xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sched.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
31 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
32 
33 	return fd;
34 }
35 
36 /*
37  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
38  *
39  * Input Args:
40  *   flags - The flags to pass when opening KVM_DEV_PATH.
41  *
42  * Return:
43  *   The opened file descriptor of /dev/kvm.
44  */
45 static int _open_kvm_dev_path_or_exit(int flags)
46 {
47 	return open_path_or_exit(KVM_DEV_PATH, flags);
48 }
49 
50 int open_kvm_dev_path_or_exit(void)
51 {
52 	return _open_kvm_dev_path_or_exit(O_RDONLY);
53 }
54 
55 static ssize_t get_module_param(const char *module_name, const char *param,
56 				void *buffer, size_t buffer_size)
57 {
58 	const int path_size = 128;
59 	char path[path_size];
60 	ssize_t bytes_read;
61 	int fd, r;
62 
63 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
64 		     module_name, param);
65 	TEST_ASSERT(r < path_size,
66 		    "Failed to construct sysfs path in %d bytes.", path_size);
67 
68 	fd = open_path_or_exit(path, O_RDONLY);
69 
70 	bytes_read = read(fd, buffer, buffer_size);
71 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
72 		    path, bytes_read, buffer_size);
73 
74 	r = close(fd);
75 	TEST_ASSERT(!r, "close(%s) failed", path);
76 	return bytes_read;
77 }
78 
79 static int get_module_param_integer(const char *module_name, const char *param)
80 {
81 	/*
82 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
83 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
84 	 * at the end.
85 	 */
86 	char value[16 + 1 + 1];
87 	ssize_t r;
88 
89 	memset(value, '\0', sizeof(value));
90 
91 	r = get_module_param(module_name, param, value, sizeof(value));
92 	TEST_ASSERT(value[r - 1] == '\n',
93 		    "Expected trailing newline, got char '%c'", value[r - 1]);
94 
95 	/*
96 	 * Squash the newline, otherwise atoi_paranoid() will complain about
97 	 * trailing non-NUL characters in the string.
98 	 */
99 	value[r - 1] = '\0';
100 	return atoi_paranoid(value);
101 }
102 
103 static bool get_module_param_bool(const char *module_name, const char *param)
104 {
105 	char value;
106 	ssize_t r;
107 
108 	r = get_module_param(module_name, param, &value, sizeof(value));
109 	TEST_ASSERT_EQ(r, 1);
110 
111 	if (value == 'Y')
112 		return true;
113 	else if (value == 'N')
114 		return false;
115 
116 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
117 }
118 
119 bool get_kvm_param_bool(const char *param)
120 {
121 	return get_module_param_bool("kvm", param);
122 }
123 
124 bool get_kvm_intel_param_bool(const char *param)
125 {
126 	return get_module_param_bool("kvm_intel", param);
127 }
128 
129 bool get_kvm_amd_param_bool(const char *param)
130 {
131 	return get_module_param_bool("kvm_amd", param);
132 }
133 
134 int get_kvm_param_integer(const char *param)
135 {
136 	return get_module_param_integer("kvm", param);
137 }
138 
139 int get_kvm_intel_param_integer(const char *param)
140 {
141 	return get_module_param_integer("kvm_intel", param);
142 }
143 
144 int get_kvm_amd_param_integer(const char *param)
145 {
146 	return get_module_param_integer("kvm_amd", param);
147 }
148 
149 /*
150  * Capability
151  *
152  * Input Args:
153  *   cap - Capability
154  *
155  * Output Args: None
156  *
157  * Return:
158  *   On success, the Value corresponding to the capability (KVM_CAP_*)
159  *   specified by the value of cap.  On failure a TEST_ASSERT failure
160  *   is produced.
161  *
162  * Looks up and returns the value corresponding to the capability
163  * (KVM_CAP_*) given by cap.
164  */
165 unsigned int kvm_check_cap(long cap)
166 {
167 	int ret;
168 	int kvm_fd;
169 
170 	kvm_fd = open_kvm_dev_path_or_exit();
171 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
172 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
173 
174 	close(kvm_fd);
175 
176 	return (unsigned int)ret;
177 }
178 
179 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
180 {
181 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
182 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
183 	else
184 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
185 	vm->dirty_ring_size = ring_size;
186 }
187 
188 static void vm_open(struct kvm_vm *vm)
189 {
190 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
191 
192 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
193 
194 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
195 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
196 }
197 
198 const char *vm_guest_mode_string(uint32_t i)
199 {
200 	static const char * const strings[] = {
201 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
202 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
203 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
204 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
205 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
206 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
207 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
208 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
209 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
210 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
211 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
212 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
213 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
214 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
215 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
216 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
217 	};
218 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
219 		       "Missing new mode strings?");
220 
221 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
222 
223 	return strings[i];
224 }
225 
226 const struct vm_guest_mode_params vm_guest_mode_params[] = {
227 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
228 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
229 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
230 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
231 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
232 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
233 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
234 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
235 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
236 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
237 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
238 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
239 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
240 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
241 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
242 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
243 };
244 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
245 	       "Missing new mode params?");
246 
247 /*
248  * Initializes vm->vpages_valid to match the canonical VA space of the
249  * architecture.
250  *
251  * The default implementation is valid for architectures which split the
252  * range addressed by a single page table into a low and high region
253  * based on the MSB of the VA. On architectures with this behavior
254  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
255  */
256 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
257 {
258 	sparsebit_set_num(vm->vpages_valid,
259 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
260 	sparsebit_set_num(vm->vpages_valid,
261 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
262 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263 }
264 
265 struct kvm_vm *____vm_create(struct vm_shape shape)
266 {
267 	struct kvm_vm *vm;
268 
269 	vm = calloc(1, sizeof(*vm));
270 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
271 
272 	INIT_LIST_HEAD(&vm->vcpus);
273 	vm->regions.gpa_tree = RB_ROOT;
274 	vm->regions.hva_tree = RB_ROOT;
275 	hash_init(vm->regions.slot_hash);
276 
277 	vm->mode = shape.mode;
278 	vm->type = shape.type;
279 	vm->subtype = shape.subtype;
280 
281 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
282 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
283 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
284 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
285 
286 	/* Setup mode specific traits. */
287 	switch (vm->mode) {
288 	case VM_MODE_P52V48_4K:
289 		vm->pgtable_levels = 4;
290 		break;
291 	case VM_MODE_P52V48_64K:
292 		vm->pgtable_levels = 3;
293 		break;
294 	case VM_MODE_P48V48_4K:
295 		vm->pgtable_levels = 4;
296 		break;
297 	case VM_MODE_P48V48_64K:
298 		vm->pgtable_levels = 3;
299 		break;
300 	case VM_MODE_P40V48_4K:
301 	case VM_MODE_P36V48_4K:
302 		vm->pgtable_levels = 4;
303 		break;
304 	case VM_MODE_P40V48_64K:
305 	case VM_MODE_P36V48_64K:
306 		vm->pgtable_levels = 3;
307 		break;
308 	case VM_MODE_P52V48_16K:
309 	case VM_MODE_P48V48_16K:
310 	case VM_MODE_P40V48_16K:
311 	case VM_MODE_P36V48_16K:
312 		vm->pgtable_levels = 4;
313 		break;
314 	case VM_MODE_P36V47_16K:
315 		vm->pgtable_levels = 3;
316 		break;
317 	case VM_MODE_PXXV48_4K:
318 #ifdef __x86_64__
319 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
320 		kvm_init_vm_address_properties(vm);
321 		/*
322 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
323 		 * it doesn't take effect unless a CR4.LA57 is set, which it
324 		 * isn't for this mode (48-bit virtual address space).
325 		 */
326 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
327 			    "Linear address width (%d bits) not supported",
328 			    vm->va_bits);
329 		pr_debug("Guest physical address width detected: %d\n",
330 			 vm->pa_bits);
331 		vm->pgtable_levels = 4;
332 		vm->va_bits = 48;
333 #else
334 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
335 #endif
336 		break;
337 	case VM_MODE_P47V64_4K:
338 		vm->pgtable_levels = 5;
339 		break;
340 	case VM_MODE_P44V64_4K:
341 		vm->pgtable_levels = 5;
342 		break;
343 	default:
344 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
345 	}
346 
347 #ifdef __aarch64__
348 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
349 	if (vm->pa_bits != 40)
350 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
351 #endif
352 
353 	vm_open(vm);
354 
355 	/* Limit to VA-bit canonical virtual addresses. */
356 	vm->vpages_valid = sparsebit_alloc();
357 	vm_vaddr_populate_bitmap(vm);
358 
359 	/* Limit physical addresses to PA-bits. */
360 	vm->max_gfn = vm_compute_max_gfn(vm);
361 
362 	/* Allocate and setup memory for guest. */
363 	vm->vpages_mapped = sparsebit_alloc();
364 
365 	return vm;
366 }
367 
368 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
369 				     uint32_t nr_runnable_vcpus,
370 				     uint64_t extra_mem_pages)
371 {
372 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
373 	uint64_t nr_pages;
374 
375 	TEST_ASSERT(nr_runnable_vcpus,
376 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
377 
378 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
379 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
380 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
381 
382 	/*
383 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
384 	 * test code and other per-VM assets that will be loaded into memslot0.
385 	 */
386 	nr_pages = 512;
387 
388 	/* Account for the per-vCPU stacks on behalf of the test. */
389 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
390 
391 	/*
392 	 * Account for the number of pages needed for the page tables.  The
393 	 * maximum page table size for a memory region will be when the
394 	 * smallest page size is used. Considering each page contains x page
395 	 * table descriptors, the total extra size for page tables (for extra
396 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
397 	 * than N/x*2.
398 	 */
399 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
400 
401 	/* Account for the number of pages needed by ucall. */
402 	nr_pages += ucall_nr_pages_required(page_size);
403 
404 	return vm_adjust_num_guest_pages(mode, nr_pages);
405 }
406 
407 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
408 			   uint64_t nr_extra_pages)
409 {
410 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
411 						 nr_extra_pages);
412 	struct userspace_mem_region *slot0;
413 	struct kvm_vm *vm;
414 	int i;
415 
416 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
417 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
418 
419 	vm = ____vm_create(shape);
420 
421 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
422 	for (i = 0; i < NR_MEM_REGIONS; i++)
423 		vm->memslots[i] = 0;
424 
425 	kvm_vm_elf_load(vm, program_invocation_name);
426 
427 	/*
428 	 * TODO: Add proper defines to protect the library's memslots, and then
429 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
430 	 * read-only memslots as MMIO, and creating a read-only memslot for the
431 	 * MMIO region would prevent silently clobbering the MMIO region.
432 	 */
433 	slot0 = memslot2region(vm, 0);
434 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
435 
436 	kvm_arch_vm_post_create(vm);
437 
438 	return vm;
439 }
440 
441 /*
442  * VM Create with customized parameters
443  *
444  * Input Args:
445  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
446  *   nr_vcpus - VCPU count
447  *   extra_mem_pages - Non-slot0 physical memory total size
448  *   guest_code - Guest entry point
449  *   vcpuids - VCPU IDs
450  *
451  * Output Args: None
452  *
453  * Return:
454  *   Pointer to opaque structure that describes the created VM.
455  *
456  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
457  * extra_mem_pages is only used to calculate the maximum page table size,
458  * no real memory allocation for non-slot0 memory in this function.
459  */
460 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
461 				      uint64_t extra_mem_pages,
462 				      void *guest_code, struct kvm_vcpu *vcpus[])
463 {
464 	struct kvm_vm *vm;
465 	int i;
466 
467 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
468 
469 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
470 
471 	for (i = 0; i < nr_vcpus; ++i)
472 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
473 
474 	return vm;
475 }
476 
477 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
478 					       struct kvm_vcpu **vcpu,
479 					       uint64_t extra_mem_pages,
480 					       void *guest_code)
481 {
482 	struct kvm_vcpu *vcpus[1];
483 	struct kvm_vm *vm;
484 
485 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
486 
487 	*vcpu = vcpus[0];
488 	return vm;
489 }
490 
491 /*
492  * VM Restart
493  *
494  * Input Args:
495  *   vm - VM that has been released before
496  *
497  * Output Args: None
498  *
499  * Reopens the file descriptors associated to the VM and reinstates the
500  * global state, such as the irqchip and the memory regions that are mapped
501  * into the guest.
502  */
503 void kvm_vm_restart(struct kvm_vm *vmp)
504 {
505 	int ctr;
506 	struct userspace_mem_region *region;
507 
508 	vm_open(vmp);
509 	if (vmp->has_irqchip)
510 		vm_create_irqchip(vmp);
511 
512 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
513 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
514 
515 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
516 			    "  rc: %i errno: %i\n"
517 			    "  slot: %u flags: 0x%x\n"
518 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
519 			    ret, errno, region->region.slot,
520 			    region->region.flags,
521 			    region->region.guest_phys_addr,
522 			    region->region.memory_size);
523 	}
524 }
525 
526 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
527 					      uint32_t vcpu_id)
528 {
529 	return __vm_vcpu_add(vm, vcpu_id);
530 }
531 
532 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
533 {
534 	kvm_vm_restart(vm);
535 
536 	return vm_vcpu_recreate(vm, 0);
537 }
538 
539 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
540 {
541 	cpu_set_t mask;
542 	int r;
543 
544 	CPU_ZERO(&mask);
545 	CPU_SET(pcpu, &mask);
546 	r = sched_setaffinity(0, sizeof(mask), &mask);
547 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
548 }
549 
550 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
551 {
552 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
553 
554 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
555 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
556 	return pcpu;
557 }
558 
559 void kvm_print_vcpu_pinning_help(void)
560 {
561 	const char *name = program_invocation_name;
562 
563 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
564 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
565 	       "     entry for the main application task (specified via entry\n"
566 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
567 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
568 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
569 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
570 	       "         %s -v 3 -c 22,23,24,50\n\n"
571 	       "     To leave the application task unpinned, drop the final entry:\n\n"
572 	       "         %s -v 3 -c 22,23,24\n\n"
573 	       "     (default: no pinning)\n", name, name);
574 }
575 
576 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
577 			    int nr_vcpus)
578 {
579 	cpu_set_t allowed_mask;
580 	char *cpu, *cpu_list;
581 	char delim[2] = ",";
582 	int i, r;
583 
584 	cpu_list = strdup(pcpus_string);
585 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
586 
587 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
588 	TEST_ASSERT(!r, "sched_getaffinity() failed");
589 
590 	cpu = strtok(cpu_list, delim);
591 
592 	/* 1. Get all pcpus for vcpus. */
593 	for (i = 0; i < nr_vcpus; i++) {
594 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
595 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
596 		cpu = strtok(NULL, delim);
597 	}
598 
599 	/* 2. Check if the main worker needs to be pinned. */
600 	if (cpu) {
601 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
602 		cpu = strtok(NULL, delim);
603 	}
604 
605 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
606 	free(cpu_list);
607 }
608 
609 /*
610  * Userspace Memory Region Find
611  *
612  * Input Args:
613  *   vm - Virtual Machine
614  *   start - Starting VM physical address
615  *   end - Ending VM physical address, inclusive.
616  *
617  * Output Args: None
618  *
619  * Return:
620  *   Pointer to overlapping region, NULL if no such region.
621  *
622  * Searches for a region with any physical memory that overlaps with
623  * any portion of the guest physical addresses from start to end
624  * inclusive.  If multiple overlapping regions exist, a pointer to any
625  * of the regions is returned.  Null is returned only when no overlapping
626  * region exists.
627  */
628 static struct userspace_mem_region *
629 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
630 {
631 	struct rb_node *node;
632 
633 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
634 		struct userspace_mem_region *region =
635 			container_of(node, struct userspace_mem_region, gpa_node);
636 		uint64_t existing_start = region->region.guest_phys_addr;
637 		uint64_t existing_end = region->region.guest_phys_addr
638 			+ region->region.memory_size - 1;
639 		if (start <= existing_end && end >= existing_start)
640 			return region;
641 
642 		if (start < existing_start)
643 			node = node->rb_left;
644 		else
645 			node = node->rb_right;
646 	}
647 
648 	return NULL;
649 }
650 
651 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
652 {
653 
654 }
655 
656 /*
657  * VM VCPU Remove
658  *
659  * Input Args:
660  *   vcpu - VCPU to remove
661  *
662  * Output Args: None
663  *
664  * Return: None, TEST_ASSERT failures for all error conditions
665  *
666  * Removes a vCPU from a VM and frees its resources.
667  */
668 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
669 {
670 	int ret;
671 
672 	if (vcpu->dirty_gfns) {
673 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
674 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
675 		vcpu->dirty_gfns = NULL;
676 	}
677 
678 	ret = munmap(vcpu->run, vcpu_mmap_sz());
679 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
680 
681 	ret = close(vcpu->fd);
682 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
683 
684 	list_del(&vcpu->list);
685 
686 	vcpu_arch_free(vcpu);
687 	free(vcpu);
688 }
689 
690 void kvm_vm_release(struct kvm_vm *vmp)
691 {
692 	struct kvm_vcpu *vcpu, *tmp;
693 	int ret;
694 
695 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
696 		vm_vcpu_rm(vmp, vcpu);
697 
698 	ret = close(vmp->fd);
699 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
700 
701 	ret = close(vmp->kvm_fd);
702 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
703 }
704 
705 static void __vm_mem_region_delete(struct kvm_vm *vm,
706 				   struct userspace_mem_region *region,
707 				   bool unlink)
708 {
709 	int ret;
710 
711 	if (unlink) {
712 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
713 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
714 		hash_del(&region->slot_node);
715 	}
716 
717 	region->region.memory_size = 0;
718 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
719 
720 	sparsebit_free(&region->unused_phy_pages);
721 	sparsebit_free(&region->protected_phy_pages);
722 	ret = munmap(region->mmap_start, region->mmap_size);
723 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
724 	if (region->fd >= 0) {
725 		/* There's an extra map when using shared memory. */
726 		ret = munmap(region->mmap_alias, region->mmap_size);
727 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
728 		close(region->fd);
729 	}
730 	if (region->region.guest_memfd >= 0)
731 		close(region->region.guest_memfd);
732 
733 	free(region);
734 }
735 
736 /*
737  * Destroys and frees the VM pointed to by vmp.
738  */
739 void kvm_vm_free(struct kvm_vm *vmp)
740 {
741 	int ctr;
742 	struct hlist_node *node;
743 	struct userspace_mem_region *region;
744 
745 	if (vmp == NULL)
746 		return;
747 
748 	/* Free cached stats metadata and close FD */
749 	if (vmp->stats_fd) {
750 		free(vmp->stats_desc);
751 		close(vmp->stats_fd);
752 	}
753 
754 	/* Free userspace_mem_regions. */
755 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
756 		__vm_mem_region_delete(vmp, region, false);
757 
758 	/* Free sparsebit arrays. */
759 	sparsebit_free(&vmp->vpages_valid);
760 	sparsebit_free(&vmp->vpages_mapped);
761 
762 	kvm_vm_release(vmp);
763 
764 	/* Free the structure describing the VM. */
765 	free(vmp);
766 }
767 
768 int kvm_memfd_alloc(size_t size, bool hugepages)
769 {
770 	int memfd_flags = MFD_CLOEXEC;
771 	int fd, r;
772 
773 	if (hugepages)
774 		memfd_flags |= MFD_HUGETLB;
775 
776 	fd = memfd_create("kvm_selftest", memfd_flags);
777 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
778 
779 	r = ftruncate(fd, size);
780 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
781 
782 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
783 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
784 
785 	return fd;
786 }
787 
788 /*
789  * Memory Compare, host virtual to guest virtual
790  *
791  * Input Args:
792  *   hva - Starting host virtual address
793  *   vm - Virtual Machine
794  *   gva - Starting guest virtual address
795  *   len - number of bytes to compare
796  *
797  * Output Args: None
798  *
799  * Input/Output Args: None
800  *
801  * Return:
802  *   Returns 0 if the bytes starting at hva for a length of len
803  *   are equal the guest virtual bytes starting at gva.  Returns
804  *   a value < 0, if bytes at hva are less than those at gva.
805  *   Otherwise a value > 0 is returned.
806  *
807  * Compares the bytes starting at the host virtual address hva, for
808  * a length of len, to the guest bytes starting at the guest virtual
809  * address given by gva.
810  */
811 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
812 {
813 	size_t amt;
814 
815 	/*
816 	 * Compare a batch of bytes until either a match is found
817 	 * or all the bytes have been compared.
818 	 */
819 	for (uintptr_t offset = 0; offset < len; offset += amt) {
820 		uintptr_t ptr1 = (uintptr_t)hva + offset;
821 
822 		/*
823 		 * Determine host address for guest virtual address
824 		 * at offset.
825 		 */
826 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
827 
828 		/*
829 		 * Determine amount to compare on this pass.
830 		 * Don't allow the comparsion to cross a page boundary.
831 		 */
832 		amt = len - offset;
833 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
834 			amt = vm->page_size - (ptr1 % vm->page_size);
835 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
836 			amt = vm->page_size - (ptr2 % vm->page_size);
837 
838 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
839 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
840 
841 		/*
842 		 * Perform the comparison.  If there is a difference
843 		 * return that result to the caller, otherwise need
844 		 * to continue on looking for a mismatch.
845 		 */
846 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
847 		if (ret != 0)
848 			return ret;
849 	}
850 
851 	/*
852 	 * No mismatch found.  Let the caller know the two memory
853 	 * areas are equal.
854 	 */
855 	return 0;
856 }
857 
858 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
859 					       struct userspace_mem_region *region)
860 {
861 	struct rb_node **cur, *parent;
862 
863 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
864 		struct userspace_mem_region *cregion;
865 
866 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
867 		parent = *cur;
868 		if (region->region.guest_phys_addr <
869 		    cregion->region.guest_phys_addr)
870 			cur = &(*cur)->rb_left;
871 		else {
872 			TEST_ASSERT(region->region.guest_phys_addr !=
873 				    cregion->region.guest_phys_addr,
874 				    "Duplicate GPA in region tree");
875 
876 			cur = &(*cur)->rb_right;
877 		}
878 	}
879 
880 	rb_link_node(&region->gpa_node, parent, cur);
881 	rb_insert_color(&region->gpa_node, gpa_tree);
882 }
883 
884 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
885 					       struct userspace_mem_region *region)
886 {
887 	struct rb_node **cur, *parent;
888 
889 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
890 		struct userspace_mem_region *cregion;
891 
892 		cregion = container_of(*cur, typeof(*cregion), hva_node);
893 		parent = *cur;
894 		if (region->host_mem < cregion->host_mem)
895 			cur = &(*cur)->rb_left;
896 		else {
897 			TEST_ASSERT(region->host_mem !=
898 				    cregion->host_mem,
899 				    "Duplicate HVA in region tree");
900 
901 			cur = &(*cur)->rb_right;
902 		}
903 	}
904 
905 	rb_link_node(&region->hva_node, parent, cur);
906 	rb_insert_color(&region->hva_node, hva_tree);
907 }
908 
909 
910 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
911 				uint64_t gpa, uint64_t size, void *hva)
912 {
913 	struct kvm_userspace_memory_region region = {
914 		.slot = slot,
915 		.flags = flags,
916 		.guest_phys_addr = gpa,
917 		.memory_size = size,
918 		.userspace_addr = (uintptr_t)hva,
919 	};
920 
921 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
922 }
923 
924 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
925 			       uint64_t gpa, uint64_t size, void *hva)
926 {
927 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
928 
929 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
930 		    errno, strerror(errno));
931 }
932 
933 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934 				 uint64_t gpa, uint64_t size, void *hva,
935 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
936 {
937 	struct kvm_userspace_memory_region2 region = {
938 		.slot = slot,
939 		.flags = flags,
940 		.guest_phys_addr = gpa,
941 		.memory_size = size,
942 		.userspace_addr = (uintptr_t)hva,
943 		.guest_memfd = guest_memfd,
944 		.guest_memfd_offset = guest_memfd_offset,
945 	};
946 
947 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
948 }
949 
950 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
951 				uint64_t gpa, uint64_t size, void *hva,
952 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
953 {
954 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
955 					       guest_memfd, guest_memfd_offset);
956 
957 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
958 		    errno, strerror(errno));
959 }
960 
961 
962 /* FIXME: This thing needs to be ripped apart and rewritten. */
963 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
964 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
965 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
966 {
967 	int ret;
968 	struct userspace_mem_region *region;
969 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
970 	size_t mem_size = npages * vm->page_size;
971 	size_t alignment;
972 
973 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
974 		"Number of guest pages is not compatible with the host. "
975 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
976 
977 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
978 		"address not on a page boundary.\n"
979 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
980 		guest_paddr, vm->page_size);
981 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
982 		<= vm->max_gfn, "Physical range beyond maximum "
983 		"supported physical address,\n"
984 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
985 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
986 		guest_paddr, npages, vm->max_gfn, vm->page_size);
987 
988 	/*
989 	 * Confirm a mem region with an overlapping address doesn't
990 	 * already exist.
991 	 */
992 	region = (struct userspace_mem_region *) userspace_mem_region_find(
993 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
994 	if (region != NULL)
995 		TEST_FAIL("overlapping userspace_mem_region already "
996 			"exists\n"
997 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
998 			"page_size: 0x%x\n"
999 			"  existing guest_paddr: 0x%lx size: 0x%lx",
1000 			guest_paddr, npages, vm->page_size,
1001 			(uint64_t) region->region.guest_phys_addr,
1002 			(uint64_t) region->region.memory_size);
1003 
1004 	/* Confirm no region with the requested slot already exists. */
1005 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1006 			       slot) {
1007 		if (region->region.slot != slot)
1008 			continue;
1009 
1010 		TEST_FAIL("A mem region with the requested slot "
1011 			"already exists.\n"
1012 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1013 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1014 			slot, guest_paddr, npages,
1015 			region->region.slot,
1016 			(uint64_t) region->region.guest_phys_addr,
1017 			(uint64_t) region->region.memory_size);
1018 	}
1019 
1020 	/* Allocate and initialize new mem region structure. */
1021 	region = calloc(1, sizeof(*region));
1022 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1023 	region->mmap_size = mem_size;
1024 
1025 #ifdef __s390x__
1026 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1027 	alignment = 0x100000;
1028 #else
1029 	alignment = 1;
1030 #endif
1031 
1032 	/*
1033 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1034 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1035 	 * because mmap will always return an address aligned to the HugeTLB
1036 	 * page size.
1037 	 */
1038 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1039 		alignment = max(backing_src_pagesz, alignment);
1040 
1041 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1042 
1043 	/* Add enough memory to align up if necessary */
1044 	if (alignment > 1)
1045 		region->mmap_size += alignment;
1046 
1047 	region->fd = -1;
1048 	if (backing_src_is_shared(src_type))
1049 		region->fd = kvm_memfd_alloc(region->mmap_size,
1050 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1051 
1052 	region->mmap_start = mmap(NULL, region->mmap_size,
1053 				  PROT_READ | PROT_WRITE,
1054 				  vm_mem_backing_src_alias(src_type)->flag,
1055 				  region->fd, 0);
1056 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1057 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1058 
1059 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1060 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1061 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1062 		    region->mmap_start, backing_src_pagesz);
1063 
1064 	/* Align host address */
1065 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1066 
1067 	/* As needed perform madvise */
1068 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1069 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1070 		ret = madvise(region->host_mem, mem_size,
1071 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1072 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1073 			    region->host_mem, mem_size,
1074 			    vm_mem_backing_src_alias(src_type)->name);
1075 	}
1076 
1077 	region->backing_src_type = src_type;
1078 
1079 	if (flags & KVM_MEM_GUEST_MEMFD) {
1080 		if (guest_memfd < 0) {
1081 			uint32_t guest_memfd_flags = 0;
1082 			TEST_ASSERT(!guest_memfd_offset,
1083 				    "Offset must be zero when creating new guest_memfd");
1084 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1085 		} else {
1086 			/*
1087 			 * Install a unique fd for each memslot so that the fd
1088 			 * can be closed when the region is deleted without
1089 			 * needing to track if the fd is owned by the framework
1090 			 * or by the caller.
1091 			 */
1092 			guest_memfd = dup(guest_memfd);
1093 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1094 		}
1095 
1096 		region->region.guest_memfd = guest_memfd;
1097 		region->region.guest_memfd_offset = guest_memfd_offset;
1098 	} else {
1099 		region->region.guest_memfd = -1;
1100 	}
1101 
1102 	region->unused_phy_pages = sparsebit_alloc();
1103 	if (vm_arch_has_protected_memory(vm))
1104 		region->protected_phy_pages = sparsebit_alloc();
1105 	sparsebit_set_num(region->unused_phy_pages,
1106 		guest_paddr >> vm->page_shift, npages);
1107 	region->region.slot = slot;
1108 	region->region.flags = flags;
1109 	region->region.guest_phys_addr = guest_paddr;
1110 	region->region.memory_size = npages * vm->page_size;
1111 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1112 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1113 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1114 		"  rc: %i errno: %i\n"
1115 		"  slot: %u flags: 0x%x\n"
1116 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1117 		ret, errno, slot, flags,
1118 		guest_paddr, (uint64_t) region->region.memory_size,
1119 		region->region.guest_memfd);
1120 
1121 	/* Add to quick lookup data structures */
1122 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1123 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1124 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1125 
1126 	/* If shared memory, create an alias. */
1127 	if (region->fd >= 0) {
1128 		region->mmap_alias = mmap(NULL, region->mmap_size,
1129 					  PROT_READ | PROT_WRITE,
1130 					  vm_mem_backing_src_alias(src_type)->flag,
1131 					  region->fd, 0);
1132 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1133 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1134 
1135 		/* Align host alias address */
1136 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1137 	}
1138 }
1139 
1140 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1141 				 enum vm_mem_backing_src_type src_type,
1142 				 uint64_t guest_paddr, uint32_t slot,
1143 				 uint64_t npages, uint32_t flags)
1144 {
1145 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1146 }
1147 
1148 /*
1149  * Memslot to region
1150  *
1151  * Input Args:
1152  *   vm - Virtual Machine
1153  *   memslot - KVM memory slot ID
1154  *
1155  * Output Args: None
1156  *
1157  * Return:
1158  *   Pointer to memory region structure that describe memory region
1159  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1160  *   on error (e.g. currently no memory region using memslot as a KVM
1161  *   memory slot ID).
1162  */
1163 struct userspace_mem_region *
1164 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1165 {
1166 	struct userspace_mem_region *region;
1167 
1168 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1169 			       memslot)
1170 		if (region->region.slot == memslot)
1171 			return region;
1172 
1173 	fprintf(stderr, "No mem region with the requested slot found,\n"
1174 		"  requested slot: %u\n", memslot);
1175 	fputs("---- vm dump ----\n", stderr);
1176 	vm_dump(stderr, vm, 2);
1177 	TEST_FAIL("Mem region not found");
1178 	return NULL;
1179 }
1180 
1181 /*
1182  * VM Memory Region Flags Set
1183  *
1184  * Input Args:
1185  *   vm - Virtual Machine
1186  *   flags - Starting guest physical address
1187  *
1188  * Output Args: None
1189  *
1190  * Return: None
1191  *
1192  * Sets the flags of the memory region specified by the value of slot,
1193  * to the values given by flags.
1194  */
1195 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1196 {
1197 	int ret;
1198 	struct userspace_mem_region *region;
1199 
1200 	region = memslot2region(vm, slot);
1201 
1202 	region->region.flags = flags;
1203 
1204 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1205 
1206 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1207 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1208 		ret, errno, slot, flags);
1209 }
1210 
1211 /*
1212  * VM Memory Region Move
1213  *
1214  * Input Args:
1215  *   vm - Virtual Machine
1216  *   slot - Slot of the memory region to move
1217  *   new_gpa - Starting guest physical address
1218  *
1219  * Output Args: None
1220  *
1221  * Return: None
1222  *
1223  * Change the gpa of a memory region.
1224  */
1225 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1226 {
1227 	struct userspace_mem_region *region;
1228 	int ret;
1229 
1230 	region = memslot2region(vm, slot);
1231 
1232 	region->region.guest_phys_addr = new_gpa;
1233 
1234 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1235 
1236 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1237 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1238 		    ret, errno, slot, new_gpa);
1239 }
1240 
1241 /*
1242  * VM Memory Region Delete
1243  *
1244  * Input Args:
1245  *   vm - Virtual Machine
1246  *   slot - Slot of the memory region to delete
1247  *
1248  * Output Args: None
1249  *
1250  * Return: None
1251  *
1252  * Delete a memory region.
1253  */
1254 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1255 {
1256 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1257 }
1258 
1259 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1260 			    bool punch_hole)
1261 {
1262 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1263 	struct userspace_mem_region *region;
1264 	uint64_t end = base + size;
1265 	uint64_t gpa, len;
1266 	off_t fd_offset;
1267 	int ret;
1268 
1269 	for (gpa = base; gpa < end; gpa += len) {
1270 		uint64_t offset;
1271 
1272 		region = userspace_mem_region_find(vm, gpa, gpa);
1273 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1274 			    "Private memory region not found for GPA 0x%lx", gpa);
1275 
1276 		offset = gpa - region->region.guest_phys_addr;
1277 		fd_offset = region->region.guest_memfd_offset + offset;
1278 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1279 
1280 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1281 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1282 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1283 			    region->region.guest_memfd, mode, fd_offset);
1284 	}
1285 }
1286 
1287 /* Returns the size of a vCPU's kvm_run structure. */
1288 static int vcpu_mmap_sz(void)
1289 {
1290 	int dev_fd, ret;
1291 
1292 	dev_fd = open_kvm_dev_path_or_exit();
1293 
1294 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1295 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1296 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1297 
1298 	close(dev_fd);
1299 
1300 	return ret;
1301 }
1302 
1303 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1304 {
1305 	struct kvm_vcpu *vcpu;
1306 
1307 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1308 		if (vcpu->id == vcpu_id)
1309 			return true;
1310 	}
1311 
1312 	return false;
1313 }
1314 
1315 /*
1316  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1317  * No additional vCPU setup is done.  Returns the vCPU.
1318  */
1319 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1320 {
1321 	struct kvm_vcpu *vcpu;
1322 
1323 	/* Confirm a vcpu with the specified id doesn't already exist. */
1324 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1325 
1326 	/* Allocate and initialize new vcpu structure. */
1327 	vcpu = calloc(1, sizeof(*vcpu));
1328 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1329 
1330 	vcpu->vm = vm;
1331 	vcpu->id = vcpu_id;
1332 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1333 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1334 
1335 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1336 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1337 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1338 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1339 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1340 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1341 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1342 
1343 	/* Add to linked-list of VCPUs. */
1344 	list_add(&vcpu->list, &vm->vcpus);
1345 
1346 	return vcpu;
1347 }
1348 
1349 /*
1350  * VM Virtual Address Unused Gap
1351  *
1352  * Input Args:
1353  *   vm - Virtual Machine
1354  *   sz - Size (bytes)
1355  *   vaddr_min - Minimum Virtual Address
1356  *
1357  * Output Args: None
1358  *
1359  * Return:
1360  *   Lowest virtual address at or below vaddr_min, with at least
1361  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1362  *   size sz is available.
1363  *
1364  * Within the VM specified by vm, locates the lowest starting virtual
1365  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1366  * TEST_ASSERT failure occurs for invalid input or no area of at least
1367  * sz unallocated bytes >= vaddr_min is available.
1368  */
1369 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1370 			       vm_vaddr_t vaddr_min)
1371 {
1372 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1373 
1374 	/* Determine lowest permitted virtual page index. */
1375 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1376 	if ((pgidx_start * vm->page_size) < vaddr_min)
1377 		goto no_va_found;
1378 
1379 	/* Loop over section with enough valid virtual page indexes. */
1380 	if (!sparsebit_is_set_num(vm->vpages_valid,
1381 		pgidx_start, pages))
1382 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1383 			pgidx_start, pages);
1384 	do {
1385 		/*
1386 		 * Are there enough unused virtual pages available at
1387 		 * the currently proposed starting virtual page index.
1388 		 * If not, adjust proposed starting index to next
1389 		 * possible.
1390 		 */
1391 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1392 			pgidx_start, pages))
1393 			goto va_found;
1394 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1395 			pgidx_start, pages);
1396 		if (pgidx_start == 0)
1397 			goto no_va_found;
1398 
1399 		/*
1400 		 * If needed, adjust proposed starting virtual address,
1401 		 * to next range of valid virtual addresses.
1402 		 */
1403 		if (!sparsebit_is_set_num(vm->vpages_valid,
1404 			pgidx_start, pages)) {
1405 			pgidx_start = sparsebit_next_set_num(
1406 				vm->vpages_valid, pgidx_start, pages);
1407 			if (pgidx_start == 0)
1408 				goto no_va_found;
1409 		}
1410 	} while (pgidx_start != 0);
1411 
1412 no_va_found:
1413 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1414 
1415 	/* NOT REACHED */
1416 	return -1;
1417 
1418 va_found:
1419 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1420 		pgidx_start, pages),
1421 		"Unexpected, invalid virtual page index range,\n"
1422 		"  pgidx_start: 0x%lx\n"
1423 		"  pages: 0x%lx",
1424 		pgidx_start, pages);
1425 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1426 		pgidx_start, pages),
1427 		"Unexpected, pages already mapped,\n"
1428 		"  pgidx_start: 0x%lx\n"
1429 		"  pages: 0x%lx",
1430 		pgidx_start, pages);
1431 
1432 	return pgidx_start * vm->page_size;
1433 }
1434 
1435 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1436 				     vm_vaddr_t vaddr_min,
1437 				     enum kvm_mem_region_type type,
1438 				     bool protected)
1439 {
1440 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1441 
1442 	virt_pgd_alloc(vm);
1443 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1444 						KVM_UTIL_MIN_PFN * vm->page_size,
1445 						vm->memslots[type], protected);
1446 
1447 	/*
1448 	 * Find an unused range of virtual page addresses of at least
1449 	 * pages in length.
1450 	 */
1451 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1452 
1453 	/* Map the virtual pages. */
1454 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1455 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1456 
1457 		virt_pg_map(vm, vaddr, paddr);
1458 
1459 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1460 	}
1461 
1462 	return vaddr_start;
1463 }
1464 
1465 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1466 			    enum kvm_mem_region_type type)
1467 {
1468 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1469 				  vm_arch_has_protected_memory(vm));
1470 }
1471 
1472 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1473 				 vm_vaddr_t vaddr_min,
1474 				 enum kvm_mem_region_type type)
1475 {
1476 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1477 }
1478 
1479 /*
1480  * VM Virtual Address Allocate
1481  *
1482  * Input Args:
1483  *   vm - Virtual Machine
1484  *   sz - Size in bytes
1485  *   vaddr_min - Minimum starting virtual address
1486  *
1487  * Output Args: None
1488  *
1489  * Return:
1490  *   Starting guest virtual address
1491  *
1492  * Allocates at least sz bytes within the virtual address space of the vm
1493  * given by vm.  The allocated bytes are mapped to a virtual address >=
1494  * the address given by vaddr_min.  Note that each allocation uses a
1495  * a unique set of pages, with the minimum real allocation being at least
1496  * a page. The allocated physical space comes from the TEST_DATA memory region.
1497  */
1498 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1499 {
1500 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1501 }
1502 
1503 /*
1504  * VM Virtual Address Allocate Pages
1505  *
1506  * Input Args:
1507  *   vm - Virtual Machine
1508  *
1509  * Output Args: None
1510  *
1511  * Return:
1512  *   Starting guest virtual address
1513  *
1514  * Allocates at least N system pages worth of bytes within the virtual address
1515  * space of the vm.
1516  */
1517 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1518 {
1519 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1520 }
1521 
1522 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1523 {
1524 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1525 }
1526 
1527 /*
1528  * VM Virtual Address Allocate Page
1529  *
1530  * Input Args:
1531  *   vm - Virtual Machine
1532  *
1533  * Output Args: None
1534  *
1535  * Return:
1536  *   Starting guest virtual address
1537  *
1538  * Allocates at least one system page worth of bytes within the virtual address
1539  * space of the vm.
1540  */
1541 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1542 {
1543 	return vm_vaddr_alloc_pages(vm, 1);
1544 }
1545 
1546 /*
1547  * Map a range of VM virtual address to the VM's physical address
1548  *
1549  * Input Args:
1550  *   vm - Virtual Machine
1551  *   vaddr - Virtuall address to map
1552  *   paddr - VM Physical Address
1553  *   npages - The number of pages to map
1554  *
1555  * Output Args: None
1556  *
1557  * Return: None
1558  *
1559  * Within the VM given by @vm, creates a virtual translation for
1560  * @npages starting at @vaddr to the page range starting at @paddr.
1561  */
1562 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1563 	      unsigned int npages)
1564 {
1565 	size_t page_size = vm->page_size;
1566 	size_t size = npages * page_size;
1567 
1568 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1569 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1570 
1571 	while (npages--) {
1572 		virt_pg_map(vm, vaddr, paddr);
1573 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1574 
1575 		vaddr += page_size;
1576 		paddr += page_size;
1577 	}
1578 }
1579 
1580 /*
1581  * Address VM Physical to Host Virtual
1582  *
1583  * Input Args:
1584  *   vm - Virtual Machine
1585  *   gpa - VM physical address
1586  *
1587  * Output Args: None
1588  *
1589  * Return:
1590  *   Equivalent host virtual address
1591  *
1592  * Locates the memory region containing the VM physical address given
1593  * by gpa, within the VM given by vm.  When found, the host virtual
1594  * address providing the memory to the vm physical address is returned.
1595  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1596  */
1597 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1598 {
1599 	struct userspace_mem_region *region;
1600 
1601 	gpa = vm_untag_gpa(vm, gpa);
1602 
1603 	region = userspace_mem_region_find(vm, gpa, gpa);
1604 	if (!region) {
1605 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1606 		return NULL;
1607 	}
1608 
1609 	return (void *)((uintptr_t)region->host_mem
1610 		+ (gpa - region->region.guest_phys_addr));
1611 }
1612 
1613 /*
1614  * Address Host Virtual to VM Physical
1615  *
1616  * Input Args:
1617  *   vm - Virtual Machine
1618  *   hva - Host virtual address
1619  *
1620  * Output Args: None
1621  *
1622  * Return:
1623  *   Equivalent VM physical address
1624  *
1625  * Locates the memory region containing the host virtual address given
1626  * by hva, within the VM given by vm.  When found, the equivalent
1627  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1628  * region containing hva exists.
1629  */
1630 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1631 {
1632 	struct rb_node *node;
1633 
1634 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1635 		struct userspace_mem_region *region =
1636 			container_of(node, struct userspace_mem_region, hva_node);
1637 
1638 		if (hva >= region->host_mem) {
1639 			if (hva <= (region->host_mem
1640 				+ region->region.memory_size - 1))
1641 				return (vm_paddr_t)((uintptr_t)
1642 					region->region.guest_phys_addr
1643 					+ (hva - (uintptr_t)region->host_mem));
1644 
1645 			node = node->rb_right;
1646 		} else
1647 			node = node->rb_left;
1648 	}
1649 
1650 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1651 	return -1;
1652 }
1653 
1654 /*
1655  * Address VM physical to Host Virtual *alias*.
1656  *
1657  * Input Args:
1658  *   vm - Virtual Machine
1659  *   gpa - VM physical address
1660  *
1661  * Output Args: None
1662  *
1663  * Return:
1664  *   Equivalent address within the host virtual *alias* area, or NULL
1665  *   (without failing the test) if the guest memory is not shared (so
1666  *   no alias exists).
1667  *
1668  * Create a writable, shared virtual=>physical alias for the specific GPA.
1669  * The primary use case is to allow the host selftest to manipulate guest
1670  * memory without mapping said memory in the guest's address space. And, for
1671  * userfaultfd-based demand paging, to do so without triggering userfaults.
1672  */
1673 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1674 {
1675 	struct userspace_mem_region *region;
1676 	uintptr_t offset;
1677 
1678 	region = userspace_mem_region_find(vm, gpa, gpa);
1679 	if (!region)
1680 		return NULL;
1681 
1682 	if (!region->host_alias)
1683 		return NULL;
1684 
1685 	offset = gpa - region->region.guest_phys_addr;
1686 	return (void *) ((uintptr_t) region->host_alias + offset);
1687 }
1688 
1689 /* Create an interrupt controller chip for the specified VM. */
1690 void vm_create_irqchip(struct kvm_vm *vm)
1691 {
1692 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1693 
1694 	vm->has_irqchip = true;
1695 }
1696 
1697 int _vcpu_run(struct kvm_vcpu *vcpu)
1698 {
1699 	int rc;
1700 
1701 	do {
1702 		rc = __vcpu_run(vcpu);
1703 	} while (rc == -1 && errno == EINTR);
1704 
1705 	assert_on_unhandled_exception(vcpu);
1706 
1707 	return rc;
1708 }
1709 
1710 /*
1711  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1712  * Assert if the KVM returns an error (other than -EINTR).
1713  */
1714 void vcpu_run(struct kvm_vcpu *vcpu)
1715 {
1716 	int ret = _vcpu_run(vcpu);
1717 
1718 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1719 }
1720 
1721 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1722 {
1723 	int ret;
1724 
1725 	vcpu->run->immediate_exit = 1;
1726 	ret = __vcpu_run(vcpu);
1727 	vcpu->run->immediate_exit = 0;
1728 
1729 	TEST_ASSERT(ret == -1 && errno == EINTR,
1730 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1731 		    ret, errno);
1732 }
1733 
1734 /*
1735  * Get the list of guest registers which are supported for
1736  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1737  * it is the caller's responsibility to free the list.
1738  */
1739 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1740 {
1741 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1742 	int ret;
1743 
1744 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1745 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1746 
1747 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1748 	reg_list->n = reg_list_n.n;
1749 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1750 	return reg_list;
1751 }
1752 
1753 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1754 {
1755 	uint32_t page_size = getpagesize();
1756 	uint32_t size = vcpu->vm->dirty_ring_size;
1757 
1758 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1759 
1760 	if (!vcpu->dirty_gfns) {
1761 		void *addr;
1762 
1763 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1764 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1765 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1766 
1767 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1768 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1769 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1770 
1771 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1772 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1773 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1774 
1775 		vcpu->dirty_gfns = addr;
1776 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1777 	}
1778 
1779 	return vcpu->dirty_gfns;
1780 }
1781 
1782 /*
1783  * Device Ioctl
1784  */
1785 
1786 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1787 {
1788 	struct kvm_device_attr attribute = {
1789 		.group = group,
1790 		.attr = attr,
1791 		.flags = 0,
1792 	};
1793 
1794 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1795 }
1796 
1797 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1798 {
1799 	struct kvm_create_device create_dev = {
1800 		.type = type,
1801 		.flags = KVM_CREATE_DEVICE_TEST,
1802 	};
1803 
1804 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1805 }
1806 
1807 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1808 {
1809 	struct kvm_create_device create_dev = {
1810 		.type = type,
1811 		.fd = -1,
1812 		.flags = 0,
1813 	};
1814 	int err;
1815 
1816 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1817 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1818 	return err ? : create_dev.fd;
1819 }
1820 
1821 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1822 {
1823 	struct kvm_device_attr kvmattr = {
1824 		.group = group,
1825 		.attr = attr,
1826 		.flags = 0,
1827 		.addr = (uintptr_t)val,
1828 	};
1829 
1830 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1831 }
1832 
1833 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1834 {
1835 	struct kvm_device_attr kvmattr = {
1836 		.group = group,
1837 		.attr = attr,
1838 		.flags = 0,
1839 		.addr = (uintptr_t)val,
1840 	};
1841 
1842 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1843 }
1844 
1845 /*
1846  * IRQ related functions.
1847  */
1848 
1849 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1850 {
1851 	struct kvm_irq_level irq_level = {
1852 		.irq    = irq,
1853 		.level  = level,
1854 	};
1855 
1856 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1857 }
1858 
1859 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1860 {
1861 	int ret = _kvm_irq_line(vm, irq, level);
1862 
1863 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1864 }
1865 
1866 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1867 {
1868 	struct kvm_irq_routing *routing;
1869 	size_t size;
1870 
1871 	size = sizeof(struct kvm_irq_routing);
1872 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1873 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1874 	routing = calloc(1, size);
1875 	assert(routing);
1876 
1877 	return routing;
1878 }
1879 
1880 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1881 		uint32_t gsi, uint32_t pin)
1882 {
1883 	int i;
1884 
1885 	assert(routing);
1886 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1887 
1888 	i = routing->nr;
1889 	routing->entries[i].gsi = gsi;
1890 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1891 	routing->entries[i].flags = 0;
1892 	routing->entries[i].u.irqchip.irqchip = 0;
1893 	routing->entries[i].u.irqchip.pin = pin;
1894 	routing->nr++;
1895 }
1896 
1897 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1898 {
1899 	int ret;
1900 
1901 	assert(routing);
1902 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1903 	free(routing);
1904 
1905 	return ret;
1906 }
1907 
1908 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1909 {
1910 	int ret;
1911 
1912 	ret = _kvm_gsi_routing_write(vm, routing);
1913 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1914 }
1915 
1916 /*
1917  * VM Dump
1918  *
1919  * Input Args:
1920  *   vm - Virtual Machine
1921  *   indent - Left margin indent amount
1922  *
1923  * Output Args:
1924  *   stream - Output FILE stream
1925  *
1926  * Return: None
1927  *
1928  * Dumps the current state of the VM given by vm, to the FILE stream
1929  * given by stream.
1930  */
1931 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1932 {
1933 	int ctr;
1934 	struct userspace_mem_region *region;
1935 	struct kvm_vcpu *vcpu;
1936 
1937 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1938 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1939 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1940 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1941 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1942 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1943 			"host_virt: %p\n", indent + 2, "",
1944 			(uint64_t) region->region.guest_phys_addr,
1945 			(uint64_t) region->region.memory_size,
1946 			region->host_mem);
1947 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1948 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1949 		if (region->protected_phy_pages) {
1950 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1951 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1952 		}
1953 	}
1954 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1955 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1956 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1957 		vm->pgd_created);
1958 	if (vm->pgd_created) {
1959 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1960 			indent + 2, "");
1961 		virt_dump(stream, vm, indent + 4);
1962 	}
1963 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1964 
1965 	list_for_each_entry(vcpu, &vm->vcpus, list)
1966 		vcpu_dump(stream, vcpu, indent + 2);
1967 }
1968 
1969 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1970 
1971 /* Known KVM exit reasons */
1972 static struct exit_reason {
1973 	unsigned int reason;
1974 	const char *name;
1975 } exit_reasons_known[] = {
1976 	KVM_EXIT_STRING(UNKNOWN),
1977 	KVM_EXIT_STRING(EXCEPTION),
1978 	KVM_EXIT_STRING(IO),
1979 	KVM_EXIT_STRING(HYPERCALL),
1980 	KVM_EXIT_STRING(DEBUG),
1981 	KVM_EXIT_STRING(HLT),
1982 	KVM_EXIT_STRING(MMIO),
1983 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1984 	KVM_EXIT_STRING(SHUTDOWN),
1985 	KVM_EXIT_STRING(FAIL_ENTRY),
1986 	KVM_EXIT_STRING(INTR),
1987 	KVM_EXIT_STRING(SET_TPR),
1988 	KVM_EXIT_STRING(TPR_ACCESS),
1989 	KVM_EXIT_STRING(S390_SIEIC),
1990 	KVM_EXIT_STRING(S390_RESET),
1991 	KVM_EXIT_STRING(DCR),
1992 	KVM_EXIT_STRING(NMI),
1993 	KVM_EXIT_STRING(INTERNAL_ERROR),
1994 	KVM_EXIT_STRING(OSI),
1995 	KVM_EXIT_STRING(PAPR_HCALL),
1996 	KVM_EXIT_STRING(S390_UCONTROL),
1997 	KVM_EXIT_STRING(WATCHDOG),
1998 	KVM_EXIT_STRING(S390_TSCH),
1999 	KVM_EXIT_STRING(EPR),
2000 	KVM_EXIT_STRING(SYSTEM_EVENT),
2001 	KVM_EXIT_STRING(S390_STSI),
2002 	KVM_EXIT_STRING(IOAPIC_EOI),
2003 	KVM_EXIT_STRING(HYPERV),
2004 	KVM_EXIT_STRING(ARM_NISV),
2005 	KVM_EXIT_STRING(X86_RDMSR),
2006 	KVM_EXIT_STRING(X86_WRMSR),
2007 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2008 	KVM_EXIT_STRING(AP_RESET_HOLD),
2009 	KVM_EXIT_STRING(X86_BUS_LOCK),
2010 	KVM_EXIT_STRING(XEN),
2011 	KVM_EXIT_STRING(RISCV_SBI),
2012 	KVM_EXIT_STRING(RISCV_CSR),
2013 	KVM_EXIT_STRING(NOTIFY),
2014 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2015 	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
2016 #endif
2017 };
2018 
2019 /*
2020  * Exit Reason String
2021  *
2022  * Input Args:
2023  *   exit_reason - Exit reason
2024  *
2025  * Output Args: None
2026  *
2027  * Return:
2028  *   Constant string pointer describing the exit reason.
2029  *
2030  * Locates and returns a constant string that describes the KVM exit
2031  * reason given by exit_reason.  If no such string is found, a constant
2032  * string of "Unknown" is returned.
2033  */
2034 const char *exit_reason_str(unsigned int exit_reason)
2035 {
2036 	unsigned int n1;
2037 
2038 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2039 		if (exit_reason == exit_reasons_known[n1].reason)
2040 			return exit_reasons_known[n1].name;
2041 	}
2042 
2043 	return "Unknown";
2044 }
2045 
2046 /*
2047  * Physical Contiguous Page Allocator
2048  *
2049  * Input Args:
2050  *   vm - Virtual Machine
2051  *   num - number of pages
2052  *   paddr_min - Physical address minimum
2053  *   memslot - Memory region to allocate page from
2054  *   protected - True if the pages will be used as protected/private memory
2055  *
2056  * Output Args: None
2057  *
2058  * Return:
2059  *   Starting physical address
2060  *
2061  * Within the VM specified by vm, locates a range of available physical
2062  * pages at or above paddr_min. If found, the pages are marked as in use
2063  * and their base address is returned. A TEST_ASSERT failure occurs if
2064  * not enough pages are available at or above paddr_min.
2065  */
2066 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2067 				vm_paddr_t paddr_min, uint32_t memslot,
2068 				bool protected)
2069 {
2070 	struct userspace_mem_region *region;
2071 	sparsebit_idx_t pg, base;
2072 
2073 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2074 
2075 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2076 		"not divisible by page size.\n"
2077 		"  paddr_min: 0x%lx page_size: 0x%x",
2078 		paddr_min, vm->page_size);
2079 
2080 	region = memslot2region(vm, memslot);
2081 	TEST_ASSERT(!protected || region->protected_phy_pages,
2082 		    "Region doesn't support protected memory");
2083 
2084 	base = pg = paddr_min >> vm->page_shift;
2085 	do {
2086 		for (; pg < base + num; ++pg) {
2087 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2088 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2089 				break;
2090 			}
2091 		}
2092 	} while (pg && pg != base + num);
2093 
2094 	if (pg == 0) {
2095 		fprintf(stderr, "No guest physical page available, "
2096 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2097 			paddr_min, vm->page_size, memslot);
2098 		fputs("---- vm dump ----\n", stderr);
2099 		vm_dump(stderr, vm, 2);
2100 		abort();
2101 	}
2102 
2103 	for (pg = base; pg < base + num; ++pg) {
2104 		sparsebit_clear(region->unused_phy_pages, pg);
2105 		if (protected)
2106 			sparsebit_set(region->protected_phy_pages, pg);
2107 	}
2108 
2109 	return base * vm->page_size;
2110 }
2111 
2112 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2113 			     uint32_t memslot)
2114 {
2115 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2116 }
2117 
2118 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2119 {
2120 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2121 				 vm->memslots[MEM_REGION_PT]);
2122 }
2123 
2124 /*
2125  * Address Guest Virtual to Host Virtual
2126  *
2127  * Input Args:
2128  *   vm - Virtual Machine
2129  *   gva - VM virtual address
2130  *
2131  * Output Args: None
2132  *
2133  * Return:
2134  *   Equivalent host virtual address
2135  */
2136 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2137 {
2138 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2139 }
2140 
2141 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2142 {
2143 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2144 }
2145 
2146 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2147 				      unsigned int page_shift,
2148 				      unsigned int new_page_shift,
2149 				      bool ceil)
2150 {
2151 	unsigned int n = 1 << (new_page_shift - page_shift);
2152 
2153 	if (page_shift >= new_page_shift)
2154 		return num_pages * (1 << (page_shift - new_page_shift));
2155 
2156 	return num_pages / n + !!(ceil && num_pages % n);
2157 }
2158 
2159 static inline int getpageshift(void)
2160 {
2161 	return __builtin_ffs(getpagesize()) - 1;
2162 }
2163 
2164 unsigned int
2165 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2166 {
2167 	return vm_calc_num_pages(num_guest_pages,
2168 				 vm_guest_mode_params[mode].page_shift,
2169 				 getpageshift(), true);
2170 }
2171 
2172 unsigned int
2173 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2174 {
2175 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2176 				 vm_guest_mode_params[mode].page_shift, false);
2177 }
2178 
2179 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2180 {
2181 	unsigned int n;
2182 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2183 	return vm_adjust_num_guest_pages(mode, n);
2184 }
2185 
2186 /*
2187  * Read binary stats descriptors
2188  *
2189  * Input Args:
2190  *   stats_fd - the file descriptor for the binary stats file from which to read
2191  *   header - the binary stats metadata header corresponding to the given FD
2192  *
2193  * Output Args: None
2194  *
2195  * Return:
2196  *   A pointer to a newly allocated series of stat descriptors.
2197  *   Caller is responsible for freeing the returned kvm_stats_desc.
2198  *
2199  * Read the stats descriptors from the binary stats interface.
2200  */
2201 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2202 					      struct kvm_stats_header *header)
2203 {
2204 	struct kvm_stats_desc *stats_desc;
2205 	ssize_t desc_size, total_size, ret;
2206 
2207 	desc_size = get_stats_descriptor_size(header);
2208 	total_size = header->num_desc * desc_size;
2209 
2210 	stats_desc = calloc(header->num_desc, desc_size);
2211 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2212 
2213 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2214 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2215 
2216 	return stats_desc;
2217 }
2218 
2219 /*
2220  * Read stat data for a particular stat
2221  *
2222  * Input Args:
2223  *   stats_fd - the file descriptor for the binary stats file from which to read
2224  *   header - the binary stats metadata header corresponding to the given FD
2225  *   desc - the binary stat metadata for the particular stat to be read
2226  *   max_elements - the maximum number of 8-byte values to read into data
2227  *
2228  * Output Args:
2229  *   data - the buffer into which stat data should be read
2230  *
2231  * Read the data values of a specified stat from the binary stats interface.
2232  */
2233 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2234 		    struct kvm_stats_desc *desc, uint64_t *data,
2235 		    size_t max_elements)
2236 {
2237 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2238 	size_t size = nr_elements * sizeof(*data);
2239 	ssize_t ret;
2240 
2241 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2242 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2243 
2244 	ret = pread(stats_fd, data, size,
2245 		    header->data_offset + desc->offset);
2246 
2247 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2248 		    desc->name, errno, strerror(errno));
2249 	TEST_ASSERT(ret == size,
2250 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2251 		    desc->name, size, ret);
2252 }
2253 
2254 /*
2255  * Read the data of the named stat
2256  *
2257  * Input Args:
2258  *   vm - the VM for which the stat should be read
2259  *   stat_name - the name of the stat to read
2260  *   max_elements - the maximum number of 8-byte values to read into data
2261  *
2262  * Output Args:
2263  *   data - the buffer into which stat data should be read
2264  *
2265  * Read the data values of a specified stat from the binary stats interface.
2266  */
2267 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2268 		   size_t max_elements)
2269 {
2270 	struct kvm_stats_desc *desc;
2271 	size_t size_desc;
2272 	int i;
2273 
2274 	if (!vm->stats_fd) {
2275 		vm->stats_fd = vm_get_stats_fd(vm);
2276 		read_stats_header(vm->stats_fd, &vm->stats_header);
2277 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2278 							&vm->stats_header);
2279 	}
2280 
2281 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2282 
2283 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2284 		desc = (void *)vm->stats_desc + (i * size_desc);
2285 
2286 		if (strcmp(desc->name, stat_name))
2287 			continue;
2288 
2289 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2290 			       data, max_elements);
2291 
2292 		break;
2293 	}
2294 }
2295 
2296 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2297 {
2298 }
2299 
2300 __weak void kvm_selftest_arch_init(void)
2301 {
2302 }
2303 
2304 void __attribute((constructor)) kvm_selftest_init(void)
2305 {
2306 	/* Tell stdout not to buffer its content. */
2307 	setbuf(stdout, NULL);
2308 
2309 	kvm_selftest_arch_init();
2310 }
2311 
2312 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2313 {
2314 	sparsebit_idx_t pg = 0;
2315 	struct userspace_mem_region *region;
2316 
2317 	if (!vm_arch_has_protected_memory(vm))
2318 		return false;
2319 
2320 	region = userspace_mem_region_find(vm, paddr, paddr);
2321 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2322 
2323 	pg = paddr >> vm->page_shift;
2324 	return sparsebit_is_set(region->protected_phy_pages, pg);
2325 }
2326