xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision e2bcf62a2e78f8d7e95485c0347bccfba3c5e459)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static size_t vcpu_mmap_sz(void);
28 
29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	if (fd < 0)
35 		goto error;
36 
37 	return fd;
38 
39 error:
40 	if (errno == EACCES || errno == ENOENT)
41 		ksft_exit_skip("- Cannot open '%s': %s.  %s\n",
42 			       path, strerror(errno),
43 			       errno == EACCES ? "Root required?" : enoent_help);
44 	TEST_FAIL("Failed to open '%s'", path);
45 }
46 
47 int open_path_or_exit(const char *path, int flags)
48 {
49 	return __open_path_or_exit(path, flags, "");
50 }
51 
52 /*
53  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
54  *
55  * Input Args:
56  *   flags - The flags to pass when opening KVM_DEV_PATH.
57  *
58  * Return:
59  *   The opened file descriptor of /dev/kvm.
60  */
61 static int _open_kvm_dev_path_or_exit(int flags)
62 {
63 	return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?");
64 }
65 
66 int open_kvm_dev_path_or_exit(void)
67 {
68 	return _open_kvm_dev_path_or_exit(O_RDONLY);
69 }
70 
71 static ssize_t get_module_param(const char *module_name, const char *param,
72 				void *buffer, size_t buffer_size)
73 {
74 	const int path_size = 128;
75 	char path[path_size];
76 	ssize_t bytes_read;
77 	int fd, r;
78 
79 	/* Verify KVM is loaded, to provide a more helpful SKIP message. */
80 	close(open_kvm_dev_path_or_exit());
81 
82 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
83 		     module_name, param);
84 	TEST_ASSERT(r < path_size,
85 		    "Failed to construct sysfs path in %d bytes.", path_size);
86 
87 	fd = open_path_or_exit(path, O_RDONLY);
88 
89 	bytes_read = read(fd, buffer, buffer_size);
90 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
91 		    path, bytes_read, buffer_size);
92 
93 	r = close(fd);
94 	TEST_ASSERT(!r, "close(%s) failed", path);
95 	return bytes_read;
96 }
97 
98 int kvm_get_module_param_integer(const char *module_name, const char *param)
99 {
100 	/*
101 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
102 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
103 	 * at the end.
104 	 */
105 	char value[16 + 1 + 1];
106 	ssize_t r;
107 
108 	memset(value, '\0', sizeof(value));
109 
110 	r = get_module_param(module_name, param, value, sizeof(value));
111 	TEST_ASSERT(value[r - 1] == '\n',
112 		    "Expected trailing newline, got char '%c'", value[r - 1]);
113 
114 	/*
115 	 * Squash the newline, otherwise atoi_paranoid() will complain about
116 	 * trailing non-NUL characters in the string.
117 	 */
118 	value[r - 1] = '\0';
119 	return atoi_paranoid(value);
120 }
121 
122 bool kvm_get_module_param_bool(const char *module_name, const char *param)
123 {
124 	char value;
125 	ssize_t r;
126 
127 	r = get_module_param(module_name, param, &value, sizeof(value));
128 	TEST_ASSERT_EQ(r, 1);
129 
130 	if (value == 'Y')
131 		return true;
132 	else if (value == 'N')
133 		return false;
134 
135 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
136 }
137 
138 /*
139  * Capability
140  *
141  * Input Args:
142  *   cap - Capability
143  *
144  * Output Args: None
145  *
146  * Return:
147  *   On success, the Value corresponding to the capability (KVM_CAP_*)
148  *   specified by the value of cap.  On failure a TEST_ASSERT failure
149  *   is produced.
150  *
151  * Looks up and returns the value corresponding to the capability
152  * (KVM_CAP_*) given by cap.
153  */
154 unsigned int kvm_check_cap(long cap)
155 {
156 	int ret;
157 	int kvm_fd;
158 
159 	kvm_fd = open_kvm_dev_path_or_exit();
160 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
161 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
162 
163 	close(kvm_fd);
164 
165 	return (unsigned int)ret;
166 }
167 
168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
169 {
170 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
171 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
172 	else
173 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
174 	vm->dirty_ring_size = ring_size;
175 }
176 
177 static void vm_open(struct kvm_vm *vm)
178 {
179 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
180 
181 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
182 
183 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
184 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
185 
186 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
187 		vm->stats.fd = vm_get_stats_fd(vm);
188 	else
189 		vm->stats.fd = -1;
190 }
191 
192 const char *vm_guest_mode_string(uint32_t i)
193 {
194 	static const char * const strings[] = {
195 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
196 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
197 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
198 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
199 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
200 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
201 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
202 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
203 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
204 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
205 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
206 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
207 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
208 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
209 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
210 		[VM_MODE_P47V47_16K]	= "PA-bits:47,  VA-bits:47, 16K pages",
211 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
212 	};
213 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
214 		       "Missing new mode strings?");
215 
216 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
217 
218 	return strings[i];
219 }
220 
221 const struct vm_guest_mode_params vm_guest_mode_params[] = {
222 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
223 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
224 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
225 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
226 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
227 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
228 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
229 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
230 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
231 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
232 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
233 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
234 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
235 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
236 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
237 	[VM_MODE_P47V47_16K]	= { 47, 47,  0x4000, 14 },
238 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
239 };
240 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
241 	       "Missing new mode params?");
242 
243 /*
244  * Initializes vm->vpages_valid to match the canonical VA space of the
245  * architecture.
246  *
247  * The default implementation is valid for architectures which split the
248  * range addressed by a single page table into a low and high region
249  * based on the MSB of the VA. On architectures with this behavior
250  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
251  */
252 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
253 {
254 	sparsebit_set_num(vm->vpages_valid,
255 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
256 	sparsebit_set_num(vm->vpages_valid,
257 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
258 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
259 }
260 
261 struct kvm_vm *____vm_create(struct vm_shape shape)
262 {
263 	struct kvm_vm *vm;
264 
265 	vm = calloc(1, sizeof(*vm));
266 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
267 
268 	INIT_LIST_HEAD(&vm->vcpus);
269 	vm->regions.gpa_tree = RB_ROOT;
270 	vm->regions.hva_tree = RB_ROOT;
271 	hash_init(vm->regions.slot_hash);
272 
273 	vm->mode = shape.mode;
274 	vm->type = shape.type;
275 
276 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
277 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
278 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
279 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
280 
281 	/* Setup mode specific traits. */
282 	switch (vm->mode) {
283 	case VM_MODE_P52V48_4K:
284 		vm->pgtable_levels = 4;
285 		break;
286 	case VM_MODE_P52V48_64K:
287 		vm->pgtable_levels = 3;
288 		break;
289 	case VM_MODE_P48V48_4K:
290 		vm->pgtable_levels = 4;
291 		break;
292 	case VM_MODE_P48V48_64K:
293 		vm->pgtable_levels = 3;
294 		break;
295 	case VM_MODE_P40V48_4K:
296 	case VM_MODE_P36V48_4K:
297 		vm->pgtable_levels = 4;
298 		break;
299 	case VM_MODE_P40V48_64K:
300 	case VM_MODE_P36V48_64K:
301 		vm->pgtable_levels = 3;
302 		break;
303 	case VM_MODE_P52V48_16K:
304 	case VM_MODE_P48V48_16K:
305 	case VM_MODE_P40V48_16K:
306 	case VM_MODE_P36V48_16K:
307 		vm->pgtable_levels = 4;
308 		break;
309 	case VM_MODE_P47V47_16K:
310 	case VM_MODE_P36V47_16K:
311 		vm->pgtable_levels = 3;
312 		break;
313 	case VM_MODE_PXXV48_4K:
314 #ifdef __x86_64__
315 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
316 		kvm_init_vm_address_properties(vm);
317 		/*
318 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
319 		 * it doesn't take effect unless a CR4.LA57 is set, which it
320 		 * isn't for this mode (48-bit virtual address space).
321 		 */
322 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
323 			    "Linear address width (%d bits) not supported",
324 			    vm->va_bits);
325 		pr_debug("Guest physical address width detected: %d\n",
326 			 vm->pa_bits);
327 		vm->pgtable_levels = 4;
328 		vm->va_bits = 48;
329 #else
330 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
331 #endif
332 		break;
333 	case VM_MODE_P47V64_4K:
334 		vm->pgtable_levels = 5;
335 		break;
336 	case VM_MODE_P44V64_4K:
337 		vm->pgtable_levels = 5;
338 		break;
339 	default:
340 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
341 	}
342 
343 #ifdef __aarch64__
344 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
345 	if (vm->pa_bits != 40)
346 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
347 #endif
348 
349 	vm_open(vm);
350 
351 	/* Limit to VA-bit canonical virtual addresses. */
352 	vm->vpages_valid = sparsebit_alloc();
353 	vm_vaddr_populate_bitmap(vm);
354 
355 	/* Limit physical addresses to PA-bits. */
356 	vm->max_gfn = vm_compute_max_gfn(vm);
357 
358 	/* Allocate and setup memory for guest. */
359 	vm->vpages_mapped = sparsebit_alloc();
360 
361 	return vm;
362 }
363 
364 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
365 				     uint32_t nr_runnable_vcpus,
366 				     uint64_t extra_mem_pages)
367 {
368 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
369 	uint64_t nr_pages;
370 
371 	TEST_ASSERT(nr_runnable_vcpus,
372 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
373 
374 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
375 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
376 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
377 
378 	/*
379 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
380 	 * test code and other per-VM assets that will be loaded into memslot0.
381 	 */
382 	nr_pages = 512;
383 
384 	/* Account for the per-vCPU stacks on behalf of the test. */
385 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
386 
387 	/*
388 	 * Account for the number of pages needed for the page tables.  The
389 	 * maximum page table size for a memory region will be when the
390 	 * smallest page size is used. Considering each page contains x page
391 	 * table descriptors, the total extra size for page tables (for extra
392 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
393 	 * than N/x*2.
394 	 */
395 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
396 
397 	/* Account for the number of pages needed by ucall. */
398 	nr_pages += ucall_nr_pages_required(page_size);
399 
400 	return vm_adjust_num_guest_pages(mode, nr_pages);
401 }
402 
403 void kvm_set_files_rlimit(uint32_t nr_vcpus)
404 {
405 	/*
406 	 * Each vCPU will open two file descriptors: the vCPU itself and the
407 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
408 	 * buffer for all other files a test may open.
409 	 */
410 	int nr_fds_wanted = nr_vcpus * 2 + 100;
411 	struct rlimit rl;
412 
413 	/*
414 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
415 	 * try raising the limits if needed.
416 	 */
417 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
418 
419 	if (rl.rlim_cur < nr_fds_wanted) {
420 		rl.rlim_cur = nr_fds_wanted;
421 		if (rl.rlim_max < nr_fds_wanted) {
422 			int old_rlim_max = rl.rlim_max;
423 
424 			rl.rlim_max = nr_fds_wanted;
425 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
426 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
427 				       old_rlim_max, nr_fds_wanted);
428 		} else {
429 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
430 		}
431 	}
432 
433 }
434 
435 static bool is_guest_memfd_required(struct vm_shape shape)
436 {
437 #ifdef __x86_64__
438 	return shape.type == KVM_X86_SNP_VM;
439 #else
440 	return false;
441 #endif
442 }
443 
444 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
445 			   uint64_t nr_extra_pages)
446 {
447 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
448 						 nr_extra_pages);
449 	struct userspace_mem_region *slot0;
450 	struct kvm_vm *vm;
451 	int i, flags;
452 
453 	kvm_set_files_rlimit(nr_runnable_vcpus);
454 
455 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
456 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
457 
458 	vm = ____vm_create(shape);
459 
460 	/*
461 	 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
462 	 * for CoCo VMs that require GUEST_MEMFD backed private memory.
463 	 */
464 	flags = 0;
465 	if (is_guest_memfd_required(shape))
466 		flags |= KVM_MEM_GUEST_MEMFD;
467 
468 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
469 	for (i = 0; i < NR_MEM_REGIONS; i++)
470 		vm->memslots[i] = 0;
471 
472 	kvm_vm_elf_load(vm, program_invocation_name);
473 
474 	/*
475 	 * TODO: Add proper defines to protect the library's memslots, and then
476 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
477 	 * read-only memslots as MMIO, and creating a read-only memslot for the
478 	 * MMIO region would prevent silently clobbering the MMIO region.
479 	 */
480 	slot0 = memslot2region(vm, 0);
481 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
482 
483 	if (guest_random_seed != last_guest_seed) {
484 		pr_info("Random seed: 0x%x\n", guest_random_seed);
485 		last_guest_seed = guest_random_seed;
486 	}
487 	guest_rng = new_guest_random_state(guest_random_seed);
488 	sync_global_to_guest(vm, guest_rng);
489 
490 	kvm_arch_vm_post_create(vm);
491 
492 	return vm;
493 }
494 
495 /*
496  * VM Create with customized parameters
497  *
498  * Input Args:
499  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
500  *   nr_vcpus - VCPU count
501  *   extra_mem_pages - Non-slot0 physical memory total size
502  *   guest_code - Guest entry point
503  *   vcpuids - VCPU IDs
504  *
505  * Output Args: None
506  *
507  * Return:
508  *   Pointer to opaque structure that describes the created VM.
509  *
510  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
511  * extra_mem_pages is only used to calculate the maximum page table size,
512  * no real memory allocation for non-slot0 memory in this function.
513  */
514 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
515 				      uint64_t extra_mem_pages,
516 				      void *guest_code, struct kvm_vcpu *vcpus[])
517 {
518 	struct kvm_vm *vm;
519 	int i;
520 
521 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
522 
523 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
524 
525 	for (i = 0; i < nr_vcpus; ++i)
526 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
527 
528 	return vm;
529 }
530 
531 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
532 					       struct kvm_vcpu **vcpu,
533 					       uint64_t extra_mem_pages,
534 					       void *guest_code)
535 {
536 	struct kvm_vcpu *vcpus[1];
537 	struct kvm_vm *vm;
538 
539 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
540 
541 	*vcpu = vcpus[0];
542 	return vm;
543 }
544 
545 /*
546  * VM Restart
547  *
548  * Input Args:
549  *   vm - VM that has been released before
550  *
551  * Output Args: None
552  *
553  * Reopens the file descriptors associated to the VM and reinstates the
554  * global state, such as the irqchip and the memory regions that are mapped
555  * into the guest.
556  */
557 void kvm_vm_restart(struct kvm_vm *vmp)
558 {
559 	int ctr;
560 	struct userspace_mem_region *region;
561 
562 	vm_open(vmp);
563 	if (vmp->has_irqchip)
564 		vm_create_irqchip(vmp);
565 
566 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
567 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
568 
569 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
570 			    "  rc: %i errno: %i\n"
571 			    "  slot: %u flags: 0x%x\n"
572 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
573 			    ret, errno, region->region.slot,
574 			    region->region.flags,
575 			    region->region.guest_phys_addr,
576 			    region->region.memory_size);
577 	}
578 }
579 
580 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
581 					      uint32_t vcpu_id)
582 {
583 	return __vm_vcpu_add(vm, vcpu_id);
584 }
585 
586 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
587 {
588 	kvm_vm_restart(vm);
589 
590 	return vm_vcpu_recreate(vm, 0);
591 }
592 
593 int __pin_task_to_cpu(pthread_t task, int cpu)
594 {
595 	cpu_set_t cpuset;
596 
597 	CPU_ZERO(&cpuset);
598 	CPU_SET(cpu, &cpuset);
599 
600 	return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset);
601 }
602 
603 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
604 {
605 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
606 
607 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
608 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
609 	return pcpu;
610 }
611 
612 void kvm_print_vcpu_pinning_help(void)
613 {
614 	const char *name = program_invocation_name;
615 
616 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
617 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
618 	       "     entry for the main application task (specified via entry\n"
619 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
620 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
621 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
622 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
623 	       "         %s -v 3 -c 22,23,24,50\n\n"
624 	       "     To leave the application task unpinned, drop the final entry:\n\n"
625 	       "         %s -v 3 -c 22,23,24\n\n"
626 	       "     (default: no pinning)\n", name, name);
627 }
628 
629 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
630 			    int nr_vcpus)
631 {
632 	cpu_set_t allowed_mask;
633 	char *cpu, *cpu_list;
634 	char delim[2] = ",";
635 	int i, r;
636 
637 	cpu_list = strdup(pcpus_string);
638 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
639 
640 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
641 	TEST_ASSERT(!r, "sched_getaffinity() failed");
642 
643 	cpu = strtok(cpu_list, delim);
644 
645 	/* 1. Get all pcpus for vcpus. */
646 	for (i = 0; i < nr_vcpus; i++) {
647 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
648 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
649 		cpu = strtok(NULL, delim);
650 	}
651 
652 	/* 2. Check if the main worker needs to be pinned. */
653 	if (cpu) {
654 		pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask));
655 		cpu = strtok(NULL, delim);
656 	}
657 
658 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
659 	free(cpu_list);
660 }
661 
662 /*
663  * Userspace Memory Region Find
664  *
665  * Input Args:
666  *   vm - Virtual Machine
667  *   start - Starting VM physical address
668  *   end - Ending VM physical address, inclusive.
669  *
670  * Output Args: None
671  *
672  * Return:
673  *   Pointer to overlapping region, NULL if no such region.
674  *
675  * Searches for a region with any physical memory that overlaps with
676  * any portion of the guest physical addresses from start to end
677  * inclusive.  If multiple overlapping regions exist, a pointer to any
678  * of the regions is returned.  Null is returned only when no overlapping
679  * region exists.
680  */
681 static struct userspace_mem_region *
682 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
683 {
684 	struct rb_node *node;
685 
686 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
687 		struct userspace_mem_region *region =
688 			container_of(node, struct userspace_mem_region, gpa_node);
689 		uint64_t existing_start = region->region.guest_phys_addr;
690 		uint64_t existing_end = region->region.guest_phys_addr
691 			+ region->region.memory_size - 1;
692 		if (start <= existing_end && end >= existing_start)
693 			return region;
694 
695 		if (start < existing_start)
696 			node = node->rb_left;
697 		else
698 			node = node->rb_right;
699 	}
700 
701 	return NULL;
702 }
703 
704 static void kvm_stats_release(struct kvm_binary_stats *stats)
705 {
706 	int ret;
707 
708 	if (stats->fd < 0)
709 		return;
710 
711 	if (stats->desc) {
712 		free(stats->desc);
713 		stats->desc = NULL;
714 	}
715 
716 	ret = close(stats->fd);
717 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
718 	stats->fd = -1;
719 }
720 
721 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
722 {
723 
724 }
725 
726 /*
727  * VM VCPU Remove
728  *
729  * Input Args:
730  *   vcpu - VCPU to remove
731  *
732  * Output Args: None
733  *
734  * Return: None, TEST_ASSERT failures for all error conditions
735  *
736  * Removes a vCPU from a VM and frees its resources.
737  */
738 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
739 {
740 	int ret;
741 
742 	if (vcpu->dirty_gfns) {
743 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
744 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
745 		vcpu->dirty_gfns = NULL;
746 	}
747 
748 	ret = munmap(vcpu->run, vcpu_mmap_sz());
749 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
750 
751 	ret = close(vcpu->fd);
752 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
753 
754 	kvm_stats_release(&vcpu->stats);
755 
756 	list_del(&vcpu->list);
757 
758 	vcpu_arch_free(vcpu);
759 	free(vcpu);
760 }
761 
762 void kvm_vm_release(struct kvm_vm *vmp)
763 {
764 	struct kvm_vcpu *vcpu, *tmp;
765 	int ret;
766 
767 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
768 		vm_vcpu_rm(vmp, vcpu);
769 
770 	ret = close(vmp->fd);
771 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
772 
773 	ret = close(vmp->kvm_fd);
774 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
775 
776 	/* Free cached stats metadata and close FD */
777 	kvm_stats_release(&vmp->stats);
778 }
779 
780 static void __vm_mem_region_delete(struct kvm_vm *vm,
781 				   struct userspace_mem_region *region)
782 {
783 	int ret;
784 
785 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
786 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
787 	hash_del(&region->slot_node);
788 
789 	sparsebit_free(&region->unused_phy_pages);
790 	sparsebit_free(&region->protected_phy_pages);
791 	ret = munmap(region->mmap_start, region->mmap_size);
792 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
793 	if (region->fd >= 0) {
794 		/* There's an extra map when using shared memory. */
795 		ret = munmap(region->mmap_alias, region->mmap_size);
796 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
797 		close(region->fd);
798 	}
799 	if (region->region.guest_memfd >= 0)
800 		close(region->region.guest_memfd);
801 
802 	free(region);
803 }
804 
805 /*
806  * Destroys and frees the VM pointed to by vmp.
807  */
808 void kvm_vm_free(struct kvm_vm *vmp)
809 {
810 	int ctr;
811 	struct hlist_node *node;
812 	struct userspace_mem_region *region;
813 
814 	if (vmp == NULL)
815 		return;
816 
817 	/* Free userspace_mem_regions. */
818 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
819 		__vm_mem_region_delete(vmp, region);
820 
821 	/* Free sparsebit arrays. */
822 	sparsebit_free(&vmp->vpages_valid);
823 	sparsebit_free(&vmp->vpages_mapped);
824 
825 	kvm_vm_release(vmp);
826 
827 	/* Free the structure describing the VM. */
828 	free(vmp);
829 }
830 
831 int kvm_memfd_alloc(size_t size, bool hugepages)
832 {
833 	int memfd_flags = MFD_CLOEXEC;
834 	int fd, r;
835 
836 	if (hugepages)
837 		memfd_flags |= MFD_HUGETLB;
838 
839 	fd = memfd_create("kvm_selftest", memfd_flags);
840 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
841 
842 	r = ftruncate(fd, size);
843 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
844 
845 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
846 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
847 
848 	return fd;
849 }
850 
851 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
852 					       struct userspace_mem_region *region)
853 {
854 	struct rb_node **cur, *parent;
855 
856 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
857 		struct userspace_mem_region *cregion;
858 
859 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
860 		parent = *cur;
861 		if (region->region.guest_phys_addr <
862 		    cregion->region.guest_phys_addr)
863 			cur = &(*cur)->rb_left;
864 		else {
865 			TEST_ASSERT(region->region.guest_phys_addr !=
866 				    cregion->region.guest_phys_addr,
867 				    "Duplicate GPA in region tree");
868 
869 			cur = &(*cur)->rb_right;
870 		}
871 	}
872 
873 	rb_link_node(&region->gpa_node, parent, cur);
874 	rb_insert_color(&region->gpa_node, gpa_tree);
875 }
876 
877 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
878 					       struct userspace_mem_region *region)
879 {
880 	struct rb_node **cur, *parent;
881 
882 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
883 		struct userspace_mem_region *cregion;
884 
885 		cregion = container_of(*cur, typeof(*cregion), hva_node);
886 		parent = *cur;
887 		if (region->host_mem < cregion->host_mem)
888 			cur = &(*cur)->rb_left;
889 		else {
890 			TEST_ASSERT(region->host_mem !=
891 				    cregion->host_mem,
892 				    "Duplicate HVA in region tree");
893 
894 			cur = &(*cur)->rb_right;
895 		}
896 	}
897 
898 	rb_link_node(&region->hva_node, parent, cur);
899 	rb_insert_color(&region->hva_node, hva_tree);
900 }
901 
902 
903 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
904 				uint64_t gpa, uint64_t size, void *hva)
905 {
906 	struct kvm_userspace_memory_region region = {
907 		.slot = slot,
908 		.flags = flags,
909 		.guest_phys_addr = gpa,
910 		.memory_size = size,
911 		.userspace_addr = (uintptr_t)hva,
912 	};
913 
914 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
915 }
916 
917 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
918 			       uint64_t gpa, uint64_t size, void *hva)
919 {
920 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
921 
922 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
923 		    errno, strerror(errno));
924 }
925 
926 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
927 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
928 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
929 
930 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
931 				 uint64_t gpa, uint64_t size, void *hva,
932 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
933 {
934 	struct kvm_userspace_memory_region2 region = {
935 		.slot = slot,
936 		.flags = flags,
937 		.guest_phys_addr = gpa,
938 		.memory_size = size,
939 		.userspace_addr = (uintptr_t)hva,
940 		.guest_memfd = guest_memfd,
941 		.guest_memfd_offset = guest_memfd_offset,
942 	};
943 
944 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
945 
946 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
947 }
948 
949 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
950 				uint64_t gpa, uint64_t size, void *hva,
951 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
952 {
953 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
954 					       guest_memfd, guest_memfd_offset);
955 
956 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
957 		    errno, strerror(errno));
958 }
959 
960 
961 /* FIXME: This thing needs to be ripped apart and rewritten. */
962 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
963 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
964 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
965 {
966 	int ret;
967 	struct userspace_mem_region *region;
968 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
969 	size_t mem_size = npages * vm->page_size;
970 	size_t alignment;
971 
972 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
973 
974 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
975 		"Number of guest pages is not compatible with the host. "
976 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
977 
978 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
979 		"address not on a page boundary.\n"
980 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
981 		guest_paddr, vm->page_size);
982 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
983 		<= vm->max_gfn, "Physical range beyond maximum "
984 		"supported physical address,\n"
985 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
986 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
987 		guest_paddr, npages, vm->max_gfn, vm->page_size);
988 
989 	/*
990 	 * Confirm a mem region with an overlapping address doesn't
991 	 * already exist.
992 	 */
993 	region = (struct userspace_mem_region *) userspace_mem_region_find(
994 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
995 	if (region != NULL)
996 		TEST_FAIL("overlapping userspace_mem_region already "
997 			"exists\n"
998 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
999 			"page_size: 0x%x\n"
1000 			"  existing guest_paddr: 0x%lx size: 0x%lx",
1001 			guest_paddr, npages, vm->page_size,
1002 			(uint64_t) region->region.guest_phys_addr,
1003 			(uint64_t) region->region.memory_size);
1004 
1005 	/* Confirm no region with the requested slot already exists. */
1006 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1007 			       slot) {
1008 		if (region->region.slot != slot)
1009 			continue;
1010 
1011 		TEST_FAIL("A mem region with the requested slot "
1012 			"already exists.\n"
1013 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1014 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1015 			slot, guest_paddr, npages,
1016 			region->region.slot,
1017 			(uint64_t) region->region.guest_phys_addr,
1018 			(uint64_t) region->region.memory_size);
1019 	}
1020 
1021 	/* Allocate and initialize new mem region structure. */
1022 	region = calloc(1, sizeof(*region));
1023 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1024 	region->mmap_size = mem_size;
1025 
1026 #ifdef __s390x__
1027 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1028 	alignment = 0x100000;
1029 #else
1030 	alignment = 1;
1031 #endif
1032 
1033 	/*
1034 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1035 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1036 	 * because mmap will always return an address aligned to the HugeTLB
1037 	 * page size.
1038 	 */
1039 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1040 		alignment = max(backing_src_pagesz, alignment);
1041 
1042 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1043 
1044 	/* Add enough memory to align up if necessary */
1045 	if (alignment > 1)
1046 		region->mmap_size += alignment;
1047 
1048 	region->fd = -1;
1049 	if (backing_src_is_shared(src_type))
1050 		region->fd = kvm_memfd_alloc(region->mmap_size,
1051 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1052 
1053 	region->mmap_start = mmap(NULL, region->mmap_size,
1054 				  PROT_READ | PROT_WRITE,
1055 				  vm_mem_backing_src_alias(src_type)->flag,
1056 				  region->fd, 0);
1057 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1058 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1059 
1060 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1061 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1062 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1063 		    region->mmap_start, backing_src_pagesz);
1064 
1065 	/* Align host address */
1066 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1067 
1068 	/* As needed perform madvise */
1069 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1070 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1071 		ret = madvise(region->host_mem, mem_size,
1072 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1073 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1074 			    region->host_mem, mem_size,
1075 			    vm_mem_backing_src_alias(src_type)->name);
1076 	}
1077 
1078 	region->backing_src_type = src_type;
1079 
1080 	if (flags & KVM_MEM_GUEST_MEMFD) {
1081 		if (guest_memfd < 0) {
1082 			uint32_t guest_memfd_flags = 0;
1083 			TEST_ASSERT(!guest_memfd_offset,
1084 				    "Offset must be zero when creating new guest_memfd");
1085 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1086 		} else {
1087 			/*
1088 			 * Install a unique fd for each memslot so that the fd
1089 			 * can be closed when the region is deleted without
1090 			 * needing to track if the fd is owned by the framework
1091 			 * or by the caller.
1092 			 */
1093 			guest_memfd = dup(guest_memfd);
1094 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1095 		}
1096 
1097 		region->region.guest_memfd = guest_memfd;
1098 		region->region.guest_memfd_offset = guest_memfd_offset;
1099 	} else {
1100 		region->region.guest_memfd = -1;
1101 	}
1102 
1103 	region->unused_phy_pages = sparsebit_alloc();
1104 	if (vm_arch_has_protected_memory(vm))
1105 		region->protected_phy_pages = sparsebit_alloc();
1106 	sparsebit_set_num(region->unused_phy_pages,
1107 		guest_paddr >> vm->page_shift, npages);
1108 	region->region.slot = slot;
1109 	region->region.flags = flags;
1110 	region->region.guest_phys_addr = guest_paddr;
1111 	region->region.memory_size = npages * vm->page_size;
1112 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1113 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1114 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1115 		"  rc: %i errno: %i\n"
1116 		"  slot: %u flags: 0x%x\n"
1117 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1118 		ret, errno, slot, flags,
1119 		guest_paddr, (uint64_t) region->region.memory_size,
1120 		region->region.guest_memfd);
1121 
1122 	/* Add to quick lookup data structures */
1123 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1124 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1125 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1126 
1127 	/* If shared memory, create an alias. */
1128 	if (region->fd >= 0) {
1129 		region->mmap_alias = mmap(NULL, region->mmap_size,
1130 					  PROT_READ | PROT_WRITE,
1131 					  vm_mem_backing_src_alias(src_type)->flag,
1132 					  region->fd, 0);
1133 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1134 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1135 
1136 		/* Align host alias address */
1137 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1138 	}
1139 }
1140 
1141 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1142 				 enum vm_mem_backing_src_type src_type,
1143 				 uint64_t guest_paddr, uint32_t slot,
1144 				 uint64_t npages, uint32_t flags)
1145 {
1146 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1147 }
1148 
1149 /*
1150  * Memslot to region
1151  *
1152  * Input Args:
1153  *   vm - Virtual Machine
1154  *   memslot - KVM memory slot ID
1155  *
1156  * Output Args: None
1157  *
1158  * Return:
1159  *   Pointer to memory region structure that describe memory region
1160  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1161  *   on error (e.g. currently no memory region using memslot as a KVM
1162  *   memory slot ID).
1163  */
1164 struct userspace_mem_region *
1165 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1166 {
1167 	struct userspace_mem_region *region;
1168 
1169 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1170 			       memslot)
1171 		if (region->region.slot == memslot)
1172 			return region;
1173 
1174 	fprintf(stderr, "No mem region with the requested slot found,\n"
1175 		"  requested slot: %u\n", memslot);
1176 	fputs("---- vm dump ----\n", stderr);
1177 	vm_dump(stderr, vm, 2);
1178 	TEST_FAIL("Mem region not found");
1179 	return NULL;
1180 }
1181 
1182 /*
1183  * VM Memory Region Flags Set
1184  *
1185  * Input Args:
1186  *   vm - Virtual Machine
1187  *   flags - Starting guest physical address
1188  *
1189  * Output Args: None
1190  *
1191  * Return: None
1192  *
1193  * Sets the flags of the memory region specified by the value of slot,
1194  * to the values given by flags.
1195  */
1196 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1197 {
1198 	int ret;
1199 	struct userspace_mem_region *region;
1200 
1201 	region = memslot2region(vm, slot);
1202 
1203 	region->region.flags = flags;
1204 
1205 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1206 
1207 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1208 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1209 		ret, errno, slot, flags);
1210 }
1211 
1212 /*
1213  * VM Memory Region Move
1214  *
1215  * Input Args:
1216  *   vm - Virtual Machine
1217  *   slot - Slot of the memory region to move
1218  *   new_gpa - Starting guest physical address
1219  *
1220  * Output Args: None
1221  *
1222  * Return: None
1223  *
1224  * Change the gpa of a memory region.
1225  */
1226 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1227 {
1228 	struct userspace_mem_region *region;
1229 	int ret;
1230 
1231 	region = memslot2region(vm, slot);
1232 
1233 	region->region.guest_phys_addr = new_gpa;
1234 
1235 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1236 
1237 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1238 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1239 		    ret, errno, slot, new_gpa);
1240 }
1241 
1242 /*
1243  * VM Memory Region Delete
1244  *
1245  * Input Args:
1246  *   vm - Virtual Machine
1247  *   slot - Slot of the memory region to delete
1248  *
1249  * Output Args: None
1250  *
1251  * Return: None
1252  *
1253  * Delete a memory region.
1254  */
1255 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1256 {
1257 	struct userspace_mem_region *region = memslot2region(vm, slot);
1258 
1259 	region->region.memory_size = 0;
1260 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1261 
1262 	__vm_mem_region_delete(vm, region);
1263 }
1264 
1265 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1266 			    bool punch_hole)
1267 {
1268 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1269 	struct userspace_mem_region *region;
1270 	uint64_t end = base + size;
1271 	uint64_t gpa, len;
1272 	off_t fd_offset;
1273 	int ret;
1274 
1275 	for (gpa = base; gpa < end; gpa += len) {
1276 		uint64_t offset;
1277 
1278 		region = userspace_mem_region_find(vm, gpa, gpa);
1279 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1280 			    "Private memory region not found for GPA 0x%lx", gpa);
1281 
1282 		offset = gpa - region->region.guest_phys_addr;
1283 		fd_offset = region->region.guest_memfd_offset + offset;
1284 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1285 
1286 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1287 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1288 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1289 			    region->region.guest_memfd, mode, fd_offset);
1290 	}
1291 }
1292 
1293 /* Returns the size of a vCPU's kvm_run structure. */
1294 static size_t vcpu_mmap_sz(void)
1295 {
1296 	int dev_fd, ret;
1297 
1298 	dev_fd = open_kvm_dev_path_or_exit();
1299 
1300 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1301 	TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run),
1302 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1303 
1304 	close(dev_fd);
1305 
1306 	return ret;
1307 }
1308 
1309 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1310 {
1311 	struct kvm_vcpu *vcpu;
1312 
1313 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1314 		if (vcpu->id == vcpu_id)
1315 			return true;
1316 	}
1317 
1318 	return false;
1319 }
1320 
1321 /*
1322  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1323  * No additional vCPU setup is done.  Returns the vCPU.
1324  */
1325 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1326 {
1327 	struct kvm_vcpu *vcpu;
1328 
1329 	/* Confirm a vcpu with the specified id doesn't already exist. */
1330 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1331 
1332 	/* Allocate and initialize new vcpu structure. */
1333 	vcpu = calloc(1, sizeof(*vcpu));
1334 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1335 
1336 	vcpu->vm = vm;
1337 	vcpu->id = vcpu_id;
1338 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1339 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1340 
1341 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1342 		"smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi",
1343 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1344 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1345 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1346 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1347 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1348 
1349 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1350 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1351 	else
1352 		vcpu->stats.fd = -1;
1353 
1354 	/* Add to linked-list of VCPUs. */
1355 	list_add(&vcpu->list, &vm->vcpus);
1356 
1357 	return vcpu;
1358 }
1359 
1360 /*
1361  * VM Virtual Address Unused Gap
1362  *
1363  * Input Args:
1364  *   vm - Virtual Machine
1365  *   sz - Size (bytes)
1366  *   vaddr_min - Minimum Virtual Address
1367  *
1368  * Output Args: None
1369  *
1370  * Return:
1371  *   Lowest virtual address at or below vaddr_min, with at least
1372  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1373  *   size sz is available.
1374  *
1375  * Within the VM specified by vm, locates the lowest starting virtual
1376  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1377  * TEST_ASSERT failure occurs for invalid input or no area of at least
1378  * sz unallocated bytes >= vaddr_min is available.
1379  */
1380 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1381 			       vm_vaddr_t vaddr_min)
1382 {
1383 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1384 
1385 	/* Determine lowest permitted virtual page index. */
1386 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1387 	if ((pgidx_start * vm->page_size) < vaddr_min)
1388 		goto no_va_found;
1389 
1390 	/* Loop over section with enough valid virtual page indexes. */
1391 	if (!sparsebit_is_set_num(vm->vpages_valid,
1392 		pgidx_start, pages))
1393 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1394 			pgidx_start, pages);
1395 	do {
1396 		/*
1397 		 * Are there enough unused virtual pages available at
1398 		 * the currently proposed starting virtual page index.
1399 		 * If not, adjust proposed starting index to next
1400 		 * possible.
1401 		 */
1402 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1403 			pgidx_start, pages))
1404 			goto va_found;
1405 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1406 			pgidx_start, pages);
1407 		if (pgidx_start == 0)
1408 			goto no_va_found;
1409 
1410 		/*
1411 		 * If needed, adjust proposed starting virtual address,
1412 		 * to next range of valid virtual addresses.
1413 		 */
1414 		if (!sparsebit_is_set_num(vm->vpages_valid,
1415 			pgidx_start, pages)) {
1416 			pgidx_start = sparsebit_next_set_num(
1417 				vm->vpages_valid, pgidx_start, pages);
1418 			if (pgidx_start == 0)
1419 				goto no_va_found;
1420 		}
1421 	} while (pgidx_start != 0);
1422 
1423 no_va_found:
1424 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1425 
1426 	/* NOT REACHED */
1427 	return -1;
1428 
1429 va_found:
1430 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1431 		pgidx_start, pages),
1432 		"Unexpected, invalid virtual page index range,\n"
1433 		"  pgidx_start: 0x%lx\n"
1434 		"  pages: 0x%lx",
1435 		pgidx_start, pages);
1436 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1437 		pgidx_start, pages),
1438 		"Unexpected, pages already mapped,\n"
1439 		"  pgidx_start: 0x%lx\n"
1440 		"  pages: 0x%lx",
1441 		pgidx_start, pages);
1442 
1443 	return pgidx_start * vm->page_size;
1444 }
1445 
1446 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1447 				     vm_vaddr_t vaddr_min,
1448 				     enum kvm_mem_region_type type,
1449 				     bool protected)
1450 {
1451 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1452 
1453 	virt_pgd_alloc(vm);
1454 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1455 						KVM_UTIL_MIN_PFN * vm->page_size,
1456 						vm->memslots[type], protected);
1457 
1458 	/*
1459 	 * Find an unused range of virtual page addresses of at least
1460 	 * pages in length.
1461 	 */
1462 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1463 
1464 	/* Map the virtual pages. */
1465 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1466 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1467 
1468 		virt_pg_map(vm, vaddr, paddr);
1469 
1470 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1471 	}
1472 
1473 	return vaddr_start;
1474 }
1475 
1476 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1477 			    enum kvm_mem_region_type type)
1478 {
1479 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1480 				  vm_arch_has_protected_memory(vm));
1481 }
1482 
1483 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1484 				 vm_vaddr_t vaddr_min,
1485 				 enum kvm_mem_region_type type)
1486 {
1487 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1488 }
1489 
1490 /*
1491  * VM Virtual Address Allocate
1492  *
1493  * Input Args:
1494  *   vm - Virtual Machine
1495  *   sz - Size in bytes
1496  *   vaddr_min - Minimum starting virtual address
1497  *
1498  * Output Args: None
1499  *
1500  * Return:
1501  *   Starting guest virtual address
1502  *
1503  * Allocates at least sz bytes within the virtual address space of the vm
1504  * given by vm.  The allocated bytes are mapped to a virtual address >=
1505  * the address given by vaddr_min.  Note that each allocation uses a
1506  * a unique set of pages, with the minimum real allocation being at least
1507  * a page. The allocated physical space comes from the TEST_DATA memory region.
1508  */
1509 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1510 {
1511 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1512 }
1513 
1514 /*
1515  * VM Virtual Address Allocate Pages
1516  *
1517  * Input Args:
1518  *   vm - Virtual Machine
1519  *
1520  * Output Args: None
1521  *
1522  * Return:
1523  *   Starting guest virtual address
1524  *
1525  * Allocates at least N system pages worth of bytes within the virtual address
1526  * space of the vm.
1527  */
1528 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1529 {
1530 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1531 }
1532 
1533 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1534 {
1535 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1536 }
1537 
1538 /*
1539  * VM Virtual Address Allocate Page
1540  *
1541  * Input Args:
1542  *   vm - Virtual Machine
1543  *
1544  * Output Args: None
1545  *
1546  * Return:
1547  *   Starting guest virtual address
1548  *
1549  * Allocates at least one system page worth of bytes within the virtual address
1550  * space of the vm.
1551  */
1552 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1553 {
1554 	return vm_vaddr_alloc_pages(vm, 1);
1555 }
1556 
1557 /*
1558  * Map a range of VM virtual address to the VM's physical address
1559  *
1560  * Input Args:
1561  *   vm - Virtual Machine
1562  *   vaddr - Virtuall address to map
1563  *   paddr - VM Physical Address
1564  *   npages - The number of pages to map
1565  *
1566  * Output Args: None
1567  *
1568  * Return: None
1569  *
1570  * Within the VM given by @vm, creates a virtual translation for
1571  * @npages starting at @vaddr to the page range starting at @paddr.
1572  */
1573 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1574 	      unsigned int npages)
1575 {
1576 	size_t page_size = vm->page_size;
1577 	size_t size = npages * page_size;
1578 
1579 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1580 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1581 
1582 	while (npages--) {
1583 		virt_pg_map(vm, vaddr, paddr);
1584 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1585 
1586 		vaddr += page_size;
1587 		paddr += page_size;
1588 	}
1589 }
1590 
1591 /*
1592  * Address VM Physical to Host Virtual
1593  *
1594  * Input Args:
1595  *   vm - Virtual Machine
1596  *   gpa - VM physical address
1597  *
1598  * Output Args: None
1599  *
1600  * Return:
1601  *   Equivalent host virtual address
1602  *
1603  * Locates the memory region containing the VM physical address given
1604  * by gpa, within the VM given by vm.  When found, the host virtual
1605  * address providing the memory to the vm physical address is returned.
1606  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1607  */
1608 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1609 {
1610 	struct userspace_mem_region *region;
1611 
1612 	gpa = vm_untag_gpa(vm, gpa);
1613 
1614 	region = userspace_mem_region_find(vm, gpa, gpa);
1615 	if (!region) {
1616 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1617 		return NULL;
1618 	}
1619 
1620 	return (void *)((uintptr_t)region->host_mem
1621 		+ (gpa - region->region.guest_phys_addr));
1622 }
1623 
1624 /*
1625  * Address Host Virtual to VM Physical
1626  *
1627  * Input Args:
1628  *   vm - Virtual Machine
1629  *   hva - Host virtual address
1630  *
1631  * Output Args: None
1632  *
1633  * Return:
1634  *   Equivalent VM physical address
1635  *
1636  * Locates the memory region containing the host virtual address given
1637  * by hva, within the VM given by vm.  When found, the equivalent
1638  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1639  * region containing hva exists.
1640  */
1641 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1642 {
1643 	struct rb_node *node;
1644 
1645 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1646 		struct userspace_mem_region *region =
1647 			container_of(node, struct userspace_mem_region, hva_node);
1648 
1649 		if (hva >= region->host_mem) {
1650 			if (hva <= (region->host_mem
1651 				+ region->region.memory_size - 1))
1652 				return (vm_paddr_t)((uintptr_t)
1653 					region->region.guest_phys_addr
1654 					+ (hva - (uintptr_t)region->host_mem));
1655 
1656 			node = node->rb_right;
1657 		} else
1658 			node = node->rb_left;
1659 	}
1660 
1661 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1662 	return -1;
1663 }
1664 
1665 /*
1666  * Address VM physical to Host Virtual *alias*.
1667  *
1668  * Input Args:
1669  *   vm - Virtual Machine
1670  *   gpa - VM physical address
1671  *
1672  * Output Args: None
1673  *
1674  * Return:
1675  *   Equivalent address within the host virtual *alias* area, or NULL
1676  *   (without failing the test) if the guest memory is not shared (so
1677  *   no alias exists).
1678  *
1679  * Create a writable, shared virtual=>physical alias for the specific GPA.
1680  * The primary use case is to allow the host selftest to manipulate guest
1681  * memory without mapping said memory in the guest's address space. And, for
1682  * userfaultfd-based demand paging, to do so without triggering userfaults.
1683  */
1684 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1685 {
1686 	struct userspace_mem_region *region;
1687 	uintptr_t offset;
1688 
1689 	region = userspace_mem_region_find(vm, gpa, gpa);
1690 	if (!region)
1691 		return NULL;
1692 
1693 	if (!region->host_alias)
1694 		return NULL;
1695 
1696 	offset = gpa - region->region.guest_phys_addr;
1697 	return (void *) ((uintptr_t) region->host_alias + offset);
1698 }
1699 
1700 /* Create an interrupt controller chip for the specified VM. */
1701 void vm_create_irqchip(struct kvm_vm *vm)
1702 {
1703 	int r;
1704 
1705 	/*
1706 	 * Allocate a fully in-kernel IRQ chip by default, but fall back to a
1707 	 * split model (x86 only) if that fails (KVM x86 allows compiling out
1708 	 * support for KVM_CREATE_IRQCHIP).
1709 	 */
1710 	r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1711 	if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP))
1712 		vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24);
1713 	else
1714 		TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm);
1715 
1716 	vm->has_irqchip = true;
1717 }
1718 
1719 int _vcpu_run(struct kvm_vcpu *vcpu)
1720 {
1721 	int rc;
1722 
1723 	do {
1724 		rc = __vcpu_run(vcpu);
1725 	} while (rc == -1 && errno == EINTR);
1726 
1727 	if (!rc)
1728 		assert_on_unhandled_exception(vcpu);
1729 
1730 	return rc;
1731 }
1732 
1733 /*
1734  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1735  * Assert if the KVM returns an error (other than -EINTR).
1736  */
1737 void vcpu_run(struct kvm_vcpu *vcpu)
1738 {
1739 	int ret = _vcpu_run(vcpu);
1740 
1741 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1742 }
1743 
1744 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1745 {
1746 	int ret;
1747 
1748 	vcpu->run->immediate_exit = 1;
1749 	ret = __vcpu_run(vcpu);
1750 	vcpu->run->immediate_exit = 0;
1751 
1752 	TEST_ASSERT(ret == -1 && errno == EINTR,
1753 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1754 		    ret, errno);
1755 }
1756 
1757 /*
1758  * Get the list of guest registers which are supported for
1759  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1760  * it is the caller's responsibility to free the list.
1761  */
1762 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1763 {
1764 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1765 	int ret;
1766 
1767 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1768 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1769 
1770 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1771 	reg_list->n = reg_list_n.n;
1772 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1773 	return reg_list;
1774 }
1775 
1776 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1777 {
1778 	uint32_t page_size = getpagesize();
1779 	uint32_t size = vcpu->vm->dirty_ring_size;
1780 
1781 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1782 
1783 	if (!vcpu->dirty_gfns) {
1784 		void *addr;
1785 
1786 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1787 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1788 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1789 
1790 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1791 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1792 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1793 
1794 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1795 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1796 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1797 
1798 		vcpu->dirty_gfns = addr;
1799 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1800 	}
1801 
1802 	return vcpu->dirty_gfns;
1803 }
1804 
1805 /*
1806  * Device Ioctl
1807  */
1808 
1809 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1810 {
1811 	struct kvm_device_attr attribute = {
1812 		.group = group,
1813 		.attr = attr,
1814 		.flags = 0,
1815 	};
1816 
1817 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1818 }
1819 
1820 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1821 {
1822 	struct kvm_create_device create_dev = {
1823 		.type = type,
1824 		.flags = KVM_CREATE_DEVICE_TEST,
1825 	};
1826 
1827 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1828 }
1829 
1830 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1831 {
1832 	struct kvm_create_device create_dev = {
1833 		.type = type,
1834 		.fd = -1,
1835 		.flags = 0,
1836 	};
1837 	int err;
1838 
1839 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1840 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1841 	return err ? : create_dev.fd;
1842 }
1843 
1844 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1845 {
1846 	struct kvm_device_attr kvmattr = {
1847 		.group = group,
1848 		.attr = attr,
1849 		.flags = 0,
1850 		.addr = (uintptr_t)val,
1851 	};
1852 
1853 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1854 }
1855 
1856 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1857 {
1858 	struct kvm_device_attr kvmattr = {
1859 		.group = group,
1860 		.attr = attr,
1861 		.flags = 0,
1862 		.addr = (uintptr_t)val,
1863 	};
1864 
1865 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1866 }
1867 
1868 /*
1869  * IRQ related functions.
1870  */
1871 
1872 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1873 {
1874 	struct kvm_irq_level irq_level = {
1875 		.irq    = irq,
1876 		.level  = level,
1877 	};
1878 
1879 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1880 }
1881 
1882 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1883 {
1884 	int ret = _kvm_irq_line(vm, irq, level);
1885 
1886 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1887 }
1888 
1889 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1890 {
1891 	struct kvm_irq_routing *routing;
1892 	size_t size;
1893 
1894 	size = sizeof(struct kvm_irq_routing);
1895 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1896 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1897 	routing = calloc(1, size);
1898 	assert(routing);
1899 
1900 	return routing;
1901 }
1902 
1903 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1904 		uint32_t gsi, uint32_t pin)
1905 {
1906 	int i;
1907 
1908 	assert(routing);
1909 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1910 
1911 	i = routing->nr;
1912 	routing->entries[i].gsi = gsi;
1913 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1914 	routing->entries[i].flags = 0;
1915 	routing->entries[i].u.irqchip.irqchip = 0;
1916 	routing->entries[i].u.irqchip.pin = pin;
1917 	routing->nr++;
1918 }
1919 
1920 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1921 {
1922 	int ret;
1923 
1924 	assert(routing);
1925 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1926 	free(routing);
1927 
1928 	return ret;
1929 }
1930 
1931 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1932 {
1933 	int ret;
1934 
1935 	ret = _kvm_gsi_routing_write(vm, routing);
1936 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1937 }
1938 
1939 /*
1940  * VM Dump
1941  *
1942  * Input Args:
1943  *   vm - Virtual Machine
1944  *   indent - Left margin indent amount
1945  *
1946  * Output Args:
1947  *   stream - Output FILE stream
1948  *
1949  * Return: None
1950  *
1951  * Dumps the current state of the VM given by vm, to the FILE stream
1952  * given by stream.
1953  */
1954 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1955 {
1956 	int ctr;
1957 	struct userspace_mem_region *region;
1958 	struct kvm_vcpu *vcpu;
1959 
1960 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1961 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1962 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1963 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1964 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1965 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1966 			"host_virt: %p\n", indent + 2, "",
1967 			(uint64_t) region->region.guest_phys_addr,
1968 			(uint64_t) region->region.memory_size,
1969 			region->host_mem);
1970 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1971 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1972 		if (region->protected_phy_pages) {
1973 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1974 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1975 		}
1976 	}
1977 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1978 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1979 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1980 		vm->pgd_created);
1981 	if (vm->pgd_created) {
1982 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1983 			indent + 2, "");
1984 		virt_dump(stream, vm, indent + 4);
1985 	}
1986 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1987 
1988 	list_for_each_entry(vcpu, &vm->vcpus, list)
1989 		vcpu_dump(stream, vcpu, indent + 2);
1990 }
1991 
1992 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1993 
1994 /* Known KVM exit reasons */
1995 static struct exit_reason {
1996 	unsigned int reason;
1997 	const char *name;
1998 } exit_reasons_known[] = {
1999 	KVM_EXIT_STRING(UNKNOWN),
2000 	KVM_EXIT_STRING(EXCEPTION),
2001 	KVM_EXIT_STRING(IO),
2002 	KVM_EXIT_STRING(HYPERCALL),
2003 	KVM_EXIT_STRING(DEBUG),
2004 	KVM_EXIT_STRING(HLT),
2005 	KVM_EXIT_STRING(MMIO),
2006 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2007 	KVM_EXIT_STRING(SHUTDOWN),
2008 	KVM_EXIT_STRING(FAIL_ENTRY),
2009 	KVM_EXIT_STRING(INTR),
2010 	KVM_EXIT_STRING(SET_TPR),
2011 	KVM_EXIT_STRING(TPR_ACCESS),
2012 	KVM_EXIT_STRING(S390_SIEIC),
2013 	KVM_EXIT_STRING(S390_RESET),
2014 	KVM_EXIT_STRING(DCR),
2015 	KVM_EXIT_STRING(NMI),
2016 	KVM_EXIT_STRING(INTERNAL_ERROR),
2017 	KVM_EXIT_STRING(OSI),
2018 	KVM_EXIT_STRING(PAPR_HCALL),
2019 	KVM_EXIT_STRING(S390_UCONTROL),
2020 	KVM_EXIT_STRING(WATCHDOG),
2021 	KVM_EXIT_STRING(S390_TSCH),
2022 	KVM_EXIT_STRING(EPR),
2023 	KVM_EXIT_STRING(SYSTEM_EVENT),
2024 	KVM_EXIT_STRING(S390_STSI),
2025 	KVM_EXIT_STRING(IOAPIC_EOI),
2026 	KVM_EXIT_STRING(HYPERV),
2027 	KVM_EXIT_STRING(ARM_NISV),
2028 	KVM_EXIT_STRING(X86_RDMSR),
2029 	KVM_EXIT_STRING(X86_WRMSR),
2030 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2031 	KVM_EXIT_STRING(AP_RESET_HOLD),
2032 	KVM_EXIT_STRING(X86_BUS_LOCK),
2033 	KVM_EXIT_STRING(XEN),
2034 	KVM_EXIT_STRING(RISCV_SBI),
2035 	KVM_EXIT_STRING(RISCV_CSR),
2036 	KVM_EXIT_STRING(NOTIFY),
2037 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2038 	KVM_EXIT_STRING(MEMORY_FAULT),
2039 };
2040 
2041 /*
2042  * Exit Reason String
2043  *
2044  * Input Args:
2045  *   exit_reason - Exit reason
2046  *
2047  * Output Args: None
2048  *
2049  * Return:
2050  *   Constant string pointer describing the exit reason.
2051  *
2052  * Locates and returns a constant string that describes the KVM exit
2053  * reason given by exit_reason.  If no such string is found, a constant
2054  * string of "Unknown" is returned.
2055  */
2056 const char *exit_reason_str(unsigned int exit_reason)
2057 {
2058 	unsigned int n1;
2059 
2060 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2061 		if (exit_reason == exit_reasons_known[n1].reason)
2062 			return exit_reasons_known[n1].name;
2063 	}
2064 
2065 	return "Unknown";
2066 }
2067 
2068 /*
2069  * Physical Contiguous Page Allocator
2070  *
2071  * Input Args:
2072  *   vm - Virtual Machine
2073  *   num - number of pages
2074  *   paddr_min - Physical address minimum
2075  *   memslot - Memory region to allocate page from
2076  *   protected - True if the pages will be used as protected/private memory
2077  *
2078  * Output Args: None
2079  *
2080  * Return:
2081  *   Starting physical address
2082  *
2083  * Within the VM specified by vm, locates a range of available physical
2084  * pages at or above paddr_min. If found, the pages are marked as in use
2085  * and their base address is returned. A TEST_ASSERT failure occurs if
2086  * not enough pages are available at or above paddr_min.
2087  */
2088 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2089 				vm_paddr_t paddr_min, uint32_t memslot,
2090 				bool protected)
2091 {
2092 	struct userspace_mem_region *region;
2093 	sparsebit_idx_t pg, base;
2094 
2095 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2096 
2097 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2098 		"not divisible by page size.\n"
2099 		"  paddr_min: 0x%lx page_size: 0x%x",
2100 		paddr_min, vm->page_size);
2101 
2102 	region = memslot2region(vm, memslot);
2103 	TEST_ASSERT(!protected || region->protected_phy_pages,
2104 		    "Region doesn't support protected memory");
2105 
2106 	base = pg = paddr_min >> vm->page_shift;
2107 	do {
2108 		for (; pg < base + num; ++pg) {
2109 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2110 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2111 				break;
2112 			}
2113 		}
2114 	} while (pg && pg != base + num);
2115 
2116 	if (pg == 0) {
2117 		fprintf(stderr, "No guest physical page available, "
2118 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2119 			paddr_min, vm->page_size, memslot);
2120 		fputs("---- vm dump ----\n", stderr);
2121 		vm_dump(stderr, vm, 2);
2122 		abort();
2123 	}
2124 
2125 	for (pg = base; pg < base + num; ++pg) {
2126 		sparsebit_clear(region->unused_phy_pages, pg);
2127 		if (protected)
2128 			sparsebit_set(region->protected_phy_pages, pg);
2129 	}
2130 
2131 	return base * vm->page_size;
2132 }
2133 
2134 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2135 			     uint32_t memslot)
2136 {
2137 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2138 }
2139 
2140 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2141 {
2142 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2143 				 vm->memslots[MEM_REGION_PT]);
2144 }
2145 
2146 /*
2147  * Address Guest Virtual to Host Virtual
2148  *
2149  * Input Args:
2150  *   vm - Virtual Machine
2151  *   gva - VM virtual address
2152  *
2153  * Output Args: None
2154  *
2155  * Return:
2156  *   Equivalent host virtual address
2157  */
2158 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2159 {
2160 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2161 }
2162 
2163 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2164 {
2165 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2166 }
2167 
2168 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2169 				      unsigned int page_shift,
2170 				      unsigned int new_page_shift,
2171 				      bool ceil)
2172 {
2173 	unsigned int n = 1 << (new_page_shift - page_shift);
2174 
2175 	if (page_shift >= new_page_shift)
2176 		return num_pages * (1 << (page_shift - new_page_shift));
2177 
2178 	return num_pages / n + !!(ceil && num_pages % n);
2179 }
2180 
2181 static inline int getpageshift(void)
2182 {
2183 	return __builtin_ffs(getpagesize()) - 1;
2184 }
2185 
2186 unsigned int
2187 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2188 {
2189 	return vm_calc_num_pages(num_guest_pages,
2190 				 vm_guest_mode_params[mode].page_shift,
2191 				 getpageshift(), true);
2192 }
2193 
2194 unsigned int
2195 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2196 {
2197 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2198 				 vm_guest_mode_params[mode].page_shift, false);
2199 }
2200 
2201 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2202 {
2203 	unsigned int n;
2204 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2205 	return vm_adjust_num_guest_pages(mode, n);
2206 }
2207 
2208 /*
2209  * Read binary stats descriptors
2210  *
2211  * Input Args:
2212  *   stats_fd - the file descriptor for the binary stats file from which to read
2213  *   header - the binary stats metadata header corresponding to the given FD
2214  *
2215  * Output Args: None
2216  *
2217  * Return:
2218  *   A pointer to a newly allocated series of stat descriptors.
2219  *   Caller is responsible for freeing the returned kvm_stats_desc.
2220  *
2221  * Read the stats descriptors from the binary stats interface.
2222  */
2223 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2224 					      struct kvm_stats_header *header)
2225 {
2226 	struct kvm_stats_desc *stats_desc;
2227 	ssize_t desc_size, total_size, ret;
2228 
2229 	desc_size = get_stats_descriptor_size(header);
2230 	total_size = header->num_desc * desc_size;
2231 
2232 	stats_desc = calloc(header->num_desc, desc_size);
2233 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2234 
2235 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2236 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2237 
2238 	return stats_desc;
2239 }
2240 
2241 /*
2242  * Read stat data for a particular stat
2243  *
2244  * Input Args:
2245  *   stats_fd - the file descriptor for the binary stats file from which to read
2246  *   header - the binary stats metadata header corresponding to the given FD
2247  *   desc - the binary stat metadata for the particular stat to be read
2248  *   max_elements - the maximum number of 8-byte values to read into data
2249  *
2250  * Output Args:
2251  *   data - the buffer into which stat data should be read
2252  *
2253  * Read the data values of a specified stat from the binary stats interface.
2254  */
2255 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2256 		    struct kvm_stats_desc *desc, uint64_t *data,
2257 		    size_t max_elements)
2258 {
2259 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2260 	size_t size = nr_elements * sizeof(*data);
2261 	ssize_t ret;
2262 
2263 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2264 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2265 
2266 	ret = pread(stats_fd, data, size,
2267 		    header->data_offset + desc->offset);
2268 
2269 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2270 		    desc->name, errno, strerror(errno));
2271 	TEST_ASSERT(ret == size,
2272 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2273 		    desc->name, size, ret);
2274 }
2275 
2276 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2277 		  uint64_t *data, size_t max_elements)
2278 {
2279 	struct kvm_stats_desc *desc;
2280 	size_t size_desc;
2281 	int i;
2282 
2283 	if (!stats->desc) {
2284 		read_stats_header(stats->fd, &stats->header);
2285 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2286 	}
2287 
2288 	size_desc = get_stats_descriptor_size(&stats->header);
2289 
2290 	for (i = 0; i < stats->header.num_desc; ++i) {
2291 		desc = (void *)stats->desc + (i * size_desc);
2292 
2293 		if (strcmp(desc->name, name))
2294 			continue;
2295 
2296 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2297 		return;
2298 	}
2299 
2300 	TEST_FAIL("Unable to find stat '%s'", name);
2301 }
2302 
2303 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2304 {
2305 }
2306 
2307 __weak void kvm_selftest_arch_init(void)
2308 {
2309 }
2310 
2311 void __attribute((constructor)) kvm_selftest_init(void)
2312 {
2313 	/* Tell stdout not to buffer its content. */
2314 	setbuf(stdout, NULL);
2315 
2316 	guest_random_seed = last_guest_seed = random();
2317 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2318 
2319 	kvm_selftest_arch_init();
2320 }
2321 
2322 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2323 {
2324 	sparsebit_idx_t pg = 0;
2325 	struct userspace_mem_region *region;
2326 
2327 	if (!vm_arch_has_protected_memory(vm))
2328 		return false;
2329 
2330 	region = userspace_mem_region_find(vm, paddr, paddr);
2331 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2332 
2333 	pg = paddr >> vm->page_shift;
2334 	return sparsebit_is_set(region->protected_phy_pages, pg);
2335 }
2336