mmap_size,
1074 					  PROT_READ | PROT_WRITE,
1075 					  vm_mem_backing_src_alias(src_type)->flag,
1076 					  region->fd, 0);
1077 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1078 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1079 
1080 		/* Align host alias address */
1081 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1082 	}
1083 }
1084 
1085 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1086 				 enum vm_mem_backing_src_type src_type,
1087 				 uint64_t guest_paddr, uint32_t slot,
1088 				 uint64_t npages, uint32_t flags)
1089 {
1090 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1091 }
1092 
1093 /*
1094  * Memslot to region
1095  *
1096  * Input Args:
1097  *   vm - Virtual Machine
1098  *   memslot - KVM memory slot ID
1099  *
1100  * Output Args: None
1101  *
1102  * Return:
1103  *   Pointer to memory region structure that describe memory region
1104  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1105  *   on error (e.g. currently no memory region using memslot as a KVM
1106  *   memory slot ID).
1107  */
1108 struct userspace_mem_region *
1109 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1110 {
1111 	struct userspace_mem_region *region;
1112 
1113 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1114 			       memslot)
1115 		if (region->region.slot == memslot)
1116 			return region;
1117 
1118 	fprintf(stderr, "No mem region with the requested slot found,\n"
1119 		"  requested slot: %u\n", memslot);
1120 	fputs("---- vm dump ----\n", stderr);
1121 	vm_dump(stderr, vm, 2);
1122 	TEST_FAIL("Mem region not found");
1123 	return NULL;
1124 }
1125 
1126 /*
1127  * VM Memory Region Flags Set
1128  *
1129  * Input Args:
1130  *   vm - Virtual Machine
1131  *   flags - Starting guest physical address
1132  *
1133  * Output Args: None
1134  *
1135  * Return: None
1136  *
1137  * Sets the flags of the memory region specified by the value of slot,
1138  * to the values given by flags.
1139  */
1140 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1141 {
1142 	int ret;
1143 	struct userspace_mem_region *region;
1144 
1145 	region = memslot2region(vm, slot);
1146 
1147 	region->region.flags = flags;
1148 
1149 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1150 
1151 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1152 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1153 		ret, errno, slot, flags);
1154 }
1155 
1156 /*
1157  * VM Memory Region Move
1158  *
1159  * Input Args:
1160  *   vm - Virtual Machine
1161  *   slot - Slot of the memory region to move
1162  *   new_gpa - Starting guest physical address
1163  *
1164  * Output Args: None
1165  *
1166  * Return: None
1167  *
1168  * Change the gpa of a memory region.
1169  */
1170 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1171 {
1172 	struct userspace_mem_region *region;
1173 	int ret;
1174 
1175 	region = memslot2region(vm, slot);
1176 
1177 	region->region.guest_phys_addr = new_gpa;
1178 
1179 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1180 
1181 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1182 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1183 		    ret, errno, slot, new_gpa);
1184 }
1185 
1186 /*
1187  * VM Memory Region Delete
1188  *
1189  * Input Args:
1190  *   vm - Virtual Machine
1191  *   slot - Slot of the memory region to delete
1192  *
1193  * Output Args: None
1194  *
1195  * Return: None
1196  *
1197  * Delete a memory region.
1198  */
1199 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1200 {
1201 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1202 }
1203 
1204 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1205 			    bool punch_hole)
1206 {
1207 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1208 	struct userspace_mem_region *region;
1209 	uint64_t end = base + size;
1210 	uint64_t gpa, len;
1211 	off_t fd_offset;
1212 	int ret;
1213 
1214 	for (gpa = base; gpa < end; gpa += len) {
1215 		uint64_t offset;
1216 
1217 		region = userspace_mem_region_find(vm, gpa, gpa);
1218 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1219 			    "Private memory region not found for GPA 0x%lx", gpa);
1220 
1221 		offset = gpa - region->region.guest_phys_addr;
1222 		fd_offset = region->region.guest_memfd_offset + offset;
1223 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1224 
1225 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1226 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1227 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1228 			    region->region.guest_memfd, mode, fd_offset);
1229 	}
1230 }
1231 
1232 /* Returns the size of a vCPU's kvm_run structure. */
1233 static int vcpu_mmap_sz(void)
1234 {
1235 	int dev_fd, ret;
1236 
1237 	dev_fd = open_kvm_dev_path_or_exit();
1238 
1239 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1240 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1241 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1242 
1243 	close(dev_fd);
1244 
1245 	return ret;
1246 }
1247 
1248 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1249 {
1250 	struct kvm_vcpu *vcpu;
1251 
1252 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1253 		if (vcpu->id == vcpu_id)
1254 			return true;
1255 	}
1256 
1257 	return false;
1258 }
1259 
1260 /*
1261  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1262  * No additional vCPU setup is done.  Returns the vCPU.
1263  */
1264 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1265 {
1266 	struct kvm_vcpu *vcpu;
1267 
1268 	/* Confirm a vcpu with the specified id doesn't already exist. */
1269 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1270 
1271 	/* Allocate and initialize new vcpu structure. */
1272 	vcpu = calloc(1, sizeof(*vcpu));
1273 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1274 
1275 	vcpu->vm = vm;
1276 	vcpu->id = vcpu_id;
1277 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1278 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1279 
1280 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1281 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1282 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1283 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1284 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1285 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1286 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1287 
1288 	/* Add to linked-list of VCPUs. */
1289 	list_add(&vcpu->list, &vm->vcpus);
1290 
1291 	return vcpu;
1292 }
1293 
1294 /*
1295  * VM Virtual Address Unused Gap
1296  *
1297  * Input Args:
1298  *   vm - Virtual Machine
1299  *   sz - Size (bytes)
1300  *   vaddr_min - Minimum Virtual Address
1301  *
1302  * Output Args: None
1303  *
1304  * Return:
1305  *   Lowest virtual address at or below vaddr_min, with at least
1306  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1307  *   size sz is available.
1308  *
1309  * Within the VM specified by vm, locates the lowest starting virtual
1310  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1311  * TEST_ASSERT failure occurs for invalid input or no area of at least
1312  * sz unallocated bytes >= vaddr_min is available.
1313  */
1314 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1315 			       vm_vaddr_t vaddr_min)
1316 {
1317 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1318 
1319 	/* Determine lowest permitted virtual page index. */
1320 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1321 	if ((pgidx_start * vm->page_size) < vaddr_min)
1322 		goto no_va_found;
1323 
1324 	/* Loop over section with enough valid virtual page indexes. */
1325 	if (!sparsebit_is_set_num(vm->vpages_valid,
1326 		pgidx_start, pages))
1327 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1328 			pgidx_start, pages);
1329 	do {
1330 		/*
1331 		 * Are there enough unused virtual pages available at
1332 		 * the currently proposed starting virtual page index.
1333 		 * If not, adjust proposed starting index to next
1334 		 * possible.
1335 		 */
1336 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1337 			pgidx_start, pages))
1338 			goto va_found;
1339 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1340 			pgidx_start, pages);
1341 		if (pgidx_start == 0)
1342 			goto no_va_found;
1343 
1344 		/*
1345 		 * If needed, adjust proposed starting virtual address,
1346 		 * to next range of valid virtual addresses.
1347 		 */
1348 		if (!sparsebit_is_set_num(vm->vpages_valid,
1349 			pgidx_start, pages)) {
1350 			pgidx_start = sparsebit_next_set_num(
1351 				vm->vpages_valid, pgidx_start, pages);
1352 			if (pgidx_start == 0)
1353 				goto no_va_found;
1354 		}
1355 	} while (pgidx_start != 0);
1356 
1357 no_va_found:
1358 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1359 
1360 	/* NOT REACHED */
1361 	return -1;
1362 
1363 va_found:
1364 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1365 		pgidx_start, pages),
1366 		"Unexpected, invalid virtual page index range,\n"
1367 		"  pgidx_start: 0x%lx\n"
1368 		"  pages: 0x%lx",
1369 		pgidx_start, pages);
1370 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1371 		pgidx_start, pages),
1372 		"Unexpected, pages already mapped,\n"
1373 		"  pgidx_start: 0x%lx\n"
1374 		"  pages: 0x%lx",
1375 		pgidx_start, pages);
1376 
1377 	return pgidx_start * vm->page_size;
1378 }
1379 
1380 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1381 			    enum kvm_mem_region_type type)
1382 {
1383 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1384 
1385 	virt_pgd_alloc(vm);
1386 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1387 					      KVM_UTIL_MIN_PFN * vm->page_size,
1388 					      vm->memslots[type]);
1389 
1390 	/*
1391 	 * Find an unused range of virtual page addresses of at least
1392 	 * pages in length.
1393 	 */
1394 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1395 
1396 	/* Map the virtual pages. */
1397 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1398 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1399 
1400 		virt_pg_map(vm, vaddr, paddr);
1401 
1402 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1403 	}
1404 
1405 	return vaddr_start;
1406 }
1407 
1408 /*
1409  * VM Virtual Address Allocate
1410  *
1411  * Input Args:
1412  *   vm - Virtual Machine
1413  *   sz - Size in bytes
1414  *   vaddr_min - Minimum starting virtual address
1415  *
1416  * Output Args: None
1417  *
1418  * Return:
1419  *   Starting guest virtual address
1420  *
1421  * Allocates at least sz bytes within the virtual address space of the vm
1422  * given by vm.  The allocated bytes are mapped to a virtual address >=
1423  * the address given by vaddr_min.  Note that each allocation uses a
1424  * a unique set of pages, with the minimum real allocation being at least
1425  * a page. The allocated physical space comes from the TEST_DATA memory region.
1426  */
1427 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1428 {
1429 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1430 }
1431 
1432 /*
1433  * VM Virtual Address Allocate Pages
1434  *
1435  * Input Args:
1436  *   vm - Virtual Machine
1437  *
1438  * Output Args: None
1439  *
1440  * Return:
1441  *   Starting guest virtual address
1442  *
1443  * Allocates at least N system pages worth of bytes within the virtual address
1444  * space of the vm.
1445  */
1446 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1447 {
1448 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1449 }
1450 
1451 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1452 {
1453 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1454 }
1455 
1456 /*
1457  * VM Virtual Address Allocate Page
1458  *
1459  * Input Args:
1460  *   vm - Virtual Machine
1461  *
1462  * Output Args: None
1463  *
1464  * Return:
1465  *   Starting guest virtual address
1466  *
1467  * Allocates at least one system page worth of bytes within the virtual address
1468  * space of the vm.
1469  */
1470 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1471 {
1472 	return vm_vaddr_alloc_pages(vm, 1);
1473 }
1474 
1475 /*
1476  * Map a range of VM virtual address to the VM's physical address
1477  *
1478  * Input Args:
1479  *   vm - Virtual Machine
1480  *   vaddr - Virtuall address to map
1481  *   paddr - VM Physical Address
1482  *   npages - The number of pages to map
1483  *
1484  * Output Args: None
1485  *
1486  * Return: None
1487  *
1488  * Within the VM given by @vm, creates a virtual translation for
1489  * @npages starting at @vaddr to the page range starting at @paddr.
1490  */
1491 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1492 	      unsigned int npages)
1493 {
1494 	size_t page_size = vm->page_size;
1495 	size_t size = npages * page_size;
1496 
1497 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1498 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1499 
1500 	while (npages--) {
1501 		virt_pg_map(vm, vaddr, paddr);
1502 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1503 
1504 		vaddr += page_size;
1505 		paddr += page_size;
1506 	}
1507 }
1508 
1509 /*
1510  * Address VM Physical to Host Virtual
1511  *
1512  * Input Args:
1513  *   vm - Virtual Machine
1514  *   gpa - VM physical address
1515  *
1516  * Output Args: None
1517  *
1518  * Return:
1519  *   Equivalent host virtual address
1520  *
1521  * Locates the memory region containing the VM physical address given
1522  * by gpa, within the VM given by vm.  When found, the host virtual
1523  * address providing the memory to the vm physical address is returned.
1524  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1525  */
1526 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1527 {
1528 	struct userspace_mem_region *region;
1529 
1530 	region = userspace_mem_region_find(vm, gpa, gpa);
1531 	if (!region) {
1532 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1533 		return NULL;
1534 	}
1535 
1536 	return (void *)((uintptr_t)region->host_mem
1537 		+ (gpa - region->region.guest_phys_addr));
1538 }
1539 
1540 /*
1541  * Address Host Virtual to VM Physical
1542  *
1543  * Input Args:
1544  *   vm - Virtual Machine
1545  *   hva - Host virtual address
1546  *
1547  * Output Args: None
1548  *
1549  * Return:
1550  *   Equivalent VM physical address
1551  *
1552  * Locates the memory region containing the host virtual address given
1553  * by hva, within the VM given by vm.  When found, the equivalent
1554  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1555  * region containing hva exists.
1556  */
1557 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1558 {
1559 	struct rb_node *node;
1560 
1561 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1562 		struct userspace_mem_region *region =
1563 			container_of(node, struct userspace_mem_region, hva_node);
1564 
1565 		if (hva >= region->host_mem) {
1566 			if (hva <= (region->host_mem
1567 				+ region->region.memory_size - 1))
1568 				return (vm_paddr_t)((uintptr_t)
1569 					region->region.guest_phys_addr
1570 					+ (hva - (uintptr_t)region->host_mem));
1571 
1572 			node = node->rb_right;
1573 		} else
1574 			node = node->rb_left;
1575 	}
1576 
1577 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1578 	return -1;
1579 }
1580 
1581 /*
1582  * Address VM physical to Host Virtual *alias*.
1583  *
1584  * Input Args:
1585  *   vm - Virtual Machine
1586  *   gpa - VM physical address
1587  *
1588  * Output Args: None
1589  *
1590  * Return:
1591  *   Equivalent address within the host virtual *alias* area, or NULL
1592  *   (without failing the test) if the guest memory is not shared (so
1593  *   no alias exists).
1594  *
1595  * Create a writable, shared virtual=>physical alias for the specific GPA.
1596  * The primary use case is to allow the host selftest to manipulate guest
1597  * memory without mapping said memory in the guest's address space. And, for
1598  * userfaultfd-based demand paging, to do so without triggering userfaults.
1599  */
1600 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1601 {
1602 	struct userspace_mem_region *region;
1603 	uintptr_t offset;
1604 
1605 	region = userspace_mem_region_find(vm, gpa, gpa);
1606 	if (!region)
1607 		return NULL;
1608 
1609 	if (!region->host_alias)
1610 		return NULL;
1611 
1612 	offset = gpa - region->region.guest_phys_addr;
1613 	return (void *) ((uintptr_t) region->host_alias + offset);
1614 }
1615 
1616 /* Create an interrupt controller chip for the specified VM. */
1617 void vm_create_irqchip(struct kvm_vm *vm)
1618 {
1619 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1620 
1621 	vm->has_irqchip = true;
1622 }
1623 
1624 int _vcpu_run(struct kvm_vcpu *vcpu)
1625 {
1626 	int rc;
1627 
1628 	do {
1629 		rc = __vcpu_run(vcpu);
1630 	} while (rc == -1 && errno == EINTR);
1631 
1632 	assert_on_unhandled_exception(vcpu);
1633 
1634 	return rc;
1635 }
1636 
1637 /*
1638  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1639  * Assert if the KVM returns an error (other than -EINTR).
1640  */
1641 void vcpu_run(struct kvm_vcpu *vcpu)
1642 {
1643 	int ret = _vcpu_run(vcpu);
1644 
1645 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1646 }
1647 
1648 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1649 {
1650 	int ret;
1651 
1652 	vcpu->run->immediate_exit = 1;
1653 	ret = __vcpu_run(vcpu);
1654 	vcpu->run->immediate_exit = 0;
1655 
1656 	TEST_ASSERT(ret == -1 && errno == EINTR,
1657 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1658 		    ret, errno);
1659 }
1660 
1661 /*
1662  * Get the list of guest registers which are supported for
1663  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1664  * it is the caller's responsibility to free the list.
1665  */
1666 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1667 {
1668 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1669 	int ret;
1670 
1671 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1672 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1673 
1674 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1675 	reg_list->n = reg_list_n.n;
1676 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1677 	return reg_list;
1678 }
1679 
1680 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1681 {
1682 	uint32_t page_size = getpagesize();
1683 	uint32_t size = vcpu->vm->dirty_ring_size;
1684 
1685 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1686 
1687 	if (!vcpu->dirty_gfns) {
1688 		void *addr;
1689 
1690 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1691 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1692 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1693 
1694 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1695 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1696 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1697 
1698 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1699 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1700 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1701 
1702 		vcpu->dirty_gfns = addr;
1703 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1704 	}
1705 
1706 	return vcpu->dirty_gfns;
1707 }
1708 
1709 /*
1710  * Device Ioctl
1711  */
1712 
1713 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1714 {
1715 	struct kvm_device_attr attribute = {
1716 		.group = group,
1717 		.attr = attr,
1718 		.flags = 0,
1719 	};
1720 
1721 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1722 }
1723 
1724 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1725 {
1726 	struct kvm_create_device create_dev = {
1727 		.type = type,
1728 		.flags = KVM_CREATE_DEVICE_TEST,
1729 	};
1730 
1731 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1732 }
1733 
1734 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1735 {
1736 	struct kvm_create_device create_dev = {
1737 		.type = type,
1738 		.fd = -1,
1739 		.flags = 0,
1740 	};
1741 	int err;
1742 
1743 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1744 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1745 	return err ? : create_dev.fd;
1746 }
1747 
1748 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1749 {
1750 	struct kvm_device_attr kvmattr = {
1751 		.group = group,
1752 		.attr = attr,
1753 		.flags = 0,
1754 		.addr = (uintptr_t)val,
1755 	};
1756 
1757 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1758 }
1759 
1760 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1761 {
1762 	struct kvm_device_attr kvmattr = {
1763 		.group = group,
1764 		.attr = attr,
1765 		.flags = 0,
1766 		.addr = (uintptr_t)val,
1767 	};
1768 
1769 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1770 }
1771 
1772 /*
1773  * IRQ related functions.
1774  */
1775 
1776 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1777 {
1778 	struct kvm_irq_level irq_level = {
1779 		.irq    = irq,
1780 		.level  = level,
1781 	};
1782 
1783 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1784 }
1785 
1786 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1787 {
1788 	int ret = _kvm_irq_line(vm, irq, level);
1789 
1790 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1791 }
1792 
1793 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1794 {
1795 	struct kvm_irq_routing *routing;
1796 	size_t size;
1797 
1798 	size = sizeof(struct kvm_irq_routing);
1799 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1800 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1801 	routing = calloc(1, size);
1802 	assert(routing);
1803 
1804 	return routing;
1805 }
1806 
1807 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1808 		uint32_t gsi, uint32_t pin)
1809 {
1810 	int i;
1811 
1812 	assert(routing);
1813 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1814 
1815 	i = routing->nr;
1816 	routing->entries[i].gsi = gsi;
1817 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1818 	routing->entries[i].flags = 0;
1819 	routing->entries[i].u.irqchip.irqchip = 0;
1820 	routing->entries[i].u.irqchip.pin = pin;
1821 	routing->nr++;
1822 }
1823 
1824 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1825 {
1826 	int ret;
1827 
1828 	assert(routing);
1829 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1830 	free(routing);
1831 
1832 	return ret;
1833 }
1834 
1835 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1836 {
1837 	int ret;
1838 
1839 	ret = _kvm_gsi_routing_write(vm, routing);
1840 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1841 }
1842 
1843 /*
1844  * VM Dump
1845  *
1846  * Input Args:
1847  *   vm - Virtual Machine
1848  *   indent - Left margin indent amount
1849  *
1850  * Output Args:
1851  *   stream - Output FILE stream
1852  *
1853  * Return: None
1854  *
1855  * Dumps the current state of the VM given by vm, to the FILE stream
1856  * given by stream.
1857  */
1858 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1859 {
1860 	int ctr;
1861 	struct userspace_mem_region *region;
1862 	struct kvm_vcpu *vcpu;
1863 
1864 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1865 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1866 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1867 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1868 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1869 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1870 			"host_virt: %p\n", indent + 2, "",
1871 			(uint64_t) region->region.guest_phys_addr,
1872 			(uint64_t) region->region.memory_size,
1873 			region->host_mem);
1874 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1875 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1876 	}
1877 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1878 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1879 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1880 		vm->pgd_created);
1881 	if (vm->pgd_created) {
1882 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1883 			indent + 2, "");
1884 		virt_dump(stream, vm, indent + 4);
1885 	}
1886 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1887 
1888 	list_for_each_entry(vcpu, &vm->vcpus, list)
1889 		vcpu_dump(stream, vcpu, indent + 2);
1890 }
1891 
1892 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1893 
1894 /* Known KVM exit reasons */
1895 static struct exit_reason {
1896 	unsigned int reason;
1897 	const char *name;
1898 } exit_reasons_known[] = {
1899 	KVM_EXIT_STRING(UNKNOWN),
1900 	KVM_EXIT_STRING(EXCEPTION),
1901 	KVM_EXIT_STRING(IO),
1902 	KVM_EXIT_STRING(HYPERCALL),
1903 	KVM_EXIT_STRING(DEBUG),
1904 	KVM_EXIT_STRING(HLT),
1905 	KVM_EXIT_STRING(MMIO),
1906 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1907 	KVM_EXIT_STRING(SHUTDOWN),
1908 	KVM_EXIT_STRING(FAIL_ENTRY),
1909 	KVM_EXIT_STRING(INTR),
1910 	KVM_EXIT_STRING(SET_TPR),
1911 	KVM_EXIT_STRING(TPR_ACCESS),
1912 	KVM_EXIT_STRING(S390_SIEIC),
1913 	KVM_EXIT_STRING(S390_RESET),
1914 	KVM_EXIT_STRING(DCR),
1915 	KVM_EXIT_STRING(NMI),
1916 	KVM_EXIT_STRING(INTERNAL_ERROR),
1917 	KVM_EXIT_STRING(OSI),
1918 	KVM_EXIT_STRING(PAPR_HCALL),
1919 	KVM_EXIT_STRING(S390_UCONTROL),
1920 	KVM_EXIT_STRING(WATCHDOG),
1921 	KVM_EXIT_STRING(S390_TSCH),
1922 	KVM_EXIT_STRING(EPR),
1923 	KVM_EXIT_STRING(SYSTEM_EVENT),
1924 	KVM_EXIT_STRING(S390_STSI),
1925 	KVM_EXIT_STRING(IOAPIC_EOI),
1926 	KVM_EXIT_STRING(HYPERV),
1927 	KVM_EXIT_STRING(ARM_NISV),
1928 	KVM_EXIT_STRING(X86_RDMSR),
1929 	KVM_EXIT_STRING(X86_WRMSR),
1930 	KVM_EXIT_STRING(DIRTY_RING_FULL),
1931 	KVM_EXIT_STRING(AP_RESET_HOLD),
1932 	KVM_EXIT_STRING(X86_BUS_LOCK),
1933 	KVM_EXIT_STRING(XEN),
1934 	KVM_EXIT_STRING(RISCV_SBI),
1935 	KVM_EXIT_STRING(RISCV_CSR),
1936 	KVM_EXIT_STRING(NOTIFY),
1937 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1938 	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1939 #endif
1940 };
1941 
1942 /*
1943  * Exit Reason String
1944  *
1945  * Input Args:
1946  *   exit_reason - Exit reason
1947  *
1948  * Output Args: None
1949  *
1950  * Return:
1951  *   Constant string pointer describing the exit reason.
1952  *
1953  * Locates and returns a constant string that describes the KVM exit
1954  * reason given by exit_reason.  If no such string is found, a constant
1955  * string of "Unknown" is returned.
1956  */
1957 const char *exit_reason_str(unsigned int exit_reason)
1958 {
1959 	unsigned int n1;
1960 
1961 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1962 		if (exit_reason == exit_reasons_known[n1].reason)
1963 			return exit_reasons_known[n1].name;
1964 	}
1965 
1966 	return "Unknown";
1967 }
1968 
1969 /*
1970  * Physical Contiguous Page Allocator
1971  *
1972  * Input Args:
1973  *   vm - Virtual Machine
1974  *   num - number of pages
1975  *   paddr_min - Physical address minimum
1976  *   memslot - Memory region to allocate page from
1977  *
1978  * Output Args: None
1979  *
1980  * Return:
1981  *   Starting physical address
1982  *
1983  * Within the VM specified by vm, locates a range of available physical
1984  * pages at or above paddr_min. If found, the pages are marked as in use
1985  * and their base address is returned. A TEST_ASSERT failure occurs if
1986  * not enough pages are available at or above paddr_min.
1987  */
1988 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1989 			      vm_paddr_t paddr_min, uint32_t memslot)
1990 {
1991 	struct userspace_mem_region *region;
1992 	sparsebit_idx_t pg, base;
1993 
1994 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1995 
1996 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1997 		"not divisible by page size.\n"
1998 		"  paddr_min: 0x%lx page_size: 0x%x",
1999 		paddr_min, vm->page_size);
2000 
2001 	region = memslot2region(vm, memslot);
2002 	base = pg = paddr_min >> vm->page_shift;
2003 
2004 	do {
2005 		for (; pg < base + num; ++pg) {
2006 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2007 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2008 				break;
2009 			}
2010 		}
2011 	} while (pg && pg != base + num);
2012 
2013 	if (pg == 0) {
2014 		fprintf(stderr, "No guest physical page available, "
2015 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2016 			paddr_min, vm->page_size, memslot);
2017 		fputs("---- vm dump ----\n", stderr);
2018 		vm_dump(stderr, vm, 2);
2019 		abort();
2020 	}
2021 
2022 	for (pg = base; pg < base + num; ++pg)
2023 		sparsebit_clear(region->unused_phy_pages, pg);
2024 
2025 	return base * vm->page_size;
2026 }
2027 
2028 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2029 			     uint32_t memslot)
2030 {
2031 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2032 }
2033 
2034 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2035 {
2036 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2037 				 vm->memslots[MEM_REGION_PT]);
2038 }
2039 
2040 /*
2041  * Address Guest Virtual to Host Virtual
2042  *
2043  * Input Args:
2044  *   vm - Virtual Machine
2045  *   gva - VM virtual address
2046  *
2047  * Output Args: None
2048  *
2049  * Return:
2050  *   Equivalent host virtual address
2051  */
2052 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2053 {
2054 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2055 }
2056 
2057 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2058 {
2059 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2060 }
2061 
2062 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2063 				      unsigned int page_shift,
2064 				      unsigned int new_page_shift,
2065 				      bool ceil)
2066 {
2067 	unsigned int n = 1 << (new_page_shift - page_shift);
2068 
2069 	if (page_shift >= new_page_shift)
2070 		return num_pages * (1 << (page_shift - new_page_shift));
2071 
2072 	return num_pages / n + !!(ceil && num_pages % n);
2073 }
2074 
2075 static inline int getpageshift(void)
2076 {
2077 	return __builtin_ffs(getpagesize()) - 1;
2078 }
2079 
2080 unsigned int
2081 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2082 {
2083 	return vm_calc_num_pages(num_guest_pages,
2084 				 vm_guest_mode_params[mode].page_shift,
2085 				 getpageshift(), true);
2086 }
2087 
2088 unsigned int
2089 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2090 {
2091 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2092 				 vm_guest_mode_params[mode].page_shift, false);
2093 }
2094 
2095 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2096 {
2097 	unsigned int n;
2098 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2099 	return vm_adjust_num_guest_pages(mode, n);
2100 }
2101 
2102 /*
2103  * Read binary stats descriptors
2104  *
2105  * Input Args:
2106  *   stats_fd - the file descriptor for the binary stats file from which to read
2107  *   header - the binary stats metadata header corresponding to the given FD
2108  *
2109  * Output Args: None
2110  *
2111  * Return:
2112  *   A pointer to a newly allocated series of stat descriptors.
2113  *   Caller is responsible for freeing the returned kvm_stats_desc.
2114  *
2115  * Read the stats descriptors from the binary stats interface.
2116  */
2117 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2118 					      struct kvm_stats_header *header)
2119 {
2120 	struct kvm_stats_desc *stats_desc;
2121 	ssize_t desc_size, total_size, ret;
2122 
2123 	desc_size = get_stats_descriptor_size(header);
2124 	total_size = header->num_desc * desc_size;
2125 
2126 	stats_desc = calloc(header->num_desc, desc_size);
2127 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2128 
2129 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2130 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2131 
2132 	return stats_desc;
2133 }
2134 
2135 /*
2136  * Read stat data for a particular stat
2137  *
2138  * Input Args:
2139  *   stats_fd - the file descriptor for the binary stats file from which to read
2140  *   header - the binary stats metadata header corresponding to the given FD
2141  *   desc - the binary stat metadata for the particular stat to be read
2142  *   max_elements - the maximum number of 8-byte values to read into data
2143  *
2144  * Output Args:
2145  *   data - the buffer into which stat data should be read
2146  *
2147  * Read the data values of a specified stat from the binary stats interface.
2148  */
2149 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2150 		    struct kvm_stats_desc *desc, uint64_t *data,
2151 		    size_t max_elements)
2152 {
2153 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2154 	size_t size = nr_elements * sizeof(*data);
2155 	ssize_t ret;
2156 
2157 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2158 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2159 
2160 	ret = pread(stats_fd, data, size,
2161 		    header->data_offset + desc->offset);
2162 
2163 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2164 		    desc->name, errno, strerror(errno));
2165 	TEST_ASSERT(ret == size,
2166 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2167 		    desc->name, size, ret);
2168 }
2169 
2170 /*
2171  * Read the data of the named stat
2172  *
2173  * Input Args:
2174  *   vm - the VM for which the stat should be read
2175  *   stat_name - the name of the stat to read
2176  *   max_elements - the maximum number of 8-byte values to read into data
2177  *
2178  * Output Args:
2179  *   data - the buffer into which stat data should be read
2180  *
2181  * Read the data values of a specified stat from the binary stats interface.
2182  */
2183 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2184 		   size_t max_elements)
2185 {
2186 	struct kvm_stats_desc *desc;
2187 	size_t size_desc;
2188 	int i;
2189 
2190 	if (!vm->stats_fd) {
2191 		vm->stats_fd = vm_get_stats_fd(vm);
2192 		read_stats_header(vm->stats_fd, &vm->stats_header);
2193 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2194 							&vm->stats_header);
2195 	}
2196 
2197 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2198 
2199 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2200 		desc = (void *)vm->stats_desc + (i * size_desc);
2201 
2202 		if (strcmp(desc->name, stat_name))
2203 			continue;
2204 
2205 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2206 			       data, max_elements);
2207 
2208 		break;
2209 	}
2210 }
2211 
2212 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2213 {
2214 }
2215 
2216 __weak void kvm_selftest_arch_init(void)
2217 {
2218 }
2219 
2220 void __attribute((constructor)) kvm_selftest_init(void)
2221 {
2222 	/* Tell stdout not to buffer its content. */
2223 	setbuf(stdout, NULL);
2224 
2225 	kvm_selftest_arch_init();
2226 }
2227