1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "processor.h" 10 #include "ucall_common.h" 11 12 #include <assert.h> 13 #include <sched.h> 14 #include <sys/mman.h> 15 #include <sys/resource.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 uint32_t guest_random_seed; 24 struct guest_random_state guest_rng; 25 static uint32_t last_guest_seed; 26 27 static size_t vcpu_mmap_sz(void); 28 29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help) 30 { 31 int fd; 32 33 fd = open(path, flags); 34 if (fd < 0) 35 goto error; 36 37 return fd; 38 39 error: 40 if (errno == EACCES || errno == ENOENT) 41 ksft_exit_skip("- Cannot open '%s': %s. %s\n", 42 path, strerror(errno), 43 errno == EACCES ? "Root required?" : enoent_help); 44 TEST_FAIL("Failed to open '%s'", path); 45 } 46 47 int open_path_or_exit(const char *path, int flags) 48 { 49 return __open_path_or_exit(path, flags, ""); 50 } 51 52 /* 53 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 54 * 55 * Input Args: 56 * flags - The flags to pass when opening KVM_DEV_PATH. 57 * 58 * Return: 59 * The opened file descriptor of /dev/kvm. 60 */ 61 static int _open_kvm_dev_path_or_exit(int flags) 62 { 63 return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?"); 64 } 65 66 int open_kvm_dev_path_or_exit(void) 67 { 68 return _open_kvm_dev_path_or_exit(O_RDONLY); 69 } 70 71 static ssize_t get_module_param(const char *module_name, const char *param, 72 void *buffer, size_t buffer_size) 73 { 74 const int path_size = 128; 75 char path[path_size]; 76 ssize_t bytes_read; 77 int fd, r; 78 79 /* Verify KVM is loaded, to provide a more helpful SKIP message. */ 80 close(open_kvm_dev_path_or_exit()); 81 82 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 83 module_name, param); 84 TEST_ASSERT(r < path_size, 85 "Failed to construct sysfs path in %d bytes.", path_size); 86 87 fd = open_path_or_exit(path, O_RDONLY); 88 89 bytes_read = read(fd, buffer, buffer_size); 90 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes", 91 path, bytes_read, buffer_size); 92 93 r = close(fd); 94 TEST_ASSERT(!r, "close(%s) failed", path); 95 return bytes_read; 96 } 97 98 int kvm_get_module_param_integer(const char *module_name, const char *param) 99 { 100 /* 101 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the 102 * NUL char, and 1 byte because the kernel sucks and inserts a newline 103 * at the end. 104 */ 105 char value[16 + 1 + 1]; 106 ssize_t r; 107 108 memset(value, '\0', sizeof(value)); 109 110 r = get_module_param(module_name, param, value, sizeof(value)); 111 TEST_ASSERT(value[r - 1] == '\n', 112 "Expected trailing newline, got char '%c'", value[r - 1]); 113 114 /* 115 * Squash the newline, otherwise atoi_paranoid() will complain about 116 * trailing non-NUL characters in the string. 117 */ 118 value[r - 1] = '\0'; 119 return atoi_paranoid(value); 120 } 121 122 bool kvm_get_module_param_bool(const char *module_name, const char *param) 123 { 124 char value; 125 ssize_t r; 126 127 r = get_module_param(module_name, param, &value, sizeof(value)); 128 TEST_ASSERT_EQ(r, 1); 129 130 if (value == 'Y') 131 return true; 132 else if (value == 'N') 133 return false; 134 135 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 136 } 137 138 /* 139 * Capability 140 * 141 * Input Args: 142 * cap - Capability 143 * 144 * Output Args: None 145 * 146 * Return: 147 * On success, the Value corresponding to the capability (KVM_CAP_*) 148 * specified by the value of cap. On failure a TEST_ASSERT failure 149 * is produced. 150 * 151 * Looks up and returns the value corresponding to the capability 152 * (KVM_CAP_*) given by cap. 153 */ 154 unsigned int kvm_check_cap(long cap) 155 { 156 int ret; 157 int kvm_fd; 158 159 kvm_fd = open_kvm_dev_path_or_exit(); 160 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 161 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 162 163 close(kvm_fd); 164 165 return (unsigned int)ret; 166 } 167 168 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 169 { 170 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 171 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 172 else 173 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 174 vm->dirty_ring_size = ring_size; 175 } 176 177 static void vm_open(struct kvm_vm *vm) 178 { 179 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 180 181 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 182 183 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 184 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 185 186 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 187 vm->stats.fd = vm_get_stats_fd(vm); 188 else 189 vm->stats.fd = -1; 190 } 191 192 const char *vm_guest_mode_string(uint32_t i) 193 { 194 static const char * const strings[] = { 195 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 196 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 197 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 198 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 199 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 200 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 201 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 202 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 203 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 204 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 205 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 206 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 207 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 208 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 209 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 210 [VM_MODE_P47V47_16K] = "PA-bits:47, VA-bits:47, 16K pages", 211 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 212 }; 213 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 214 "Missing new mode strings?"); 215 216 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 217 218 return strings[i]; 219 } 220 221 const struct vm_guest_mode_params vm_guest_mode_params[] = { 222 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 223 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 224 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 225 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 226 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 227 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 228 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 229 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 230 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 231 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 232 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 233 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 234 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 235 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 236 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 237 [VM_MODE_P47V47_16K] = { 47, 47, 0x4000, 14 }, 238 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 239 }; 240 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 241 "Missing new mode params?"); 242 243 /* 244 * Initializes vm->vpages_valid to match the canonical VA space of the 245 * architecture. 246 * 247 * The default implementation is valid for architectures which split the 248 * range addressed by a single page table into a low and high region 249 * based on the MSB of the VA. On architectures with this behavior 250 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 251 */ 252 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 253 { 254 sparsebit_set_num(vm->vpages_valid, 255 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 256 sparsebit_set_num(vm->vpages_valid, 257 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 258 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 259 } 260 261 struct kvm_vm *____vm_create(struct vm_shape shape) 262 { 263 struct kvm_vm *vm; 264 265 vm = calloc(1, sizeof(*vm)); 266 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 267 268 INIT_LIST_HEAD(&vm->vcpus); 269 vm->regions.gpa_tree = RB_ROOT; 270 vm->regions.hva_tree = RB_ROOT; 271 hash_init(vm->regions.slot_hash); 272 273 vm->mode = shape.mode; 274 vm->type = shape.type; 275 276 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 277 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 278 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 279 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 280 281 /* Setup mode specific traits. */ 282 switch (vm->mode) { 283 case VM_MODE_P52V48_4K: 284 vm->pgtable_levels = 4; 285 break; 286 case VM_MODE_P52V48_64K: 287 vm->pgtable_levels = 3; 288 break; 289 case VM_MODE_P48V48_4K: 290 vm->pgtable_levels = 4; 291 break; 292 case VM_MODE_P48V48_64K: 293 vm->pgtable_levels = 3; 294 break; 295 case VM_MODE_P40V48_4K: 296 case VM_MODE_P36V48_4K: 297 vm->pgtable_levels = 4; 298 break; 299 case VM_MODE_P40V48_64K: 300 case VM_MODE_P36V48_64K: 301 vm->pgtable_levels = 3; 302 break; 303 case VM_MODE_P52V48_16K: 304 case VM_MODE_P48V48_16K: 305 case VM_MODE_P40V48_16K: 306 case VM_MODE_P36V48_16K: 307 vm->pgtable_levels = 4; 308 break; 309 case VM_MODE_P47V47_16K: 310 case VM_MODE_P36V47_16K: 311 vm->pgtable_levels = 3; 312 break; 313 case VM_MODE_PXXV48_4K: 314 #ifdef __x86_64__ 315 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 316 kvm_init_vm_address_properties(vm); 317 /* 318 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 319 * it doesn't take effect unless a CR4.LA57 is set, which it 320 * isn't for this mode (48-bit virtual address space). 321 */ 322 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 323 "Linear address width (%d bits) not supported", 324 vm->va_bits); 325 pr_debug("Guest physical address width detected: %d\n", 326 vm->pa_bits); 327 vm->pgtable_levels = 4; 328 vm->va_bits = 48; 329 #else 330 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 331 #endif 332 break; 333 case VM_MODE_P47V64_4K: 334 vm->pgtable_levels = 5; 335 break; 336 case VM_MODE_P44V64_4K: 337 vm->pgtable_levels = 5; 338 break; 339 default: 340 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 341 } 342 343 #ifdef __aarch64__ 344 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 345 if (vm->pa_bits != 40) 346 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 347 #endif 348 349 vm_open(vm); 350 351 /* Limit to VA-bit canonical virtual addresses. */ 352 vm->vpages_valid = sparsebit_alloc(); 353 vm_vaddr_populate_bitmap(vm); 354 355 /* Limit physical addresses to PA-bits. */ 356 vm->max_gfn = vm_compute_max_gfn(vm); 357 358 /* Allocate and setup memory for guest. */ 359 vm->vpages_mapped = sparsebit_alloc(); 360 361 return vm; 362 } 363 364 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 365 uint32_t nr_runnable_vcpus, 366 uint64_t extra_mem_pages) 367 { 368 uint64_t page_size = vm_guest_mode_params[mode].page_size; 369 uint64_t nr_pages; 370 371 TEST_ASSERT(nr_runnable_vcpus, 372 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 373 374 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 375 "nr_vcpus = %d too large for host, max-vcpus = %d", 376 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 377 378 /* 379 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 380 * test code and other per-VM assets that will be loaded into memslot0. 381 */ 382 nr_pages = 512; 383 384 /* Account for the per-vCPU stacks on behalf of the test. */ 385 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 386 387 /* 388 * Account for the number of pages needed for the page tables. The 389 * maximum page table size for a memory region will be when the 390 * smallest page size is used. Considering each page contains x page 391 * table descriptors, the total extra size for page tables (for extra 392 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 393 * than N/x*2. 394 */ 395 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 396 397 /* Account for the number of pages needed by ucall. */ 398 nr_pages += ucall_nr_pages_required(page_size); 399 400 return vm_adjust_num_guest_pages(mode, nr_pages); 401 } 402 403 void kvm_set_files_rlimit(uint32_t nr_vcpus) 404 { 405 /* 406 * Each vCPU will open two file descriptors: the vCPU itself and the 407 * vCPU's binary stats file descriptor. Add an arbitrary amount of 408 * buffer for all other files a test may open. 409 */ 410 int nr_fds_wanted = nr_vcpus * 2 + 100; 411 struct rlimit rl; 412 413 /* 414 * Check that we're allowed to open nr_fds_wanted file descriptors and 415 * try raising the limits if needed. 416 */ 417 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!"); 418 419 if (rl.rlim_cur < nr_fds_wanted) { 420 rl.rlim_cur = nr_fds_wanted; 421 if (rl.rlim_max < nr_fds_wanted) { 422 int old_rlim_max = rl.rlim_max; 423 424 rl.rlim_max = nr_fds_wanted; 425 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0, 426 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)", 427 old_rlim_max, nr_fds_wanted); 428 } else { 429 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!"); 430 } 431 } 432 433 } 434 435 static bool is_guest_memfd_required(struct vm_shape shape) 436 { 437 #ifdef __x86_64__ 438 return shape.type == KVM_X86_SNP_VM; 439 #else 440 return false; 441 #endif 442 } 443 444 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 445 uint64_t nr_extra_pages) 446 { 447 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 448 nr_extra_pages); 449 struct userspace_mem_region *slot0; 450 struct kvm_vm *vm; 451 int i, flags; 452 453 kvm_set_files_rlimit(nr_runnable_vcpus); 454 455 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 456 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 457 458 vm = ____vm_create(shape); 459 460 /* 461 * Force GUEST_MEMFD for the primary memory region if necessary, e.g. 462 * for CoCo VMs that require GUEST_MEMFD backed private memory. 463 */ 464 flags = 0; 465 if (is_guest_memfd_required(shape)) 466 flags |= KVM_MEM_GUEST_MEMFD; 467 468 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags); 469 for (i = 0; i < NR_MEM_REGIONS; i++) 470 vm->memslots[i] = 0; 471 472 kvm_vm_elf_load(vm, program_invocation_name); 473 474 /* 475 * TODO: Add proper defines to protect the library's memslots, and then 476 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 477 * read-only memslots as MMIO, and creating a read-only memslot for the 478 * MMIO region would prevent silently clobbering the MMIO region. 479 */ 480 slot0 = memslot2region(vm, 0); 481 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 482 483 if (guest_random_seed != last_guest_seed) { 484 pr_info("Random seed: 0x%x\n", guest_random_seed); 485 last_guest_seed = guest_random_seed; 486 } 487 guest_rng = new_guest_random_state(guest_random_seed); 488 sync_global_to_guest(vm, guest_rng); 489 490 kvm_arch_vm_post_create(vm); 491 492 return vm; 493 } 494 495 /* 496 * VM Create with customized parameters 497 * 498 * Input Args: 499 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 500 * nr_vcpus - VCPU count 501 * extra_mem_pages - Non-slot0 physical memory total size 502 * guest_code - Guest entry point 503 * vcpuids - VCPU IDs 504 * 505 * Output Args: None 506 * 507 * Return: 508 * Pointer to opaque structure that describes the created VM. 509 * 510 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 511 * extra_mem_pages is only used to calculate the maximum page table size, 512 * no real memory allocation for non-slot0 memory in this function. 513 */ 514 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 515 uint64_t extra_mem_pages, 516 void *guest_code, struct kvm_vcpu *vcpus[]) 517 { 518 struct kvm_vm *vm; 519 int i; 520 521 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 522 523 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 524 525 for (i = 0; i < nr_vcpus; ++i) 526 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 527 528 return vm; 529 } 530 531 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 532 struct kvm_vcpu **vcpu, 533 uint64_t extra_mem_pages, 534 void *guest_code) 535 { 536 struct kvm_vcpu *vcpus[1]; 537 struct kvm_vm *vm; 538 539 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 540 541 *vcpu = vcpus[0]; 542 return vm; 543 } 544 545 /* 546 * VM Restart 547 * 548 * Input Args: 549 * vm - VM that has been released before 550 * 551 * Output Args: None 552 * 553 * Reopens the file descriptors associated to the VM and reinstates the 554 * global state, such as the irqchip and the memory regions that are mapped 555 * into the guest. 556 */ 557 void kvm_vm_restart(struct kvm_vm *vmp) 558 { 559 int ctr; 560 struct userspace_mem_region *region; 561 562 vm_open(vmp); 563 if (vmp->has_irqchip) 564 vm_create_irqchip(vmp); 565 566 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 567 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 568 569 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 570 " rc: %i errno: %i\n" 571 " slot: %u flags: 0x%x\n" 572 " guest_phys_addr: 0x%llx size: 0x%llx", 573 ret, errno, region->region.slot, 574 region->region.flags, 575 region->region.guest_phys_addr, 576 region->region.memory_size); 577 } 578 } 579 580 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 581 uint32_t vcpu_id) 582 { 583 return __vm_vcpu_add(vm, vcpu_id); 584 } 585 586 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 587 { 588 kvm_vm_restart(vm); 589 590 return vm_vcpu_recreate(vm, 0); 591 } 592 593 int __pin_task_to_cpu(pthread_t task, int cpu) 594 { 595 cpu_set_t cpuset; 596 597 CPU_ZERO(&cpuset); 598 CPU_SET(cpu, &cpuset); 599 600 return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset); 601 } 602 603 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 604 { 605 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 606 607 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 608 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 609 return pcpu; 610 } 611 612 void kvm_print_vcpu_pinning_help(void) 613 { 614 const char *name = program_invocation_name; 615 616 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 617 " values (target pCPU), one for each vCPU, plus an optional\n" 618 " entry for the main application task (specified via entry\n" 619 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 620 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 621 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 622 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 623 " %s -v 3 -c 22,23,24,50\n\n" 624 " To leave the application task unpinned, drop the final entry:\n\n" 625 " %s -v 3 -c 22,23,24\n\n" 626 " (default: no pinning)\n", name, name); 627 } 628 629 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 630 int nr_vcpus) 631 { 632 cpu_set_t allowed_mask; 633 char *cpu, *cpu_list; 634 char delim[2] = ","; 635 int i, r; 636 637 cpu_list = strdup(pcpus_string); 638 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 639 640 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 641 TEST_ASSERT(!r, "sched_getaffinity() failed"); 642 643 cpu = strtok(cpu_list, delim); 644 645 /* 1. Get all pcpus for vcpus. */ 646 for (i = 0; i < nr_vcpus; i++) { 647 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 648 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 649 cpu = strtok(NULL, delim); 650 } 651 652 /* 2. Check if the main worker needs to be pinned. */ 653 if (cpu) { 654 pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask)); 655 cpu = strtok(NULL, delim); 656 } 657 658 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 659 free(cpu_list); 660 } 661 662 /* 663 * Userspace Memory Region Find 664 * 665 * Input Args: 666 * vm - Virtual Machine 667 * start - Starting VM physical address 668 * end - Ending VM physical address, inclusive. 669 * 670 * Output Args: None 671 * 672 * Return: 673 * Pointer to overlapping region, NULL if no such region. 674 * 675 * Searches for a region with any physical memory that overlaps with 676 * any portion of the guest physical addresses from start to end 677 * inclusive. If multiple overlapping regions exist, a pointer to any 678 * of the regions is returned. Null is returned only when no overlapping 679 * region exists. 680 */ 681 static struct userspace_mem_region * 682 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 683 { 684 struct rb_node *node; 685 686 for (node = vm->regions.gpa_tree.rb_node; node; ) { 687 struct userspace_mem_region *region = 688 container_of(node, struct userspace_mem_region, gpa_node); 689 uint64_t existing_start = region->region.guest_phys_addr; 690 uint64_t existing_end = region->region.guest_phys_addr 691 + region->region.memory_size - 1; 692 if (start <= existing_end && end >= existing_start) 693 return region; 694 695 if (start < existing_start) 696 node = node->rb_left; 697 else 698 node = node->rb_right; 699 } 700 701 return NULL; 702 } 703 704 static void kvm_stats_release(struct kvm_binary_stats *stats) 705 { 706 int ret; 707 708 if (stats->fd < 0) 709 return; 710 711 if (stats->desc) { 712 free(stats->desc); 713 stats->desc = NULL; 714 } 715 716 ret = close(stats->fd); 717 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 718 stats->fd = -1; 719 } 720 721 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 722 { 723 724 } 725 726 /* 727 * VM VCPU Remove 728 * 729 * Input Args: 730 * vcpu - VCPU to remove 731 * 732 * Output Args: None 733 * 734 * Return: None, TEST_ASSERT failures for all error conditions 735 * 736 * Removes a vCPU from a VM and frees its resources. 737 */ 738 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 739 { 740 int ret; 741 742 if (vcpu->dirty_gfns) { 743 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 744 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 745 vcpu->dirty_gfns = NULL; 746 } 747 748 ret = munmap(vcpu->run, vcpu_mmap_sz()); 749 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 750 751 ret = close(vcpu->fd); 752 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 753 754 kvm_stats_release(&vcpu->stats); 755 756 list_del(&vcpu->list); 757 758 vcpu_arch_free(vcpu); 759 free(vcpu); 760 } 761 762 void kvm_vm_release(struct kvm_vm *vmp) 763 { 764 struct kvm_vcpu *vcpu, *tmp; 765 int ret; 766 767 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 768 vm_vcpu_rm(vmp, vcpu); 769 770 ret = close(vmp->fd); 771 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 772 773 ret = close(vmp->kvm_fd); 774 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 775 776 /* Free cached stats metadata and close FD */ 777 kvm_stats_release(&vmp->stats); 778 } 779 780 static void __vm_mem_region_delete(struct kvm_vm *vm, 781 struct userspace_mem_region *region) 782 { 783 int ret; 784 785 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 786 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 787 hash_del(®ion->slot_node); 788 789 sparsebit_free(®ion->unused_phy_pages); 790 sparsebit_free(®ion->protected_phy_pages); 791 ret = munmap(region->mmap_start, region->mmap_size); 792 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 793 if (region->fd >= 0) { 794 /* There's an extra map when using shared memory. */ 795 ret = munmap(region->mmap_alias, region->mmap_size); 796 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 797 close(region->fd); 798 } 799 if (region->region.guest_memfd >= 0) 800 close(region->region.guest_memfd); 801 802 free(region); 803 } 804 805 /* 806 * Destroys and frees the VM pointed to by vmp. 807 */ 808 void kvm_vm_free(struct kvm_vm *vmp) 809 { 810 int ctr; 811 struct hlist_node *node; 812 struct userspace_mem_region *region; 813 814 if (vmp == NULL) 815 return; 816 817 /* Free userspace_mem_regions. */ 818 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 819 __vm_mem_region_delete(vmp, region); 820 821 /* Free sparsebit arrays. */ 822 sparsebit_free(&vmp->vpages_valid); 823 sparsebit_free(&vmp->vpages_mapped); 824 825 kvm_vm_release(vmp); 826 827 /* Free the structure describing the VM. */ 828 free(vmp); 829 } 830 831 int kvm_memfd_alloc(size_t size, bool hugepages) 832 { 833 int memfd_flags = MFD_CLOEXEC; 834 int fd, r; 835 836 if (hugepages) 837 memfd_flags |= MFD_HUGETLB; 838 839 fd = memfd_create("kvm_selftest", memfd_flags); 840 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 841 842 r = ftruncate(fd, size); 843 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 844 845 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 846 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 847 848 return fd; 849 } 850 851 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 852 struct userspace_mem_region *region) 853 { 854 struct rb_node **cur, *parent; 855 856 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 857 struct userspace_mem_region *cregion; 858 859 cregion = container_of(*cur, typeof(*cregion), gpa_node); 860 parent = *cur; 861 if (region->region.guest_phys_addr < 862 cregion->region.guest_phys_addr) 863 cur = &(*cur)->rb_left; 864 else { 865 TEST_ASSERT(region->region.guest_phys_addr != 866 cregion->region.guest_phys_addr, 867 "Duplicate GPA in region tree"); 868 869 cur = &(*cur)->rb_right; 870 } 871 } 872 873 rb_link_node(®ion->gpa_node, parent, cur); 874 rb_insert_color(®ion->gpa_node, gpa_tree); 875 } 876 877 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 878 struct userspace_mem_region *region) 879 { 880 struct rb_node **cur, *parent; 881 882 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 883 struct userspace_mem_region *cregion; 884 885 cregion = container_of(*cur, typeof(*cregion), hva_node); 886 parent = *cur; 887 if (region->host_mem < cregion->host_mem) 888 cur = &(*cur)->rb_left; 889 else { 890 TEST_ASSERT(region->host_mem != 891 cregion->host_mem, 892 "Duplicate HVA in region tree"); 893 894 cur = &(*cur)->rb_right; 895 } 896 } 897 898 rb_link_node(®ion->hva_node, parent, cur); 899 rb_insert_color(®ion->hva_node, hva_tree); 900 } 901 902 903 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 904 uint64_t gpa, uint64_t size, void *hva) 905 { 906 struct kvm_userspace_memory_region region = { 907 .slot = slot, 908 .flags = flags, 909 .guest_phys_addr = gpa, 910 .memory_size = size, 911 .userspace_addr = (uintptr_t)hva, 912 }; 913 914 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 915 } 916 917 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 918 uint64_t gpa, uint64_t size, void *hva) 919 { 920 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 921 922 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 923 errno, strerror(errno)); 924 } 925 926 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \ 927 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \ 928 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)") 929 930 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 931 uint64_t gpa, uint64_t size, void *hva, 932 uint32_t guest_memfd, uint64_t guest_memfd_offset) 933 { 934 struct kvm_userspace_memory_region2 region = { 935 .slot = slot, 936 .flags = flags, 937 .guest_phys_addr = gpa, 938 .memory_size = size, 939 .userspace_addr = (uintptr_t)hva, 940 .guest_memfd = guest_memfd, 941 .guest_memfd_offset = guest_memfd_offset, 942 }; 943 944 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 945 946 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 947 } 948 949 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 950 uint64_t gpa, uint64_t size, void *hva, 951 uint32_t guest_memfd, uint64_t guest_memfd_offset) 952 { 953 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 954 guest_memfd, guest_memfd_offset); 955 956 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 957 errno, strerror(errno)); 958 } 959 960 961 /* FIXME: This thing needs to be ripped apart and rewritten. */ 962 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 963 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 964 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 965 { 966 int ret; 967 struct userspace_mem_region *region; 968 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 969 size_t mem_size = npages * vm->page_size; 970 size_t alignment; 971 972 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 973 974 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 975 "Number of guest pages is not compatible with the host. " 976 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 977 978 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 979 "address not on a page boundary.\n" 980 " guest_paddr: 0x%lx vm->page_size: 0x%x", 981 guest_paddr, vm->page_size); 982 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 983 <= vm->max_gfn, "Physical range beyond maximum " 984 "supported physical address,\n" 985 " guest_paddr: 0x%lx npages: 0x%lx\n" 986 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 987 guest_paddr, npages, vm->max_gfn, vm->page_size); 988 989 /* 990 * Confirm a mem region with an overlapping address doesn't 991 * already exist. 992 */ 993 region = (struct userspace_mem_region *) userspace_mem_region_find( 994 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 995 if (region != NULL) 996 TEST_FAIL("overlapping userspace_mem_region already " 997 "exists\n" 998 " requested guest_paddr: 0x%lx npages: 0x%lx " 999 "page_size: 0x%x\n" 1000 " existing guest_paddr: 0x%lx size: 0x%lx", 1001 guest_paddr, npages, vm->page_size, 1002 (uint64_t) region->region.guest_phys_addr, 1003 (uint64_t) region->region.memory_size); 1004 1005 /* Confirm no region with the requested slot already exists. */ 1006 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1007 slot) { 1008 if (region->region.slot != slot) 1009 continue; 1010 1011 TEST_FAIL("A mem region with the requested slot " 1012 "already exists.\n" 1013 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 1014 " existing slot: %u paddr: 0x%lx size: 0x%lx", 1015 slot, guest_paddr, npages, 1016 region->region.slot, 1017 (uint64_t) region->region.guest_phys_addr, 1018 (uint64_t) region->region.memory_size); 1019 } 1020 1021 /* Allocate and initialize new mem region structure. */ 1022 region = calloc(1, sizeof(*region)); 1023 TEST_ASSERT(region != NULL, "Insufficient Memory"); 1024 region->mmap_size = mem_size; 1025 1026 #ifdef __s390x__ 1027 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 1028 alignment = 0x100000; 1029 #else 1030 alignment = 1; 1031 #endif 1032 1033 /* 1034 * When using THP mmap is not guaranteed to returned a hugepage aligned 1035 * address so we have to pad the mmap. Padding is not needed for HugeTLB 1036 * because mmap will always return an address aligned to the HugeTLB 1037 * page size. 1038 */ 1039 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 1040 alignment = max(backing_src_pagesz, alignment); 1041 1042 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 1043 1044 /* Add enough memory to align up if necessary */ 1045 if (alignment > 1) 1046 region->mmap_size += alignment; 1047 1048 region->fd = -1; 1049 if (backing_src_is_shared(src_type)) 1050 region->fd = kvm_memfd_alloc(region->mmap_size, 1051 src_type == VM_MEM_SRC_SHARED_HUGETLB); 1052 1053 region->mmap_start = mmap(NULL, region->mmap_size, 1054 PROT_READ | PROT_WRITE, 1055 vm_mem_backing_src_alias(src_type)->flag, 1056 region->fd, 0); 1057 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1058 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1059 1060 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1061 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1062 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1063 region->mmap_start, backing_src_pagesz); 1064 1065 /* Align host address */ 1066 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1067 1068 /* As needed perform madvise */ 1069 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1070 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1071 ret = madvise(region->host_mem, mem_size, 1072 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1073 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1074 region->host_mem, mem_size, 1075 vm_mem_backing_src_alias(src_type)->name); 1076 } 1077 1078 region->backing_src_type = src_type; 1079 1080 if (flags & KVM_MEM_GUEST_MEMFD) { 1081 if (guest_memfd < 0) { 1082 uint32_t guest_memfd_flags = 0; 1083 TEST_ASSERT(!guest_memfd_offset, 1084 "Offset must be zero when creating new guest_memfd"); 1085 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1086 } else { 1087 /* 1088 * Install a unique fd for each memslot so that the fd 1089 * can be closed when the region is deleted without 1090 * needing to track if the fd is owned by the framework 1091 * or by the caller. 1092 */ 1093 guest_memfd = dup(guest_memfd); 1094 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1095 } 1096 1097 region->region.guest_memfd = guest_memfd; 1098 region->region.guest_memfd_offset = guest_memfd_offset; 1099 } else { 1100 region->region.guest_memfd = -1; 1101 } 1102 1103 region->unused_phy_pages = sparsebit_alloc(); 1104 if (vm_arch_has_protected_memory(vm)) 1105 region->protected_phy_pages = sparsebit_alloc(); 1106 sparsebit_set_num(region->unused_phy_pages, 1107 guest_paddr >> vm->page_shift, npages); 1108 region->region.slot = slot; 1109 region->region.flags = flags; 1110 region->region.guest_phys_addr = guest_paddr; 1111 region->region.memory_size = npages * vm->page_size; 1112 region->region.userspace_addr = (uintptr_t) region->host_mem; 1113 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1114 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1115 " rc: %i errno: %i\n" 1116 " slot: %u flags: 0x%x\n" 1117 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1118 ret, errno, slot, flags, 1119 guest_paddr, (uint64_t) region->region.memory_size, 1120 region->region.guest_memfd); 1121 1122 /* Add to quick lookup data structures */ 1123 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1124 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1125 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1126 1127 /* If shared memory, create an alias. */ 1128 if (region->fd >= 0) { 1129 region->mmap_alias = mmap(NULL, region->mmap_size, 1130 PROT_READ | PROT_WRITE, 1131 vm_mem_backing_src_alias(src_type)->flag, 1132 region->fd, 0); 1133 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1134 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1135 1136 /* Align host alias address */ 1137 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1138 } 1139 } 1140 1141 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1142 enum vm_mem_backing_src_type src_type, 1143 uint64_t guest_paddr, uint32_t slot, 1144 uint64_t npages, uint32_t flags) 1145 { 1146 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1147 } 1148 1149 /* 1150 * Memslot to region 1151 * 1152 * Input Args: 1153 * vm - Virtual Machine 1154 * memslot - KVM memory slot ID 1155 * 1156 * Output Args: None 1157 * 1158 * Return: 1159 * Pointer to memory region structure that describe memory region 1160 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1161 * on error (e.g. currently no memory region using memslot as a KVM 1162 * memory slot ID). 1163 */ 1164 struct userspace_mem_region * 1165 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1166 { 1167 struct userspace_mem_region *region; 1168 1169 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1170 memslot) 1171 if (region->region.slot == memslot) 1172 return region; 1173 1174 fprintf(stderr, "No mem region with the requested slot found,\n" 1175 " requested slot: %u\n", memslot); 1176 fputs("---- vm dump ----\n", stderr); 1177 vm_dump(stderr, vm, 2); 1178 TEST_FAIL("Mem region not found"); 1179 return NULL; 1180 } 1181 1182 /* 1183 * VM Memory Region Flags Set 1184 * 1185 * Input Args: 1186 * vm - Virtual Machine 1187 * flags - Starting guest physical address 1188 * 1189 * Output Args: None 1190 * 1191 * Return: None 1192 * 1193 * Sets the flags of the memory region specified by the value of slot, 1194 * to the values given by flags. 1195 */ 1196 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1197 { 1198 int ret; 1199 struct userspace_mem_region *region; 1200 1201 region = memslot2region(vm, slot); 1202 1203 region->region.flags = flags; 1204 1205 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1206 1207 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1208 " rc: %i errno: %i slot: %u flags: 0x%x", 1209 ret, errno, slot, flags); 1210 } 1211 1212 /* 1213 * VM Memory Region Move 1214 * 1215 * Input Args: 1216 * vm - Virtual Machine 1217 * slot - Slot of the memory region to move 1218 * new_gpa - Starting guest physical address 1219 * 1220 * Output Args: None 1221 * 1222 * Return: None 1223 * 1224 * Change the gpa of a memory region. 1225 */ 1226 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1227 { 1228 struct userspace_mem_region *region; 1229 int ret; 1230 1231 region = memslot2region(vm, slot); 1232 1233 region->region.guest_phys_addr = new_gpa; 1234 1235 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1236 1237 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1238 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1239 ret, errno, slot, new_gpa); 1240 } 1241 1242 /* 1243 * VM Memory Region Delete 1244 * 1245 * Input Args: 1246 * vm - Virtual Machine 1247 * slot - Slot of the memory region to delete 1248 * 1249 * Output Args: None 1250 * 1251 * Return: None 1252 * 1253 * Delete a memory region. 1254 */ 1255 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1256 { 1257 struct userspace_mem_region *region = memslot2region(vm, slot); 1258 1259 region->region.memory_size = 0; 1260 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1261 1262 __vm_mem_region_delete(vm, region); 1263 } 1264 1265 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1266 bool punch_hole) 1267 { 1268 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1269 struct userspace_mem_region *region; 1270 uint64_t end = base + size; 1271 uint64_t gpa, len; 1272 off_t fd_offset; 1273 int ret; 1274 1275 for (gpa = base; gpa < end; gpa += len) { 1276 uint64_t offset; 1277 1278 region = userspace_mem_region_find(vm, gpa, gpa); 1279 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1280 "Private memory region not found for GPA 0x%lx", gpa); 1281 1282 offset = gpa - region->region.guest_phys_addr; 1283 fd_offset = region->region.guest_memfd_offset + offset; 1284 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1285 1286 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1287 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1288 punch_hole ? "punch hole" : "allocate", gpa, len, 1289 region->region.guest_memfd, mode, fd_offset); 1290 } 1291 } 1292 1293 /* Returns the size of a vCPU's kvm_run structure. */ 1294 static size_t vcpu_mmap_sz(void) 1295 { 1296 int dev_fd, ret; 1297 1298 dev_fd = open_kvm_dev_path_or_exit(); 1299 1300 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1301 TEST_ASSERT(ret >= 0 && ret >= sizeof(struct kvm_run), 1302 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1303 1304 close(dev_fd); 1305 1306 return ret; 1307 } 1308 1309 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1310 { 1311 struct kvm_vcpu *vcpu; 1312 1313 list_for_each_entry(vcpu, &vm->vcpus, list) { 1314 if (vcpu->id == vcpu_id) 1315 return true; 1316 } 1317 1318 return false; 1319 } 1320 1321 /* 1322 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1323 * No additional vCPU setup is done. Returns the vCPU. 1324 */ 1325 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1326 { 1327 struct kvm_vcpu *vcpu; 1328 1329 /* Confirm a vcpu with the specified id doesn't already exist. */ 1330 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1331 1332 /* Allocate and initialize new vcpu structure. */ 1333 vcpu = calloc(1, sizeof(*vcpu)); 1334 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1335 1336 vcpu->vm = vm; 1337 vcpu->id = vcpu_id; 1338 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1339 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1340 1341 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1342 "smaller than expected, vcpu_mmap_sz: %zi expected_min: %zi", 1343 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1344 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1345 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1346 TEST_ASSERT(vcpu->run != MAP_FAILED, 1347 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1348 1349 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 1350 vcpu->stats.fd = vcpu_get_stats_fd(vcpu); 1351 else 1352 vcpu->stats.fd = -1; 1353 1354 /* Add to linked-list of VCPUs. */ 1355 list_add(&vcpu->list, &vm->vcpus); 1356 1357 return vcpu; 1358 } 1359 1360 /* 1361 * VM Virtual Address Unused Gap 1362 * 1363 * Input Args: 1364 * vm - Virtual Machine 1365 * sz - Size (bytes) 1366 * vaddr_min - Minimum Virtual Address 1367 * 1368 * Output Args: None 1369 * 1370 * Return: 1371 * Lowest virtual address at or below vaddr_min, with at least 1372 * sz unused bytes. TEST_ASSERT failure if no area of at least 1373 * size sz is available. 1374 * 1375 * Within the VM specified by vm, locates the lowest starting virtual 1376 * address >= vaddr_min, that has at least sz unallocated bytes. A 1377 * TEST_ASSERT failure occurs for invalid input or no area of at least 1378 * sz unallocated bytes >= vaddr_min is available. 1379 */ 1380 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1381 vm_vaddr_t vaddr_min) 1382 { 1383 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1384 1385 /* Determine lowest permitted virtual page index. */ 1386 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1387 if ((pgidx_start * vm->page_size) < vaddr_min) 1388 goto no_va_found; 1389 1390 /* Loop over section with enough valid virtual page indexes. */ 1391 if (!sparsebit_is_set_num(vm->vpages_valid, 1392 pgidx_start, pages)) 1393 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1394 pgidx_start, pages); 1395 do { 1396 /* 1397 * Are there enough unused virtual pages available at 1398 * the currently proposed starting virtual page index. 1399 * If not, adjust proposed starting index to next 1400 * possible. 1401 */ 1402 if (sparsebit_is_clear_num(vm->vpages_mapped, 1403 pgidx_start, pages)) 1404 goto va_found; 1405 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1406 pgidx_start, pages); 1407 if (pgidx_start == 0) 1408 goto no_va_found; 1409 1410 /* 1411 * If needed, adjust proposed starting virtual address, 1412 * to next range of valid virtual addresses. 1413 */ 1414 if (!sparsebit_is_set_num(vm->vpages_valid, 1415 pgidx_start, pages)) { 1416 pgidx_start = sparsebit_next_set_num( 1417 vm->vpages_valid, pgidx_start, pages); 1418 if (pgidx_start == 0) 1419 goto no_va_found; 1420 } 1421 } while (pgidx_start != 0); 1422 1423 no_va_found: 1424 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1425 1426 /* NOT REACHED */ 1427 return -1; 1428 1429 va_found: 1430 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1431 pgidx_start, pages), 1432 "Unexpected, invalid virtual page index range,\n" 1433 " pgidx_start: 0x%lx\n" 1434 " pages: 0x%lx", 1435 pgidx_start, pages); 1436 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1437 pgidx_start, pages), 1438 "Unexpected, pages already mapped,\n" 1439 " pgidx_start: 0x%lx\n" 1440 " pages: 0x%lx", 1441 pgidx_start, pages); 1442 1443 return pgidx_start * vm->page_size; 1444 } 1445 1446 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1447 vm_vaddr_t vaddr_min, 1448 enum kvm_mem_region_type type, 1449 bool protected) 1450 { 1451 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1452 1453 virt_pgd_alloc(vm); 1454 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1455 KVM_UTIL_MIN_PFN * vm->page_size, 1456 vm->memslots[type], protected); 1457 1458 /* 1459 * Find an unused range of virtual page addresses of at least 1460 * pages in length. 1461 */ 1462 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1463 1464 /* Map the virtual pages. */ 1465 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1466 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1467 1468 virt_pg_map(vm, vaddr, paddr); 1469 1470 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1471 } 1472 1473 return vaddr_start; 1474 } 1475 1476 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1477 enum kvm_mem_region_type type) 1478 { 1479 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1480 vm_arch_has_protected_memory(vm)); 1481 } 1482 1483 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1484 vm_vaddr_t vaddr_min, 1485 enum kvm_mem_region_type type) 1486 { 1487 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1488 } 1489 1490 /* 1491 * VM Virtual Address Allocate 1492 * 1493 * Input Args: 1494 * vm - Virtual Machine 1495 * sz - Size in bytes 1496 * vaddr_min - Minimum starting virtual address 1497 * 1498 * Output Args: None 1499 * 1500 * Return: 1501 * Starting guest virtual address 1502 * 1503 * Allocates at least sz bytes within the virtual address space of the vm 1504 * given by vm. The allocated bytes are mapped to a virtual address >= 1505 * the address given by vaddr_min. Note that each allocation uses a 1506 * a unique set of pages, with the minimum real allocation being at least 1507 * a page. The allocated physical space comes from the TEST_DATA memory region. 1508 */ 1509 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1510 { 1511 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1512 } 1513 1514 /* 1515 * VM Virtual Address Allocate Pages 1516 * 1517 * Input Args: 1518 * vm - Virtual Machine 1519 * 1520 * Output Args: None 1521 * 1522 * Return: 1523 * Starting guest virtual address 1524 * 1525 * Allocates at least N system pages worth of bytes within the virtual address 1526 * space of the vm. 1527 */ 1528 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1529 { 1530 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1531 } 1532 1533 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1534 { 1535 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1536 } 1537 1538 /* 1539 * VM Virtual Address Allocate Page 1540 * 1541 * Input Args: 1542 * vm - Virtual Machine 1543 * 1544 * Output Args: None 1545 * 1546 * Return: 1547 * Starting guest virtual address 1548 * 1549 * Allocates at least one system page worth of bytes within the virtual address 1550 * space of the vm. 1551 */ 1552 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1553 { 1554 return vm_vaddr_alloc_pages(vm, 1); 1555 } 1556 1557 /* 1558 * Map a range of VM virtual address to the VM's physical address 1559 * 1560 * Input Args: 1561 * vm - Virtual Machine 1562 * vaddr - Virtuall address to map 1563 * paddr - VM Physical Address 1564 * npages - The number of pages to map 1565 * 1566 * Output Args: None 1567 * 1568 * Return: None 1569 * 1570 * Within the VM given by @vm, creates a virtual translation for 1571 * @npages starting at @vaddr to the page range starting at @paddr. 1572 */ 1573 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1574 unsigned int npages) 1575 { 1576 size_t page_size = vm->page_size; 1577 size_t size = npages * page_size; 1578 1579 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1580 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1581 1582 while (npages--) { 1583 virt_pg_map(vm, vaddr, paddr); 1584 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1585 1586 vaddr += page_size; 1587 paddr += page_size; 1588 } 1589 } 1590 1591 /* 1592 * Address VM Physical to Host Virtual 1593 * 1594 * Input Args: 1595 * vm - Virtual Machine 1596 * gpa - VM physical address 1597 * 1598 * Output Args: None 1599 * 1600 * Return: 1601 * Equivalent host virtual address 1602 * 1603 * Locates the memory region containing the VM physical address given 1604 * by gpa, within the VM given by vm. When found, the host virtual 1605 * address providing the memory to the vm physical address is returned. 1606 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1607 */ 1608 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1609 { 1610 struct userspace_mem_region *region; 1611 1612 gpa = vm_untag_gpa(vm, gpa); 1613 1614 region = userspace_mem_region_find(vm, gpa, gpa); 1615 if (!region) { 1616 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1617 return NULL; 1618 } 1619 1620 return (void *)((uintptr_t)region->host_mem 1621 + (gpa - region->region.guest_phys_addr)); 1622 } 1623 1624 /* 1625 * Address Host Virtual to VM Physical 1626 * 1627 * Input Args: 1628 * vm - Virtual Machine 1629 * hva - Host virtual address 1630 * 1631 * Output Args: None 1632 * 1633 * Return: 1634 * Equivalent VM physical address 1635 * 1636 * Locates the memory region containing the host virtual address given 1637 * by hva, within the VM given by vm. When found, the equivalent 1638 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1639 * region containing hva exists. 1640 */ 1641 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1642 { 1643 struct rb_node *node; 1644 1645 for (node = vm->regions.hva_tree.rb_node; node; ) { 1646 struct userspace_mem_region *region = 1647 container_of(node, struct userspace_mem_region, hva_node); 1648 1649 if (hva >= region->host_mem) { 1650 if (hva <= (region->host_mem 1651 + region->region.memory_size - 1)) 1652 return (vm_paddr_t)((uintptr_t) 1653 region->region.guest_phys_addr 1654 + (hva - (uintptr_t)region->host_mem)); 1655 1656 node = node->rb_right; 1657 } else 1658 node = node->rb_left; 1659 } 1660 1661 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1662 return -1; 1663 } 1664 1665 /* 1666 * Address VM physical to Host Virtual *alias*. 1667 * 1668 * Input Args: 1669 * vm - Virtual Machine 1670 * gpa - VM physical address 1671 * 1672 * Output Args: None 1673 * 1674 * Return: 1675 * Equivalent address within the host virtual *alias* area, or NULL 1676 * (without failing the test) if the guest memory is not shared (so 1677 * no alias exists). 1678 * 1679 * Create a writable, shared virtual=>physical alias for the specific GPA. 1680 * The primary use case is to allow the host selftest to manipulate guest 1681 * memory without mapping said memory in the guest's address space. And, for 1682 * userfaultfd-based demand paging, to do so without triggering userfaults. 1683 */ 1684 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1685 { 1686 struct userspace_mem_region *region; 1687 uintptr_t offset; 1688 1689 region = userspace_mem_region_find(vm, gpa, gpa); 1690 if (!region) 1691 return NULL; 1692 1693 if (!region->host_alias) 1694 return NULL; 1695 1696 offset = gpa - region->region.guest_phys_addr; 1697 return (void *) ((uintptr_t) region->host_alias + offset); 1698 } 1699 1700 /* Create an interrupt controller chip for the specified VM. */ 1701 void vm_create_irqchip(struct kvm_vm *vm) 1702 { 1703 int r; 1704 1705 /* 1706 * Allocate a fully in-kernel IRQ chip by default, but fall back to a 1707 * split model (x86 only) if that fails (KVM x86 allows compiling out 1708 * support for KVM_CREATE_IRQCHIP). 1709 */ 1710 r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1711 if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP)) 1712 vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24); 1713 else 1714 TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm); 1715 1716 vm->has_irqchip = true; 1717 } 1718 1719 int _vcpu_run(struct kvm_vcpu *vcpu) 1720 { 1721 int rc; 1722 1723 do { 1724 rc = __vcpu_run(vcpu); 1725 } while (rc == -1 && errno == EINTR); 1726 1727 if (!rc) 1728 assert_on_unhandled_exception(vcpu); 1729 1730 return rc; 1731 } 1732 1733 /* 1734 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1735 * Assert if the KVM returns an error (other than -EINTR). 1736 */ 1737 void vcpu_run(struct kvm_vcpu *vcpu) 1738 { 1739 int ret = _vcpu_run(vcpu); 1740 1741 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1742 } 1743 1744 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1745 { 1746 int ret; 1747 1748 vcpu->run->immediate_exit = 1; 1749 ret = __vcpu_run(vcpu); 1750 vcpu->run->immediate_exit = 0; 1751 1752 TEST_ASSERT(ret == -1 && errno == EINTR, 1753 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1754 ret, errno); 1755 } 1756 1757 /* 1758 * Get the list of guest registers which are supported for 1759 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1760 * it is the caller's responsibility to free the list. 1761 */ 1762 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1763 { 1764 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1765 int ret; 1766 1767 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1768 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1769 1770 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1771 reg_list->n = reg_list_n.n; 1772 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1773 return reg_list; 1774 } 1775 1776 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1777 { 1778 uint32_t page_size = getpagesize(); 1779 uint32_t size = vcpu->vm->dirty_ring_size; 1780 1781 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1782 1783 if (!vcpu->dirty_gfns) { 1784 void *addr; 1785 1786 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1787 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1788 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1789 1790 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1791 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1792 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1793 1794 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1795 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1796 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1797 1798 vcpu->dirty_gfns = addr; 1799 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1800 } 1801 1802 return vcpu->dirty_gfns; 1803 } 1804 1805 /* 1806 * Device Ioctl 1807 */ 1808 1809 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1810 { 1811 struct kvm_device_attr attribute = { 1812 .group = group, 1813 .attr = attr, 1814 .flags = 0, 1815 }; 1816 1817 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1818 } 1819 1820 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1821 { 1822 struct kvm_create_device create_dev = { 1823 .type = type, 1824 .flags = KVM_CREATE_DEVICE_TEST, 1825 }; 1826 1827 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1828 } 1829 1830 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1831 { 1832 struct kvm_create_device create_dev = { 1833 .type = type, 1834 .fd = -1, 1835 .flags = 0, 1836 }; 1837 int err; 1838 1839 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1840 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1841 return err ? : create_dev.fd; 1842 } 1843 1844 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1845 { 1846 struct kvm_device_attr kvmattr = { 1847 .group = group, 1848 .attr = attr, 1849 .flags = 0, 1850 .addr = (uintptr_t)val, 1851 }; 1852 1853 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1854 } 1855 1856 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1857 { 1858 struct kvm_device_attr kvmattr = { 1859 .group = group, 1860 .attr = attr, 1861 .flags = 0, 1862 .addr = (uintptr_t)val, 1863 }; 1864 1865 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1866 } 1867 1868 /* 1869 * IRQ related functions. 1870 */ 1871 1872 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1873 { 1874 struct kvm_irq_level irq_level = { 1875 .irq = irq, 1876 .level = level, 1877 }; 1878 1879 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1880 } 1881 1882 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1883 { 1884 int ret = _kvm_irq_line(vm, irq, level); 1885 1886 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1887 } 1888 1889 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1890 { 1891 struct kvm_irq_routing *routing; 1892 size_t size; 1893 1894 size = sizeof(struct kvm_irq_routing); 1895 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1896 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1897 routing = calloc(1, size); 1898 assert(routing); 1899 1900 return routing; 1901 } 1902 1903 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1904 uint32_t gsi, uint32_t pin) 1905 { 1906 int i; 1907 1908 assert(routing); 1909 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1910 1911 i = routing->nr; 1912 routing->entries[i].gsi = gsi; 1913 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1914 routing->entries[i].flags = 0; 1915 routing->entries[i].u.irqchip.irqchip = 0; 1916 routing->entries[i].u.irqchip.pin = pin; 1917 routing->nr++; 1918 } 1919 1920 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1921 { 1922 int ret; 1923 1924 assert(routing); 1925 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1926 free(routing); 1927 1928 return ret; 1929 } 1930 1931 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1932 { 1933 int ret; 1934 1935 ret = _kvm_gsi_routing_write(vm, routing); 1936 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1937 } 1938 1939 /* 1940 * VM Dump 1941 * 1942 * Input Args: 1943 * vm - Virtual Machine 1944 * indent - Left margin indent amount 1945 * 1946 * Output Args: 1947 * stream - Output FILE stream 1948 * 1949 * Return: None 1950 * 1951 * Dumps the current state of the VM given by vm, to the FILE stream 1952 * given by stream. 1953 */ 1954 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1955 { 1956 int ctr; 1957 struct userspace_mem_region *region; 1958 struct kvm_vcpu *vcpu; 1959 1960 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1961 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1962 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1963 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1964 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1965 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1966 "host_virt: %p\n", indent + 2, "", 1967 (uint64_t) region->region.guest_phys_addr, 1968 (uint64_t) region->region.memory_size, 1969 region->host_mem); 1970 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1971 sparsebit_dump(stream, region->unused_phy_pages, 0); 1972 if (region->protected_phy_pages) { 1973 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1974 sparsebit_dump(stream, region->protected_phy_pages, 0); 1975 } 1976 } 1977 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1978 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1979 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1980 vm->pgd_created); 1981 if (vm->pgd_created) { 1982 fprintf(stream, "%*sVirtual Translation Tables:\n", 1983 indent + 2, ""); 1984 virt_dump(stream, vm, indent + 4); 1985 } 1986 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1987 1988 list_for_each_entry(vcpu, &vm->vcpus, list) 1989 vcpu_dump(stream, vcpu, indent + 2); 1990 } 1991 1992 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1993 1994 /* Known KVM exit reasons */ 1995 static struct exit_reason { 1996 unsigned int reason; 1997 const char *name; 1998 } exit_reasons_known[] = { 1999 KVM_EXIT_STRING(UNKNOWN), 2000 KVM_EXIT_STRING(EXCEPTION), 2001 KVM_EXIT_STRING(IO), 2002 KVM_EXIT_STRING(HYPERCALL), 2003 KVM_EXIT_STRING(DEBUG), 2004 KVM_EXIT_STRING(HLT), 2005 KVM_EXIT_STRING(MMIO), 2006 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 2007 KVM_EXIT_STRING(SHUTDOWN), 2008 KVM_EXIT_STRING(FAIL_ENTRY), 2009 KVM_EXIT_STRING(INTR), 2010 KVM_EXIT_STRING(SET_TPR), 2011 KVM_EXIT_STRING(TPR_ACCESS), 2012 KVM_EXIT_STRING(S390_SIEIC), 2013 KVM_EXIT_STRING(S390_RESET), 2014 KVM_EXIT_STRING(DCR), 2015 KVM_EXIT_STRING(NMI), 2016 KVM_EXIT_STRING(INTERNAL_ERROR), 2017 KVM_EXIT_STRING(OSI), 2018 KVM_EXIT_STRING(PAPR_HCALL), 2019 KVM_EXIT_STRING(S390_UCONTROL), 2020 KVM_EXIT_STRING(WATCHDOG), 2021 KVM_EXIT_STRING(S390_TSCH), 2022 KVM_EXIT_STRING(EPR), 2023 KVM_EXIT_STRING(SYSTEM_EVENT), 2024 KVM_EXIT_STRING(S390_STSI), 2025 KVM_EXIT_STRING(IOAPIC_EOI), 2026 KVM_EXIT_STRING(HYPERV), 2027 KVM_EXIT_STRING(ARM_NISV), 2028 KVM_EXIT_STRING(X86_RDMSR), 2029 KVM_EXIT_STRING(X86_WRMSR), 2030 KVM_EXIT_STRING(DIRTY_RING_FULL), 2031 KVM_EXIT_STRING(AP_RESET_HOLD), 2032 KVM_EXIT_STRING(X86_BUS_LOCK), 2033 KVM_EXIT_STRING(XEN), 2034 KVM_EXIT_STRING(RISCV_SBI), 2035 KVM_EXIT_STRING(RISCV_CSR), 2036 KVM_EXIT_STRING(NOTIFY), 2037 KVM_EXIT_STRING(LOONGARCH_IOCSR), 2038 KVM_EXIT_STRING(MEMORY_FAULT), 2039 }; 2040 2041 /* 2042 * Exit Reason String 2043 * 2044 * Input Args: 2045 * exit_reason - Exit reason 2046 * 2047 * Output Args: None 2048 * 2049 * Return: 2050 * Constant string pointer describing the exit reason. 2051 * 2052 * Locates and returns a constant string that describes the KVM exit 2053 * reason given by exit_reason. If no such string is found, a constant 2054 * string of "Unknown" is returned. 2055 */ 2056 const char *exit_reason_str(unsigned int exit_reason) 2057 { 2058 unsigned int n1; 2059 2060 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2061 if (exit_reason == exit_reasons_known[n1].reason) 2062 return exit_reasons_known[n1].name; 2063 } 2064 2065 return "Unknown"; 2066 } 2067 2068 /* 2069 * Physical Contiguous Page Allocator 2070 * 2071 * Input Args: 2072 * vm - Virtual Machine 2073 * num - number of pages 2074 * paddr_min - Physical address minimum 2075 * memslot - Memory region to allocate page from 2076 * protected - True if the pages will be used as protected/private memory 2077 * 2078 * Output Args: None 2079 * 2080 * Return: 2081 * Starting physical address 2082 * 2083 * Within the VM specified by vm, locates a range of available physical 2084 * pages at or above paddr_min. If found, the pages are marked as in use 2085 * and their base address is returned. A TEST_ASSERT failure occurs if 2086 * not enough pages are available at or above paddr_min. 2087 */ 2088 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2089 vm_paddr_t paddr_min, uint32_t memslot, 2090 bool protected) 2091 { 2092 struct userspace_mem_region *region; 2093 sparsebit_idx_t pg, base; 2094 2095 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2096 2097 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2098 "not divisible by page size.\n" 2099 " paddr_min: 0x%lx page_size: 0x%x", 2100 paddr_min, vm->page_size); 2101 2102 region = memslot2region(vm, memslot); 2103 TEST_ASSERT(!protected || region->protected_phy_pages, 2104 "Region doesn't support protected memory"); 2105 2106 base = pg = paddr_min >> vm->page_shift; 2107 do { 2108 for (; pg < base + num; ++pg) { 2109 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2110 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2111 break; 2112 } 2113 } 2114 } while (pg && pg != base + num); 2115 2116 if (pg == 0) { 2117 fprintf(stderr, "No guest physical page available, " 2118 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2119 paddr_min, vm->page_size, memslot); 2120 fputs("---- vm dump ----\n", stderr); 2121 vm_dump(stderr, vm, 2); 2122 abort(); 2123 } 2124 2125 for (pg = base; pg < base + num; ++pg) { 2126 sparsebit_clear(region->unused_phy_pages, pg); 2127 if (protected) 2128 sparsebit_set(region->protected_phy_pages, pg); 2129 } 2130 2131 return base * vm->page_size; 2132 } 2133 2134 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2135 uint32_t memslot) 2136 { 2137 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2138 } 2139 2140 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2141 { 2142 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2143 vm->memslots[MEM_REGION_PT]); 2144 } 2145 2146 /* 2147 * Address Guest Virtual to Host Virtual 2148 * 2149 * Input Args: 2150 * vm - Virtual Machine 2151 * gva - VM virtual address 2152 * 2153 * Output Args: None 2154 * 2155 * Return: 2156 * Equivalent host virtual address 2157 */ 2158 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2159 { 2160 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2161 } 2162 2163 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2164 { 2165 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2166 } 2167 2168 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2169 unsigned int page_shift, 2170 unsigned int new_page_shift, 2171 bool ceil) 2172 { 2173 unsigned int n = 1 << (new_page_shift - page_shift); 2174 2175 if (page_shift >= new_page_shift) 2176 return num_pages * (1 << (page_shift - new_page_shift)); 2177 2178 return num_pages / n + !!(ceil && num_pages % n); 2179 } 2180 2181 static inline int getpageshift(void) 2182 { 2183 return __builtin_ffs(getpagesize()) - 1; 2184 } 2185 2186 unsigned int 2187 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2188 { 2189 return vm_calc_num_pages(num_guest_pages, 2190 vm_guest_mode_params[mode].page_shift, 2191 getpageshift(), true); 2192 } 2193 2194 unsigned int 2195 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2196 { 2197 return vm_calc_num_pages(num_host_pages, getpageshift(), 2198 vm_guest_mode_params[mode].page_shift, false); 2199 } 2200 2201 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2202 { 2203 unsigned int n; 2204 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2205 return vm_adjust_num_guest_pages(mode, n); 2206 } 2207 2208 /* 2209 * Read binary stats descriptors 2210 * 2211 * Input Args: 2212 * stats_fd - the file descriptor for the binary stats file from which to read 2213 * header - the binary stats metadata header corresponding to the given FD 2214 * 2215 * Output Args: None 2216 * 2217 * Return: 2218 * A pointer to a newly allocated series of stat descriptors. 2219 * Caller is responsible for freeing the returned kvm_stats_desc. 2220 * 2221 * Read the stats descriptors from the binary stats interface. 2222 */ 2223 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2224 struct kvm_stats_header *header) 2225 { 2226 struct kvm_stats_desc *stats_desc; 2227 ssize_t desc_size, total_size, ret; 2228 2229 desc_size = get_stats_descriptor_size(header); 2230 total_size = header->num_desc * desc_size; 2231 2232 stats_desc = calloc(header->num_desc, desc_size); 2233 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2234 2235 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2236 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2237 2238 return stats_desc; 2239 } 2240 2241 /* 2242 * Read stat data for a particular stat 2243 * 2244 * Input Args: 2245 * stats_fd - the file descriptor for the binary stats file from which to read 2246 * header - the binary stats metadata header corresponding to the given FD 2247 * desc - the binary stat metadata for the particular stat to be read 2248 * max_elements - the maximum number of 8-byte values to read into data 2249 * 2250 * Output Args: 2251 * data - the buffer into which stat data should be read 2252 * 2253 * Read the data values of a specified stat from the binary stats interface. 2254 */ 2255 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2256 struct kvm_stats_desc *desc, uint64_t *data, 2257 size_t max_elements) 2258 { 2259 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2260 size_t size = nr_elements * sizeof(*data); 2261 ssize_t ret; 2262 2263 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2264 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2265 2266 ret = pread(stats_fd, data, size, 2267 header->data_offset + desc->offset); 2268 2269 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2270 desc->name, errno, strerror(errno)); 2271 TEST_ASSERT(ret == size, 2272 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2273 desc->name, size, ret); 2274 } 2275 2276 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 2277 uint64_t *data, size_t max_elements) 2278 { 2279 struct kvm_stats_desc *desc; 2280 size_t size_desc; 2281 int i; 2282 2283 if (!stats->desc) { 2284 read_stats_header(stats->fd, &stats->header); 2285 stats->desc = read_stats_descriptors(stats->fd, &stats->header); 2286 } 2287 2288 size_desc = get_stats_descriptor_size(&stats->header); 2289 2290 for (i = 0; i < stats->header.num_desc; ++i) { 2291 desc = (void *)stats->desc + (i * size_desc); 2292 2293 if (strcmp(desc->name, name)) 2294 continue; 2295 2296 read_stat_data(stats->fd, &stats->header, desc, data, max_elements); 2297 return; 2298 } 2299 2300 TEST_FAIL("Unable to find stat '%s'", name); 2301 } 2302 2303 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2304 { 2305 } 2306 2307 __weak void kvm_selftest_arch_init(void) 2308 { 2309 } 2310 2311 void __attribute((constructor)) kvm_selftest_init(void) 2312 { 2313 /* Tell stdout not to buffer its content. */ 2314 setbuf(stdout, NULL); 2315 2316 guest_random_seed = last_guest_seed = random(); 2317 pr_info("Random seed: 0x%x\n", guest_random_seed); 2318 2319 kvm_selftest_arch_init(); 2320 } 2321 2322 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2323 { 2324 sparsebit_idx_t pg = 0; 2325 struct userspace_mem_region *region; 2326 2327 if (!vm_arch_has_protected_memory(vm)) 2328 return false; 2329 2330 region = userspace_mem_region_find(vm, paddr, paddr); 2331 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2332 2333 pg = paddr >> vm->page_shift; 2334 return sparsebit_is_set(region->protected_phy_pages, pg); 2335 } 2336