1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "processor.h" 10 #include "ucall_common.h" 11 12 #include <assert.h> 13 #include <sched.h> 14 #include <sys/mman.h> 15 #include <sys/types.h> 16 #include <sys/stat.h> 17 #include <unistd.h> 18 #include <linux/kernel.h> 19 20 #define KVM_UTIL_MIN_PFN 2 21 22 uint32_t guest_random_seed; 23 struct guest_random_state guest_rng; 24 static uint32_t last_guest_seed; 25 26 static int vcpu_mmap_sz(void); 27 28 int open_path_or_exit(const char *path, int flags) 29 { 30 int fd; 31 32 fd = open(path, flags); 33 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno)); 34 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path); 35 36 return fd; 37 } 38 39 /* 40 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 41 * 42 * Input Args: 43 * flags - The flags to pass when opening KVM_DEV_PATH. 44 * 45 * Return: 46 * The opened file descriptor of /dev/kvm. 47 */ 48 static int _open_kvm_dev_path_or_exit(int flags) 49 { 50 return open_path_or_exit(KVM_DEV_PATH, flags); 51 } 52 53 int open_kvm_dev_path_or_exit(void) 54 { 55 return _open_kvm_dev_path_or_exit(O_RDONLY); 56 } 57 58 static ssize_t get_module_param(const char *module_name, const char *param, 59 void *buffer, size_t buffer_size) 60 { 61 const int path_size = 128; 62 char path[path_size]; 63 ssize_t bytes_read; 64 int fd, r; 65 66 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 67 module_name, param); 68 TEST_ASSERT(r < path_size, 69 "Failed to construct sysfs path in %d bytes.", path_size); 70 71 fd = open_path_or_exit(path, O_RDONLY); 72 73 bytes_read = read(fd, buffer, buffer_size); 74 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes", 75 path, bytes_read, buffer_size); 76 77 r = close(fd); 78 TEST_ASSERT(!r, "close(%s) failed", path); 79 return bytes_read; 80 } 81 82 static int get_module_param_integer(const char *module_name, const char *param) 83 { 84 /* 85 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the 86 * NUL char, and 1 byte because the kernel sucks and inserts a newline 87 * at the end. 88 */ 89 char value[16 + 1 + 1]; 90 ssize_t r; 91 92 memset(value, '\0', sizeof(value)); 93 94 r = get_module_param(module_name, param, value, sizeof(value)); 95 TEST_ASSERT(value[r - 1] == '\n', 96 "Expected trailing newline, got char '%c'", value[r - 1]); 97 98 /* 99 * Squash the newline, otherwise atoi_paranoid() will complain about 100 * trailing non-NUL characters in the string. 101 */ 102 value[r - 1] = '\0'; 103 return atoi_paranoid(value); 104 } 105 106 static bool get_module_param_bool(const char *module_name, const char *param) 107 { 108 char value; 109 ssize_t r; 110 111 r = get_module_param(module_name, param, &value, sizeof(value)); 112 TEST_ASSERT_EQ(r, 1); 113 114 if (value == 'Y') 115 return true; 116 else if (value == 'N') 117 return false; 118 119 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 120 } 121 122 bool get_kvm_param_bool(const char *param) 123 { 124 return get_module_param_bool("kvm", param); 125 } 126 127 bool get_kvm_intel_param_bool(const char *param) 128 { 129 return get_module_param_bool("kvm_intel", param); 130 } 131 132 bool get_kvm_amd_param_bool(const char *param) 133 { 134 return get_module_param_bool("kvm_amd", param); 135 } 136 137 int get_kvm_param_integer(const char *param) 138 { 139 return get_module_param_integer("kvm", param); 140 } 141 142 int get_kvm_intel_param_integer(const char *param) 143 { 144 return get_module_param_integer("kvm_intel", param); 145 } 146 147 int get_kvm_amd_param_integer(const char *param) 148 { 149 return get_module_param_integer("kvm_amd", param); 150 } 151 152 /* 153 * Capability 154 * 155 * Input Args: 156 * cap - Capability 157 * 158 * Output Args: None 159 * 160 * Return: 161 * On success, the Value corresponding to the capability (KVM_CAP_*) 162 * specified by the value of cap. On failure a TEST_ASSERT failure 163 * is produced. 164 * 165 * Looks up and returns the value corresponding to the capability 166 * (KVM_CAP_*) given by cap. 167 */ 168 unsigned int kvm_check_cap(long cap) 169 { 170 int ret; 171 int kvm_fd; 172 173 kvm_fd = open_kvm_dev_path_or_exit(); 174 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 175 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 176 177 close(kvm_fd); 178 179 return (unsigned int)ret; 180 } 181 182 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 183 { 184 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 185 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 186 else 187 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 188 vm->dirty_ring_size = ring_size; 189 } 190 191 static void vm_open(struct kvm_vm *vm) 192 { 193 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 194 195 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 196 197 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 198 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 199 } 200 201 const char *vm_guest_mode_string(uint32_t i) 202 { 203 static const char * const strings[] = { 204 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 205 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 206 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 207 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 208 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 209 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 210 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 211 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 212 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 213 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 214 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 215 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 216 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 217 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 218 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 219 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 220 }; 221 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 222 "Missing new mode strings?"); 223 224 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 225 226 return strings[i]; 227 } 228 229 const struct vm_guest_mode_params vm_guest_mode_params[] = { 230 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 231 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 232 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 233 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 234 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 235 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 236 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 237 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 238 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 239 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 240 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 241 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 242 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 243 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 244 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 245 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 246 }; 247 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 248 "Missing new mode params?"); 249 250 /* 251 * Initializes vm->vpages_valid to match the canonical VA space of the 252 * architecture. 253 * 254 * The default implementation is valid for architectures which split the 255 * range addressed by a single page table into a low and high region 256 * based on the MSB of the VA. On architectures with this behavior 257 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 258 */ 259 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 260 { 261 sparsebit_set_num(vm->vpages_valid, 262 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 263 sparsebit_set_num(vm->vpages_valid, 264 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 265 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 266 } 267 268 struct kvm_vm *____vm_create(struct vm_shape shape) 269 { 270 struct kvm_vm *vm; 271 272 vm = calloc(1, sizeof(*vm)); 273 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 274 275 INIT_LIST_HEAD(&vm->vcpus); 276 vm->regions.gpa_tree = RB_ROOT; 277 vm->regions.hva_tree = RB_ROOT; 278 hash_init(vm->regions.slot_hash); 279 280 vm->mode = shape.mode; 281 vm->type = shape.type; 282 283 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 284 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 285 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 286 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 287 288 /* Setup mode specific traits. */ 289 switch (vm->mode) { 290 case VM_MODE_P52V48_4K: 291 vm->pgtable_levels = 4; 292 break; 293 case VM_MODE_P52V48_64K: 294 vm->pgtable_levels = 3; 295 break; 296 case VM_MODE_P48V48_4K: 297 vm->pgtable_levels = 4; 298 break; 299 case VM_MODE_P48V48_64K: 300 vm->pgtable_levels = 3; 301 break; 302 case VM_MODE_P40V48_4K: 303 case VM_MODE_P36V48_4K: 304 vm->pgtable_levels = 4; 305 break; 306 case VM_MODE_P40V48_64K: 307 case VM_MODE_P36V48_64K: 308 vm->pgtable_levels = 3; 309 break; 310 case VM_MODE_P52V48_16K: 311 case VM_MODE_P48V48_16K: 312 case VM_MODE_P40V48_16K: 313 case VM_MODE_P36V48_16K: 314 vm->pgtable_levels = 4; 315 break; 316 case VM_MODE_P36V47_16K: 317 vm->pgtable_levels = 3; 318 break; 319 case VM_MODE_PXXV48_4K: 320 #ifdef __x86_64__ 321 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 322 kvm_init_vm_address_properties(vm); 323 /* 324 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 325 * it doesn't take effect unless a CR4.LA57 is set, which it 326 * isn't for this mode (48-bit virtual address space). 327 */ 328 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 329 "Linear address width (%d bits) not supported", 330 vm->va_bits); 331 pr_debug("Guest physical address width detected: %d\n", 332 vm->pa_bits); 333 vm->pgtable_levels = 4; 334 vm->va_bits = 48; 335 #else 336 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 337 #endif 338 break; 339 case VM_MODE_P47V64_4K: 340 vm->pgtable_levels = 5; 341 break; 342 case VM_MODE_P44V64_4K: 343 vm->pgtable_levels = 5; 344 break; 345 default: 346 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 347 } 348 349 #ifdef __aarch64__ 350 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 351 if (vm->pa_bits != 40) 352 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 353 #endif 354 355 vm_open(vm); 356 357 /* Limit to VA-bit canonical virtual addresses. */ 358 vm->vpages_valid = sparsebit_alloc(); 359 vm_vaddr_populate_bitmap(vm); 360 361 /* Limit physical addresses to PA-bits. */ 362 vm->max_gfn = vm_compute_max_gfn(vm); 363 364 /* Allocate and setup memory for guest. */ 365 vm->vpages_mapped = sparsebit_alloc(); 366 367 return vm; 368 } 369 370 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 371 uint32_t nr_runnable_vcpus, 372 uint64_t extra_mem_pages) 373 { 374 uint64_t page_size = vm_guest_mode_params[mode].page_size; 375 uint64_t nr_pages; 376 377 TEST_ASSERT(nr_runnable_vcpus, 378 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 379 380 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 381 "nr_vcpus = %d too large for host, max-vcpus = %d", 382 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 383 384 /* 385 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 386 * test code and other per-VM assets that will be loaded into memslot0. 387 */ 388 nr_pages = 512; 389 390 /* Account for the per-vCPU stacks on behalf of the test. */ 391 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 392 393 /* 394 * Account for the number of pages needed for the page tables. The 395 * maximum page table size for a memory region will be when the 396 * smallest page size is used. Considering each page contains x page 397 * table descriptors, the total extra size for page tables (for extra 398 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 399 * than N/x*2. 400 */ 401 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 402 403 /* Account for the number of pages needed by ucall. */ 404 nr_pages += ucall_nr_pages_required(page_size); 405 406 return vm_adjust_num_guest_pages(mode, nr_pages); 407 } 408 409 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 410 uint64_t nr_extra_pages) 411 { 412 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 413 nr_extra_pages); 414 struct userspace_mem_region *slot0; 415 struct kvm_vm *vm; 416 int i; 417 418 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 419 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 420 421 vm = ____vm_create(shape); 422 423 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0); 424 for (i = 0; i < NR_MEM_REGIONS; i++) 425 vm->memslots[i] = 0; 426 427 kvm_vm_elf_load(vm, program_invocation_name); 428 429 /* 430 * TODO: Add proper defines to protect the library's memslots, and then 431 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 432 * read-only memslots as MMIO, and creating a read-only memslot for the 433 * MMIO region would prevent silently clobbering the MMIO region. 434 */ 435 slot0 = memslot2region(vm, 0); 436 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 437 438 if (guest_random_seed != last_guest_seed) { 439 pr_info("Random seed: 0x%x\n", guest_random_seed); 440 last_guest_seed = guest_random_seed; 441 } 442 guest_rng = new_guest_random_state(guest_random_seed); 443 sync_global_to_guest(vm, guest_rng); 444 445 kvm_arch_vm_post_create(vm); 446 447 return vm; 448 } 449 450 /* 451 * VM Create with customized parameters 452 * 453 * Input Args: 454 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 455 * nr_vcpus - VCPU count 456 * extra_mem_pages - Non-slot0 physical memory total size 457 * guest_code - Guest entry point 458 * vcpuids - VCPU IDs 459 * 460 * Output Args: None 461 * 462 * Return: 463 * Pointer to opaque structure that describes the created VM. 464 * 465 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 466 * extra_mem_pages is only used to calculate the maximum page table size, 467 * no real memory allocation for non-slot0 memory in this function. 468 */ 469 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 470 uint64_t extra_mem_pages, 471 void *guest_code, struct kvm_vcpu *vcpus[]) 472 { 473 struct kvm_vm *vm; 474 int i; 475 476 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 477 478 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 479 480 for (i = 0; i < nr_vcpus; ++i) 481 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 482 483 return vm; 484 } 485 486 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 487 struct kvm_vcpu **vcpu, 488 uint64_t extra_mem_pages, 489 void *guest_code) 490 { 491 struct kvm_vcpu *vcpus[1]; 492 struct kvm_vm *vm; 493 494 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 495 496 *vcpu = vcpus[0]; 497 return vm; 498 } 499 500 /* 501 * VM Restart 502 * 503 * Input Args: 504 * vm - VM that has been released before 505 * 506 * Output Args: None 507 * 508 * Reopens the file descriptors associated to the VM and reinstates the 509 * global state, such as the irqchip and the memory regions that are mapped 510 * into the guest. 511 */ 512 void kvm_vm_restart(struct kvm_vm *vmp) 513 { 514 int ctr; 515 struct userspace_mem_region *region; 516 517 vm_open(vmp); 518 if (vmp->has_irqchip) 519 vm_create_irqchip(vmp); 520 521 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 522 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 523 524 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 525 " rc: %i errno: %i\n" 526 " slot: %u flags: 0x%x\n" 527 " guest_phys_addr: 0x%llx size: 0x%llx", 528 ret, errno, region->region.slot, 529 region->region.flags, 530 region->region.guest_phys_addr, 531 region->region.memory_size); 532 } 533 } 534 535 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 536 uint32_t vcpu_id) 537 { 538 return __vm_vcpu_add(vm, vcpu_id); 539 } 540 541 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 542 { 543 kvm_vm_restart(vm); 544 545 return vm_vcpu_recreate(vm, 0); 546 } 547 548 void kvm_pin_this_task_to_pcpu(uint32_t pcpu) 549 { 550 cpu_set_t mask; 551 int r; 552 553 CPU_ZERO(&mask); 554 CPU_SET(pcpu, &mask); 555 r = sched_setaffinity(0, sizeof(mask), &mask); 556 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu); 557 } 558 559 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 560 { 561 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 562 563 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 564 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 565 return pcpu; 566 } 567 568 void kvm_print_vcpu_pinning_help(void) 569 { 570 const char *name = program_invocation_name; 571 572 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 573 " values (target pCPU), one for each vCPU, plus an optional\n" 574 " entry for the main application task (specified via entry\n" 575 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 576 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 577 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 578 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 579 " %s -v 3 -c 22,23,24,50\n\n" 580 " To leave the application task unpinned, drop the final entry:\n\n" 581 " %s -v 3 -c 22,23,24\n\n" 582 " (default: no pinning)\n", name, name); 583 } 584 585 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 586 int nr_vcpus) 587 { 588 cpu_set_t allowed_mask; 589 char *cpu, *cpu_list; 590 char delim[2] = ","; 591 int i, r; 592 593 cpu_list = strdup(pcpus_string); 594 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 595 596 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 597 TEST_ASSERT(!r, "sched_getaffinity() failed"); 598 599 cpu = strtok(cpu_list, delim); 600 601 /* 1. Get all pcpus for vcpus. */ 602 for (i = 0; i < nr_vcpus; i++) { 603 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 604 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 605 cpu = strtok(NULL, delim); 606 } 607 608 /* 2. Check if the main worker needs to be pinned. */ 609 if (cpu) { 610 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); 611 cpu = strtok(NULL, delim); 612 } 613 614 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 615 free(cpu_list); 616 } 617 618 /* 619 * Userspace Memory Region Find 620 * 621 * Input Args: 622 * vm - Virtual Machine 623 * start - Starting VM physical address 624 * end - Ending VM physical address, inclusive. 625 * 626 * Output Args: None 627 * 628 * Return: 629 * Pointer to overlapping region, NULL if no such region. 630 * 631 * Searches for a region with any physical memory that overlaps with 632 * any portion of the guest physical addresses from start to end 633 * inclusive. If multiple overlapping regions exist, a pointer to any 634 * of the regions is returned. Null is returned only when no overlapping 635 * region exists. 636 */ 637 static struct userspace_mem_region * 638 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 639 { 640 struct rb_node *node; 641 642 for (node = vm->regions.gpa_tree.rb_node; node; ) { 643 struct userspace_mem_region *region = 644 container_of(node, struct userspace_mem_region, gpa_node); 645 uint64_t existing_start = region->region.guest_phys_addr; 646 uint64_t existing_end = region->region.guest_phys_addr 647 + region->region.memory_size - 1; 648 if (start <= existing_end && end >= existing_start) 649 return region; 650 651 if (start < existing_start) 652 node = node->rb_left; 653 else 654 node = node->rb_right; 655 } 656 657 return NULL; 658 } 659 660 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 661 { 662 663 } 664 665 /* 666 * VM VCPU Remove 667 * 668 * Input Args: 669 * vcpu - VCPU to remove 670 * 671 * Output Args: None 672 * 673 * Return: None, TEST_ASSERT failures for all error conditions 674 * 675 * Removes a vCPU from a VM and frees its resources. 676 */ 677 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 678 { 679 int ret; 680 681 if (vcpu->dirty_gfns) { 682 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 683 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 684 vcpu->dirty_gfns = NULL; 685 } 686 687 ret = munmap(vcpu->run, vcpu_mmap_sz()); 688 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 689 690 ret = close(vcpu->fd); 691 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 692 693 list_del(&vcpu->list); 694 695 vcpu_arch_free(vcpu); 696 free(vcpu); 697 } 698 699 void kvm_vm_release(struct kvm_vm *vmp) 700 { 701 struct kvm_vcpu *vcpu, *tmp; 702 int ret; 703 704 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 705 vm_vcpu_rm(vmp, vcpu); 706 707 ret = close(vmp->fd); 708 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 709 710 ret = close(vmp->kvm_fd); 711 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 712 } 713 714 static void __vm_mem_region_delete(struct kvm_vm *vm, 715 struct userspace_mem_region *region, 716 bool unlink) 717 { 718 int ret; 719 720 if (unlink) { 721 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 722 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 723 hash_del(®ion->slot_node); 724 } 725 726 region->region.memory_size = 0; 727 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 728 729 sparsebit_free(®ion->unused_phy_pages); 730 sparsebit_free(®ion->protected_phy_pages); 731 ret = munmap(region->mmap_start, region->mmap_size); 732 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 733 if (region->fd >= 0) { 734 /* There's an extra map when using shared memory. */ 735 ret = munmap(region->mmap_alias, region->mmap_size); 736 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 737 close(region->fd); 738 } 739 if (region->region.guest_memfd >= 0) 740 close(region->region.guest_memfd); 741 742 free(region); 743 } 744 745 /* 746 * Destroys and frees the VM pointed to by vmp. 747 */ 748 void kvm_vm_free(struct kvm_vm *vmp) 749 { 750 int ctr; 751 struct hlist_node *node; 752 struct userspace_mem_region *region; 753 754 if (vmp == NULL) 755 return; 756 757 /* Free cached stats metadata and close FD */ 758 if (vmp->stats_fd) { 759 free(vmp->stats_desc); 760 close(vmp->stats_fd); 761 } 762 763 /* Free userspace_mem_regions. */ 764 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 765 __vm_mem_region_delete(vmp, region, false); 766 767 /* Free sparsebit arrays. */ 768 sparsebit_free(&vmp->vpages_valid); 769 sparsebit_free(&vmp->vpages_mapped); 770 771 kvm_vm_release(vmp); 772 773 /* Free the structure describing the VM. */ 774 free(vmp); 775 } 776 777 int kvm_memfd_alloc(size_t size, bool hugepages) 778 { 779 int memfd_flags = MFD_CLOEXEC; 780 int fd, r; 781 782 if (hugepages) 783 memfd_flags |= MFD_HUGETLB; 784 785 fd = memfd_create("kvm_selftest", memfd_flags); 786 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 787 788 r = ftruncate(fd, size); 789 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 790 791 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 792 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 793 794 return fd; 795 } 796 797 /* 798 * Memory Compare, host virtual to guest virtual 799 * 800 * Input Args: 801 * hva - Starting host virtual address 802 * vm - Virtual Machine 803 * gva - Starting guest virtual address 804 * len - number of bytes to compare 805 * 806 * Output Args: None 807 * 808 * Input/Output Args: None 809 * 810 * Return: 811 * Returns 0 if the bytes starting at hva for a length of len 812 * are equal the guest virtual bytes starting at gva. Returns 813 * a value < 0, if bytes at hva are less than those at gva. 814 * Otherwise a value > 0 is returned. 815 * 816 * Compares the bytes starting at the host virtual address hva, for 817 * a length of len, to the guest bytes starting at the guest virtual 818 * address given by gva. 819 */ 820 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 821 { 822 size_t amt; 823 824 /* 825 * Compare a batch of bytes until either a match is found 826 * or all the bytes have been compared. 827 */ 828 for (uintptr_t offset = 0; offset < len; offset += amt) { 829 uintptr_t ptr1 = (uintptr_t)hva + offset; 830 831 /* 832 * Determine host address for guest virtual address 833 * at offset. 834 */ 835 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 836 837 /* 838 * Determine amount to compare on this pass. 839 * Don't allow the comparsion to cross a page boundary. 840 */ 841 amt = len - offset; 842 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 843 amt = vm->page_size - (ptr1 % vm->page_size); 844 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 845 amt = vm->page_size - (ptr2 % vm->page_size); 846 847 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 848 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 849 850 /* 851 * Perform the comparison. If there is a difference 852 * return that result to the caller, otherwise need 853 * to continue on looking for a mismatch. 854 */ 855 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 856 if (ret != 0) 857 return ret; 858 } 859 860 /* 861 * No mismatch found. Let the caller know the two memory 862 * areas are equal. 863 */ 864 return 0; 865 } 866 867 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 868 struct userspace_mem_region *region) 869 { 870 struct rb_node **cur, *parent; 871 872 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 873 struct userspace_mem_region *cregion; 874 875 cregion = container_of(*cur, typeof(*cregion), gpa_node); 876 parent = *cur; 877 if (region->region.guest_phys_addr < 878 cregion->region.guest_phys_addr) 879 cur = &(*cur)->rb_left; 880 else { 881 TEST_ASSERT(region->region.guest_phys_addr != 882 cregion->region.guest_phys_addr, 883 "Duplicate GPA in region tree"); 884 885 cur = &(*cur)->rb_right; 886 } 887 } 888 889 rb_link_node(®ion->gpa_node, parent, cur); 890 rb_insert_color(®ion->gpa_node, gpa_tree); 891 } 892 893 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 894 struct userspace_mem_region *region) 895 { 896 struct rb_node **cur, *parent; 897 898 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 899 struct userspace_mem_region *cregion; 900 901 cregion = container_of(*cur, typeof(*cregion), hva_node); 902 parent = *cur; 903 if (region->host_mem < cregion->host_mem) 904 cur = &(*cur)->rb_left; 905 else { 906 TEST_ASSERT(region->host_mem != 907 cregion->host_mem, 908 "Duplicate HVA in region tree"); 909 910 cur = &(*cur)->rb_right; 911 } 912 } 913 914 rb_link_node(®ion->hva_node, parent, cur); 915 rb_insert_color(®ion->hva_node, hva_tree); 916 } 917 918 919 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 920 uint64_t gpa, uint64_t size, void *hva) 921 { 922 struct kvm_userspace_memory_region region = { 923 .slot = slot, 924 .flags = flags, 925 .guest_phys_addr = gpa, 926 .memory_size = size, 927 .userspace_addr = (uintptr_t)hva, 928 }; 929 930 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 931 } 932 933 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 934 uint64_t gpa, uint64_t size, void *hva) 935 { 936 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 937 938 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 939 errno, strerror(errno)); 940 } 941 942 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \ 943 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \ 944 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)") 945 946 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 947 uint64_t gpa, uint64_t size, void *hva, 948 uint32_t guest_memfd, uint64_t guest_memfd_offset) 949 { 950 struct kvm_userspace_memory_region2 region = { 951 .slot = slot, 952 .flags = flags, 953 .guest_phys_addr = gpa, 954 .memory_size = size, 955 .userspace_addr = (uintptr_t)hva, 956 .guest_memfd = guest_memfd, 957 .guest_memfd_offset = guest_memfd_offset, 958 }; 959 960 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 961 962 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 963 } 964 965 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 966 uint64_t gpa, uint64_t size, void *hva, 967 uint32_t guest_memfd, uint64_t guest_memfd_offset) 968 { 969 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 970 guest_memfd, guest_memfd_offset); 971 972 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 973 errno, strerror(errno)); 974 } 975 976 977 /* FIXME: This thing needs to be ripped apart and rewritten. */ 978 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 979 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 980 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 981 { 982 int ret; 983 struct userspace_mem_region *region; 984 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 985 size_t mem_size = npages * vm->page_size; 986 size_t alignment; 987 988 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 989 990 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 991 "Number of guest pages is not compatible with the host. " 992 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 993 994 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 995 "address not on a page boundary.\n" 996 " guest_paddr: 0x%lx vm->page_size: 0x%x", 997 guest_paddr, vm->page_size); 998 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 999 <= vm->max_gfn, "Physical range beyond maximum " 1000 "supported physical address,\n" 1001 " guest_paddr: 0x%lx npages: 0x%lx\n" 1002 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 1003 guest_paddr, npages, vm->max_gfn, vm->page_size); 1004 1005 /* 1006 * Confirm a mem region with an overlapping address doesn't 1007 * already exist. 1008 */ 1009 region = (struct userspace_mem_region *) userspace_mem_region_find( 1010 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 1011 if (region != NULL) 1012 TEST_FAIL("overlapping userspace_mem_region already " 1013 "exists\n" 1014 " requested guest_paddr: 0x%lx npages: 0x%lx " 1015 "page_size: 0x%x\n" 1016 " existing guest_paddr: 0x%lx size: 0x%lx", 1017 guest_paddr, npages, vm->page_size, 1018 (uint64_t) region->region.guest_phys_addr, 1019 (uint64_t) region->region.memory_size); 1020 1021 /* Confirm no region with the requested slot already exists. */ 1022 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1023 slot) { 1024 if (region->region.slot != slot) 1025 continue; 1026 1027 TEST_FAIL("A mem region with the requested slot " 1028 "already exists.\n" 1029 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 1030 " existing slot: %u paddr: 0x%lx size: 0x%lx", 1031 slot, guest_paddr, npages, 1032 region->region.slot, 1033 (uint64_t) region->region.guest_phys_addr, 1034 (uint64_t) region->region.memory_size); 1035 } 1036 1037 /* Allocate and initialize new mem region structure. */ 1038 region = calloc(1, sizeof(*region)); 1039 TEST_ASSERT(region != NULL, "Insufficient Memory"); 1040 region->mmap_size = mem_size; 1041 1042 #ifdef __s390x__ 1043 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 1044 alignment = 0x100000; 1045 #else 1046 alignment = 1; 1047 #endif 1048 1049 /* 1050 * When using THP mmap is not guaranteed to returned a hugepage aligned 1051 * address so we have to pad the mmap. Padding is not needed for HugeTLB 1052 * because mmap will always return an address aligned to the HugeTLB 1053 * page size. 1054 */ 1055 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 1056 alignment = max(backing_src_pagesz, alignment); 1057 1058 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 1059 1060 /* Add enough memory to align up if necessary */ 1061 if (alignment > 1) 1062 region->mmap_size += alignment; 1063 1064 region->fd = -1; 1065 if (backing_src_is_shared(src_type)) 1066 region->fd = kvm_memfd_alloc(region->mmap_size, 1067 src_type == VM_MEM_SRC_SHARED_HUGETLB); 1068 1069 region->mmap_start = mmap(NULL, region->mmap_size, 1070 PROT_READ | PROT_WRITE, 1071 vm_mem_backing_src_alias(src_type)->flag, 1072 region->fd, 0); 1073 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1074 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1075 1076 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1077 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1078 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1079 region->mmap_start, backing_src_pagesz); 1080 1081 /* Align host address */ 1082 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1083 1084 /* As needed perform madvise */ 1085 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1086 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1087 ret = madvise(region->host_mem, mem_size, 1088 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1089 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1090 region->host_mem, mem_size, 1091 vm_mem_backing_src_alias(src_type)->name); 1092 } 1093 1094 region->backing_src_type = src_type; 1095 1096 if (flags & KVM_MEM_GUEST_MEMFD) { 1097 if (guest_memfd < 0) { 1098 uint32_t guest_memfd_flags = 0; 1099 TEST_ASSERT(!guest_memfd_offset, 1100 "Offset must be zero when creating new guest_memfd"); 1101 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1102 } else { 1103 /* 1104 * Install a unique fd for each memslot so that the fd 1105 * can be closed when the region is deleted without 1106 * needing to track if the fd is owned by the framework 1107 * or by the caller. 1108 */ 1109 guest_memfd = dup(guest_memfd); 1110 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1111 } 1112 1113 region->region.guest_memfd = guest_memfd; 1114 region->region.guest_memfd_offset = guest_memfd_offset; 1115 } else { 1116 region->region.guest_memfd = -1; 1117 } 1118 1119 region->unused_phy_pages = sparsebit_alloc(); 1120 if (vm_arch_has_protected_memory(vm)) 1121 region->protected_phy_pages = sparsebit_alloc(); 1122 sparsebit_set_num(region->unused_phy_pages, 1123 guest_paddr >> vm->page_shift, npages); 1124 region->region.slot = slot; 1125 region->region.flags = flags; 1126 region->region.guest_phys_addr = guest_paddr; 1127 region->region.memory_size = npages * vm->page_size; 1128 region->region.userspace_addr = (uintptr_t) region->host_mem; 1129 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1130 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1131 " rc: %i errno: %i\n" 1132 " slot: %u flags: 0x%x\n" 1133 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1134 ret, errno, slot, flags, 1135 guest_paddr, (uint64_t) region->region.memory_size, 1136 region->region.guest_memfd); 1137 1138 /* Add to quick lookup data structures */ 1139 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1140 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1141 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1142 1143 /* If shared memory, create an alias. */ 1144 if (region->fd >= 0) { 1145 region->mmap_alias = mmap(NULL, region->mmap_size, 1146 PROT_READ | PROT_WRITE, 1147 vm_mem_backing_src_alias(src_type)->flag, 1148 region->fd, 0); 1149 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1150 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1151 1152 /* Align host alias address */ 1153 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1154 } 1155 } 1156 1157 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1158 enum vm_mem_backing_src_type src_type, 1159 uint64_t guest_paddr, uint32_t slot, 1160 uint64_t npages, uint32_t flags) 1161 { 1162 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1163 } 1164 1165 /* 1166 * Memslot to region 1167 * 1168 * Input Args: 1169 * vm - Virtual Machine 1170 * memslot - KVM memory slot ID 1171 * 1172 * Output Args: None 1173 * 1174 * Return: 1175 * Pointer to memory region structure that describe memory region 1176 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1177 * on error (e.g. currently no memory region using memslot as a KVM 1178 * memory slot ID). 1179 */ 1180 struct userspace_mem_region * 1181 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1182 { 1183 struct userspace_mem_region *region; 1184 1185 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1186 memslot) 1187 if (region->region.slot == memslot) 1188 return region; 1189 1190 fprintf(stderr, "No mem region with the requested slot found,\n" 1191 " requested slot: %u\n", memslot); 1192 fputs("---- vm dump ----\n", stderr); 1193 vm_dump(stderr, vm, 2); 1194 TEST_FAIL("Mem region not found"); 1195 return NULL; 1196 } 1197 1198 /* 1199 * VM Memory Region Flags Set 1200 * 1201 * Input Args: 1202 * vm - Virtual Machine 1203 * flags - Starting guest physical address 1204 * 1205 * Output Args: None 1206 * 1207 * Return: None 1208 * 1209 * Sets the flags of the memory region specified by the value of slot, 1210 * to the values given by flags. 1211 */ 1212 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1213 { 1214 int ret; 1215 struct userspace_mem_region *region; 1216 1217 region = memslot2region(vm, slot); 1218 1219 region->region.flags = flags; 1220 1221 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1222 1223 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1224 " rc: %i errno: %i slot: %u flags: 0x%x", 1225 ret, errno, slot, flags); 1226 } 1227 1228 /* 1229 * VM Memory Region Move 1230 * 1231 * Input Args: 1232 * vm - Virtual Machine 1233 * slot - Slot of the memory region to move 1234 * new_gpa - Starting guest physical address 1235 * 1236 * Output Args: None 1237 * 1238 * Return: None 1239 * 1240 * Change the gpa of a memory region. 1241 */ 1242 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1243 { 1244 struct userspace_mem_region *region; 1245 int ret; 1246 1247 region = memslot2region(vm, slot); 1248 1249 region->region.guest_phys_addr = new_gpa; 1250 1251 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1252 1253 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1254 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1255 ret, errno, slot, new_gpa); 1256 } 1257 1258 /* 1259 * VM Memory Region Delete 1260 * 1261 * Input Args: 1262 * vm - Virtual Machine 1263 * slot - Slot of the memory region to delete 1264 * 1265 * Output Args: None 1266 * 1267 * Return: None 1268 * 1269 * Delete a memory region. 1270 */ 1271 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1272 { 1273 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1274 } 1275 1276 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1277 bool punch_hole) 1278 { 1279 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1280 struct userspace_mem_region *region; 1281 uint64_t end = base + size; 1282 uint64_t gpa, len; 1283 off_t fd_offset; 1284 int ret; 1285 1286 for (gpa = base; gpa < end; gpa += len) { 1287 uint64_t offset; 1288 1289 region = userspace_mem_region_find(vm, gpa, gpa); 1290 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1291 "Private memory region not found for GPA 0x%lx", gpa); 1292 1293 offset = gpa - region->region.guest_phys_addr; 1294 fd_offset = region->region.guest_memfd_offset + offset; 1295 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1296 1297 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1298 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1299 punch_hole ? "punch hole" : "allocate", gpa, len, 1300 region->region.guest_memfd, mode, fd_offset); 1301 } 1302 } 1303 1304 /* Returns the size of a vCPU's kvm_run structure. */ 1305 static int vcpu_mmap_sz(void) 1306 { 1307 int dev_fd, ret; 1308 1309 dev_fd = open_kvm_dev_path_or_exit(); 1310 1311 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1312 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1313 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1314 1315 close(dev_fd); 1316 1317 return ret; 1318 } 1319 1320 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1321 { 1322 struct kvm_vcpu *vcpu; 1323 1324 list_for_each_entry(vcpu, &vm->vcpus, list) { 1325 if (vcpu->id == vcpu_id) 1326 return true; 1327 } 1328 1329 return false; 1330 } 1331 1332 /* 1333 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1334 * No additional vCPU setup is done. Returns the vCPU. 1335 */ 1336 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1337 { 1338 struct kvm_vcpu *vcpu; 1339 1340 /* Confirm a vcpu with the specified id doesn't already exist. */ 1341 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1342 1343 /* Allocate and initialize new vcpu structure. */ 1344 vcpu = calloc(1, sizeof(*vcpu)); 1345 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1346 1347 vcpu->vm = vm; 1348 vcpu->id = vcpu_id; 1349 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1350 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1351 1352 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1353 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1354 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1355 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1356 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1357 TEST_ASSERT(vcpu->run != MAP_FAILED, 1358 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1359 1360 /* Add to linked-list of VCPUs. */ 1361 list_add(&vcpu->list, &vm->vcpus); 1362 1363 return vcpu; 1364 } 1365 1366 /* 1367 * VM Virtual Address Unused Gap 1368 * 1369 * Input Args: 1370 * vm - Virtual Machine 1371 * sz - Size (bytes) 1372 * vaddr_min - Minimum Virtual Address 1373 * 1374 * Output Args: None 1375 * 1376 * Return: 1377 * Lowest virtual address at or below vaddr_min, with at least 1378 * sz unused bytes. TEST_ASSERT failure if no area of at least 1379 * size sz is available. 1380 * 1381 * Within the VM specified by vm, locates the lowest starting virtual 1382 * address >= vaddr_min, that has at least sz unallocated bytes. A 1383 * TEST_ASSERT failure occurs for invalid input or no area of at least 1384 * sz unallocated bytes >= vaddr_min is available. 1385 */ 1386 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1387 vm_vaddr_t vaddr_min) 1388 { 1389 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1390 1391 /* Determine lowest permitted virtual page index. */ 1392 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1393 if ((pgidx_start * vm->page_size) < vaddr_min) 1394 goto no_va_found; 1395 1396 /* Loop over section with enough valid virtual page indexes. */ 1397 if (!sparsebit_is_set_num(vm->vpages_valid, 1398 pgidx_start, pages)) 1399 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1400 pgidx_start, pages); 1401 do { 1402 /* 1403 * Are there enough unused virtual pages available at 1404 * the currently proposed starting virtual page index. 1405 * If not, adjust proposed starting index to next 1406 * possible. 1407 */ 1408 if (sparsebit_is_clear_num(vm->vpages_mapped, 1409 pgidx_start, pages)) 1410 goto va_found; 1411 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1412 pgidx_start, pages); 1413 if (pgidx_start == 0) 1414 goto no_va_found; 1415 1416 /* 1417 * If needed, adjust proposed starting virtual address, 1418 * to next range of valid virtual addresses. 1419 */ 1420 if (!sparsebit_is_set_num(vm->vpages_valid, 1421 pgidx_start, pages)) { 1422 pgidx_start = sparsebit_next_set_num( 1423 vm->vpages_valid, pgidx_start, pages); 1424 if (pgidx_start == 0) 1425 goto no_va_found; 1426 } 1427 } while (pgidx_start != 0); 1428 1429 no_va_found: 1430 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1431 1432 /* NOT REACHED */ 1433 return -1; 1434 1435 va_found: 1436 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1437 pgidx_start, pages), 1438 "Unexpected, invalid virtual page index range,\n" 1439 " pgidx_start: 0x%lx\n" 1440 " pages: 0x%lx", 1441 pgidx_start, pages); 1442 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1443 pgidx_start, pages), 1444 "Unexpected, pages already mapped,\n" 1445 " pgidx_start: 0x%lx\n" 1446 " pages: 0x%lx", 1447 pgidx_start, pages); 1448 1449 return pgidx_start * vm->page_size; 1450 } 1451 1452 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1453 vm_vaddr_t vaddr_min, 1454 enum kvm_mem_region_type type, 1455 bool protected) 1456 { 1457 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1458 1459 virt_pgd_alloc(vm); 1460 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1461 KVM_UTIL_MIN_PFN * vm->page_size, 1462 vm->memslots[type], protected); 1463 1464 /* 1465 * Find an unused range of virtual page addresses of at least 1466 * pages in length. 1467 */ 1468 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1469 1470 /* Map the virtual pages. */ 1471 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1472 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1473 1474 virt_pg_map(vm, vaddr, paddr); 1475 1476 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1477 } 1478 1479 return vaddr_start; 1480 } 1481 1482 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1483 enum kvm_mem_region_type type) 1484 { 1485 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1486 vm_arch_has_protected_memory(vm)); 1487 } 1488 1489 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1490 vm_vaddr_t vaddr_min, 1491 enum kvm_mem_region_type type) 1492 { 1493 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1494 } 1495 1496 /* 1497 * VM Virtual Address Allocate 1498 * 1499 * Input Args: 1500 * vm - Virtual Machine 1501 * sz - Size in bytes 1502 * vaddr_min - Minimum starting virtual address 1503 * 1504 * Output Args: None 1505 * 1506 * Return: 1507 * Starting guest virtual address 1508 * 1509 * Allocates at least sz bytes within the virtual address space of the vm 1510 * given by vm. The allocated bytes are mapped to a virtual address >= 1511 * the address given by vaddr_min. Note that each allocation uses a 1512 * a unique set of pages, with the minimum real allocation being at least 1513 * a page. The allocated physical space comes from the TEST_DATA memory region. 1514 */ 1515 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1516 { 1517 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1518 } 1519 1520 /* 1521 * VM Virtual Address Allocate Pages 1522 * 1523 * Input Args: 1524 * vm - Virtual Machine 1525 * 1526 * Output Args: None 1527 * 1528 * Return: 1529 * Starting guest virtual address 1530 * 1531 * Allocates at least N system pages worth of bytes within the virtual address 1532 * space of the vm. 1533 */ 1534 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1535 { 1536 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1537 } 1538 1539 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1540 { 1541 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1542 } 1543 1544 /* 1545 * VM Virtual Address Allocate Page 1546 * 1547 * Input Args: 1548 * vm - Virtual Machine 1549 * 1550 * Output Args: None 1551 * 1552 * Return: 1553 * Starting guest virtual address 1554 * 1555 * Allocates at least one system page worth of bytes within the virtual address 1556 * space of the vm. 1557 */ 1558 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1559 { 1560 return vm_vaddr_alloc_pages(vm, 1); 1561 } 1562 1563 /* 1564 * Map a range of VM virtual address to the VM's physical address 1565 * 1566 * Input Args: 1567 * vm - Virtual Machine 1568 * vaddr - Virtuall address to map 1569 * paddr - VM Physical Address 1570 * npages - The number of pages to map 1571 * 1572 * Output Args: None 1573 * 1574 * Return: None 1575 * 1576 * Within the VM given by @vm, creates a virtual translation for 1577 * @npages starting at @vaddr to the page range starting at @paddr. 1578 */ 1579 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1580 unsigned int npages) 1581 { 1582 size_t page_size = vm->page_size; 1583 size_t size = npages * page_size; 1584 1585 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1586 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1587 1588 while (npages--) { 1589 virt_pg_map(vm, vaddr, paddr); 1590 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1591 1592 vaddr += page_size; 1593 paddr += page_size; 1594 } 1595 } 1596 1597 /* 1598 * Address VM Physical to Host Virtual 1599 * 1600 * Input Args: 1601 * vm - Virtual Machine 1602 * gpa - VM physical address 1603 * 1604 * Output Args: None 1605 * 1606 * Return: 1607 * Equivalent host virtual address 1608 * 1609 * Locates the memory region containing the VM physical address given 1610 * by gpa, within the VM given by vm. When found, the host virtual 1611 * address providing the memory to the vm physical address is returned. 1612 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1613 */ 1614 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1615 { 1616 struct userspace_mem_region *region; 1617 1618 gpa = vm_untag_gpa(vm, gpa); 1619 1620 region = userspace_mem_region_find(vm, gpa, gpa); 1621 if (!region) { 1622 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1623 return NULL; 1624 } 1625 1626 return (void *)((uintptr_t)region->host_mem 1627 + (gpa - region->region.guest_phys_addr)); 1628 } 1629 1630 /* 1631 * Address Host Virtual to VM Physical 1632 * 1633 * Input Args: 1634 * vm - Virtual Machine 1635 * hva - Host virtual address 1636 * 1637 * Output Args: None 1638 * 1639 * Return: 1640 * Equivalent VM physical address 1641 * 1642 * Locates the memory region containing the host virtual address given 1643 * by hva, within the VM given by vm. When found, the equivalent 1644 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1645 * region containing hva exists. 1646 */ 1647 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1648 { 1649 struct rb_node *node; 1650 1651 for (node = vm->regions.hva_tree.rb_node; node; ) { 1652 struct userspace_mem_region *region = 1653 container_of(node, struct userspace_mem_region, hva_node); 1654 1655 if (hva >= region->host_mem) { 1656 if (hva <= (region->host_mem 1657 + region->region.memory_size - 1)) 1658 return (vm_paddr_t)((uintptr_t) 1659 region->region.guest_phys_addr 1660 + (hva - (uintptr_t)region->host_mem)); 1661 1662 node = node->rb_right; 1663 } else 1664 node = node->rb_left; 1665 } 1666 1667 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1668 return -1; 1669 } 1670 1671 /* 1672 * Address VM physical to Host Virtual *alias*. 1673 * 1674 * Input Args: 1675 * vm - Virtual Machine 1676 * gpa - VM physical address 1677 * 1678 * Output Args: None 1679 * 1680 * Return: 1681 * Equivalent address within the host virtual *alias* area, or NULL 1682 * (without failing the test) if the guest memory is not shared (so 1683 * no alias exists). 1684 * 1685 * Create a writable, shared virtual=>physical alias for the specific GPA. 1686 * The primary use case is to allow the host selftest to manipulate guest 1687 * memory without mapping said memory in the guest's address space. And, for 1688 * userfaultfd-based demand paging, to do so without triggering userfaults. 1689 */ 1690 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1691 { 1692 struct userspace_mem_region *region; 1693 uintptr_t offset; 1694 1695 region = userspace_mem_region_find(vm, gpa, gpa); 1696 if (!region) 1697 return NULL; 1698 1699 if (!region->host_alias) 1700 return NULL; 1701 1702 offset = gpa - region->region.guest_phys_addr; 1703 return (void *) ((uintptr_t) region->host_alias + offset); 1704 } 1705 1706 /* Create an interrupt controller chip for the specified VM. */ 1707 void vm_create_irqchip(struct kvm_vm *vm) 1708 { 1709 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1710 1711 vm->has_irqchip = true; 1712 } 1713 1714 int _vcpu_run(struct kvm_vcpu *vcpu) 1715 { 1716 int rc; 1717 1718 do { 1719 rc = __vcpu_run(vcpu); 1720 } while (rc == -1 && errno == EINTR); 1721 1722 assert_on_unhandled_exception(vcpu); 1723 1724 return rc; 1725 } 1726 1727 /* 1728 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1729 * Assert if the KVM returns an error (other than -EINTR). 1730 */ 1731 void vcpu_run(struct kvm_vcpu *vcpu) 1732 { 1733 int ret = _vcpu_run(vcpu); 1734 1735 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1736 } 1737 1738 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1739 { 1740 int ret; 1741 1742 vcpu->run->immediate_exit = 1; 1743 ret = __vcpu_run(vcpu); 1744 vcpu->run->immediate_exit = 0; 1745 1746 TEST_ASSERT(ret == -1 && errno == EINTR, 1747 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1748 ret, errno); 1749 } 1750 1751 /* 1752 * Get the list of guest registers which are supported for 1753 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1754 * it is the caller's responsibility to free the list. 1755 */ 1756 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1757 { 1758 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1759 int ret; 1760 1761 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1762 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1763 1764 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1765 reg_list->n = reg_list_n.n; 1766 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1767 return reg_list; 1768 } 1769 1770 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1771 { 1772 uint32_t page_size = getpagesize(); 1773 uint32_t size = vcpu->vm->dirty_ring_size; 1774 1775 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1776 1777 if (!vcpu->dirty_gfns) { 1778 void *addr; 1779 1780 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1781 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1782 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1783 1784 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1785 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1786 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1787 1788 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1789 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1790 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1791 1792 vcpu->dirty_gfns = addr; 1793 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1794 } 1795 1796 return vcpu->dirty_gfns; 1797 } 1798 1799 /* 1800 * Device Ioctl 1801 */ 1802 1803 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1804 { 1805 struct kvm_device_attr attribute = { 1806 .group = group, 1807 .attr = attr, 1808 .flags = 0, 1809 }; 1810 1811 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1812 } 1813 1814 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1815 { 1816 struct kvm_create_device create_dev = { 1817 .type = type, 1818 .flags = KVM_CREATE_DEVICE_TEST, 1819 }; 1820 1821 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1822 } 1823 1824 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1825 { 1826 struct kvm_create_device create_dev = { 1827 .type = type, 1828 .fd = -1, 1829 .flags = 0, 1830 }; 1831 int err; 1832 1833 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1834 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1835 return err ? : create_dev.fd; 1836 } 1837 1838 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1839 { 1840 struct kvm_device_attr kvmattr = { 1841 .group = group, 1842 .attr = attr, 1843 .flags = 0, 1844 .addr = (uintptr_t)val, 1845 }; 1846 1847 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1848 } 1849 1850 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1851 { 1852 struct kvm_device_attr kvmattr = { 1853 .group = group, 1854 .attr = attr, 1855 .flags = 0, 1856 .addr = (uintptr_t)val, 1857 }; 1858 1859 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1860 } 1861 1862 /* 1863 * IRQ related functions. 1864 */ 1865 1866 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1867 { 1868 struct kvm_irq_level irq_level = { 1869 .irq = irq, 1870 .level = level, 1871 }; 1872 1873 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1874 } 1875 1876 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1877 { 1878 int ret = _kvm_irq_line(vm, irq, level); 1879 1880 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1881 } 1882 1883 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1884 { 1885 struct kvm_irq_routing *routing; 1886 size_t size; 1887 1888 size = sizeof(struct kvm_irq_routing); 1889 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1890 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1891 routing = calloc(1, size); 1892 assert(routing); 1893 1894 return routing; 1895 } 1896 1897 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1898 uint32_t gsi, uint32_t pin) 1899 { 1900 int i; 1901 1902 assert(routing); 1903 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1904 1905 i = routing->nr; 1906 routing->entries[i].gsi = gsi; 1907 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1908 routing->entries[i].flags = 0; 1909 routing->entries[i].u.irqchip.irqchip = 0; 1910 routing->entries[i].u.irqchip.pin = pin; 1911 routing->nr++; 1912 } 1913 1914 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1915 { 1916 int ret; 1917 1918 assert(routing); 1919 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1920 free(routing); 1921 1922 return ret; 1923 } 1924 1925 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1926 { 1927 int ret; 1928 1929 ret = _kvm_gsi_routing_write(vm, routing); 1930 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1931 } 1932 1933 /* 1934 * VM Dump 1935 * 1936 * Input Args: 1937 * vm - Virtual Machine 1938 * indent - Left margin indent amount 1939 * 1940 * Output Args: 1941 * stream - Output FILE stream 1942 * 1943 * Return: None 1944 * 1945 * Dumps the current state of the VM given by vm, to the FILE stream 1946 * given by stream. 1947 */ 1948 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1949 { 1950 int ctr; 1951 struct userspace_mem_region *region; 1952 struct kvm_vcpu *vcpu; 1953 1954 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1955 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1956 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1957 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1958 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1959 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1960 "host_virt: %p\n", indent + 2, "", 1961 (uint64_t) region->region.guest_phys_addr, 1962 (uint64_t) region->region.memory_size, 1963 region->host_mem); 1964 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1965 sparsebit_dump(stream, region->unused_phy_pages, 0); 1966 if (region->protected_phy_pages) { 1967 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1968 sparsebit_dump(stream, region->protected_phy_pages, 0); 1969 } 1970 } 1971 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1972 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1973 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1974 vm->pgd_created); 1975 if (vm->pgd_created) { 1976 fprintf(stream, "%*sVirtual Translation Tables:\n", 1977 indent + 2, ""); 1978 virt_dump(stream, vm, indent + 4); 1979 } 1980 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1981 1982 list_for_each_entry(vcpu, &vm->vcpus, list) 1983 vcpu_dump(stream, vcpu, indent + 2); 1984 } 1985 1986 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1987 1988 /* Known KVM exit reasons */ 1989 static struct exit_reason { 1990 unsigned int reason; 1991 const char *name; 1992 } exit_reasons_known[] = { 1993 KVM_EXIT_STRING(UNKNOWN), 1994 KVM_EXIT_STRING(EXCEPTION), 1995 KVM_EXIT_STRING(IO), 1996 KVM_EXIT_STRING(HYPERCALL), 1997 KVM_EXIT_STRING(DEBUG), 1998 KVM_EXIT_STRING(HLT), 1999 KVM_EXIT_STRING(MMIO), 2000 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 2001 KVM_EXIT_STRING(SHUTDOWN), 2002 KVM_EXIT_STRING(FAIL_ENTRY), 2003 KVM_EXIT_STRING(INTR), 2004 KVM_EXIT_STRING(SET_TPR), 2005 KVM_EXIT_STRING(TPR_ACCESS), 2006 KVM_EXIT_STRING(S390_SIEIC), 2007 KVM_EXIT_STRING(S390_RESET), 2008 KVM_EXIT_STRING(DCR), 2009 KVM_EXIT_STRING(NMI), 2010 KVM_EXIT_STRING(INTERNAL_ERROR), 2011 KVM_EXIT_STRING(OSI), 2012 KVM_EXIT_STRING(PAPR_HCALL), 2013 KVM_EXIT_STRING(S390_UCONTROL), 2014 KVM_EXIT_STRING(WATCHDOG), 2015 KVM_EXIT_STRING(S390_TSCH), 2016 KVM_EXIT_STRING(EPR), 2017 KVM_EXIT_STRING(SYSTEM_EVENT), 2018 KVM_EXIT_STRING(S390_STSI), 2019 KVM_EXIT_STRING(IOAPIC_EOI), 2020 KVM_EXIT_STRING(HYPERV), 2021 KVM_EXIT_STRING(ARM_NISV), 2022 KVM_EXIT_STRING(X86_RDMSR), 2023 KVM_EXIT_STRING(X86_WRMSR), 2024 KVM_EXIT_STRING(DIRTY_RING_FULL), 2025 KVM_EXIT_STRING(AP_RESET_HOLD), 2026 KVM_EXIT_STRING(X86_BUS_LOCK), 2027 KVM_EXIT_STRING(XEN), 2028 KVM_EXIT_STRING(RISCV_SBI), 2029 KVM_EXIT_STRING(RISCV_CSR), 2030 KVM_EXIT_STRING(NOTIFY), 2031 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2032 KVM_EXIT_STRING(MEMORY_NOT_PRESENT), 2033 #endif 2034 }; 2035 2036 /* 2037 * Exit Reason String 2038 * 2039 * Input Args: 2040 * exit_reason - Exit reason 2041 * 2042 * Output Args: None 2043 * 2044 * Return: 2045 * Constant string pointer describing the exit reason. 2046 * 2047 * Locates and returns a constant string that describes the KVM exit 2048 * reason given by exit_reason. If no such string is found, a constant 2049 * string of "Unknown" is returned. 2050 */ 2051 const char *exit_reason_str(unsigned int exit_reason) 2052 { 2053 unsigned int n1; 2054 2055 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2056 if (exit_reason == exit_reasons_known[n1].reason) 2057 return exit_reasons_known[n1].name; 2058 } 2059 2060 return "Unknown"; 2061 } 2062 2063 /* 2064 * Physical Contiguous Page Allocator 2065 * 2066 * Input Args: 2067 * vm - Virtual Machine 2068 * num - number of pages 2069 * paddr_min - Physical address minimum 2070 * memslot - Memory region to allocate page from 2071 * protected - True if the pages will be used as protected/private memory 2072 * 2073 * Output Args: None 2074 * 2075 * Return: 2076 * Starting physical address 2077 * 2078 * Within the VM specified by vm, locates a range of available physical 2079 * pages at or above paddr_min. If found, the pages are marked as in use 2080 * and their base address is returned. A TEST_ASSERT failure occurs if 2081 * not enough pages are available at or above paddr_min. 2082 */ 2083 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2084 vm_paddr_t paddr_min, uint32_t memslot, 2085 bool protected) 2086 { 2087 struct userspace_mem_region *region; 2088 sparsebit_idx_t pg, base; 2089 2090 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2091 2092 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2093 "not divisible by page size.\n" 2094 " paddr_min: 0x%lx page_size: 0x%x", 2095 paddr_min, vm->page_size); 2096 2097 region = memslot2region(vm, memslot); 2098 TEST_ASSERT(!protected || region->protected_phy_pages, 2099 "Region doesn't support protected memory"); 2100 2101 base = pg = paddr_min >> vm->page_shift; 2102 do { 2103 for (; pg < base + num; ++pg) { 2104 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2105 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2106 break; 2107 } 2108 } 2109 } while (pg && pg != base + num); 2110 2111 if (pg == 0) { 2112 fprintf(stderr, "No guest physical page available, " 2113 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2114 paddr_min, vm->page_size, memslot); 2115 fputs("---- vm dump ----\n", stderr); 2116 vm_dump(stderr, vm, 2); 2117 abort(); 2118 } 2119 2120 for (pg = base; pg < base + num; ++pg) { 2121 sparsebit_clear(region->unused_phy_pages, pg); 2122 if (protected) 2123 sparsebit_set(region->protected_phy_pages, pg); 2124 } 2125 2126 return base * vm->page_size; 2127 } 2128 2129 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2130 uint32_t memslot) 2131 { 2132 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2133 } 2134 2135 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2136 { 2137 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2138 vm->memslots[MEM_REGION_PT]); 2139 } 2140 2141 /* 2142 * Address Guest Virtual to Host Virtual 2143 * 2144 * Input Args: 2145 * vm - Virtual Machine 2146 * gva - VM virtual address 2147 * 2148 * Output Args: None 2149 * 2150 * Return: 2151 * Equivalent host virtual address 2152 */ 2153 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2154 { 2155 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2156 } 2157 2158 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2159 { 2160 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2161 } 2162 2163 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2164 unsigned int page_shift, 2165 unsigned int new_page_shift, 2166 bool ceil) 2167 { 2168 unsigned int n = 1 << (new_page_shift - page_shift); 2169 2170 if (page_shift >= new_page_shift) 2171 return num_pages * (1 << (page_shift - new_page_shift)); 2172 2173 return num_pages / n + !!(ceil && num_pages % n); 2174 } 2175 2176 static inline int getpageshift(void) 2177 { 2178 return __builtin_ffs(getpagesize()) - 1; 2179 } 2180 2181 unsigned int 2182 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2183 { 2184 return vm_calc_num_pages(num_guest_pages, 2185 vm_guest_mode_params[mode].page_shift, 2186 getpageshift(), true); 2187 } 2188 2189 unsigned int 2190 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2191 { 2192 return vm_calc_num_pages(num_host_pages, getpageshift(), 2193 vm_guest_mode_params[mode].page_shift, false); 2194 } 2195 2196 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2197 { 2198 unsigned int n; 2199 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2200 return vm_adjust_num_guest_pages(mode, n); 2201 } 2202 2203 /* 2204 * Read binary stats descriptors 2205 * 2206 * Input Args: 2207 * stats_fd - the file descriptor for the binary stats file from which to read 2208 * header - the binary stats metadata header corresponding to the given FD 2209 * 2210 * Output Args: None 2211 * 2212 * Return: 2213 * A pointer to a newly allocated series of stat descriptors. 2214 * Caller is responsible for freeing the returned kvm_stats_desc. 2215 * 2216 * Read the stats descriptors from the binary stats interface. 2217 */ 2218 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2219 struct kvm_stats_header *header) 2220 { 2221 struct kvm_stats_desc *stats_desc; 2222 ssize_t desc_size, total_size, ret; 2223 2224 desc_size = get_stats_descriptor_size(header); 2225 total_size = header->num_desc * desc_size; 2226 2227 stats_desc = calloc(header->num_desc, desc_size); 2228 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2229 2230 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2231 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2232 2233 return stats_desc; 2234 } 2235 2236 /* 2237 * Read stat data for a particular stat 2238 * 2239 * Input Args: 2240 * stats_fd - the file descriptor for the binary stats file from which to read 2241 * header - the binary stats metadata header corresponding to the given FD 2242 * desc - the binary stat metadata for the particular stat to be read 2243 * max_elements - the maximum number of 8-byte values to read into data 2244 * 2245 * Output Args: 2246 * data - the buffer into which stat data should be read 2247 * 2248 * Read the data values of a specified stat from the binary stats interface. 2249 */ 2250 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2251 struct kvm_stats_desc *desc, uint64_t *data, 2252 size_t max_elements) 2253 { 2254 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2255 size_t size = nr_elements * sizeof(*data); 2256 ssize_t ret; 2257 2258 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2259 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2260 2261 ret = pread(stats_fd, data, size, 2262 header->data_offset + desc->offset); 2263 2264 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2265 desc->name, errno, strerror(errno)); 2266 TEST_ASSERT(ret == size, 2267 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2268 desc->name, size, ret); 2269 } 2270 2271 /* 2272 * Read the data of the named stat 2273 * 2274 * Input Args: 2275 * vm - the VM for which the stat should be read 2276 * stat_name - the name of the stat to read 2277 * max_elements - the maximum number of 8-byte values to read into data 2278 * 2279 * Output Args: 2280 * data - the buffer into which stat data should be read 2281 * 2282 * Read the data values of a specified stat from the binary stats interface. 2283 */ 2284 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 2285 size_t max_elements) 2286 { 2287 struct kvm_stats_desc *desc; 2288 size_t size_desc; 2289 int i; 2290 2291 if (!vm->stats_fd) { 2292 vm->stats_fd = vm_get_stats_fd(vm); 2293 read_stats_header(vm->stats_fd, &vm->stats_header); 2294 vm->stats_desc = read_stats_descriptors(vm->stats_fd, 2295 &vm->stats_header); 2296 } 2297 2298 size_desc = get_stats_descriptor_size(&vm->stats_header); 2299 2300 for (i = 0; i < vm->stats_header.num_desc; ++i) { 2301 desc = (void *)vm->stats_desc + (i * size_desc); 2302 2303 if (strcmp(desc->name, stat_name)) 2304 continue; 2305 2306 read_stat_data(vm->stats_fd, &vm->stats_header, desc, 2307 data, max_elements); 2308 2309 break; 2310 } 2311 } 2312 2313 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2314 { 2315 } 2316 2317 __weak void kvm_selftest_arch_init(void) 2318 { 2319 } 2320 2321 void __attribute((constructor)) kvm_selftest_init(void) 2322 { 2323 /* Tell stdout not to buffer its content. */ 2324 setbuf(stdout, NULL); 2325 2326 guest_random_seed = last_guest_seed = random(); 2327 pr_info("Random seed: 0x%x\n", guest_random_seed); 2328 2329 kvm_selftest_arch_init(); 2330 } 2331 2332 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2333 { 2334 sparsebit_idx_t pg = 0; 2335 struct userspace_mem_region *region; 2336 2337 if (!vm_arch_has_protected_memory(vm)) 2338 return false; 2339 2340 region = userspace_mem_region_find(vm, paddr, paddr); 2341 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2342 2343 pg = paddr >> vm->page_shift; 2344 return sparsebit_is_set(region->protected_phy_pages, pg); 2345 } 2346