xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <unistd.h>
18 #include <linux/kernel.h>
19 
20 #define KVM_UTIL_MIN_PFN	2
21 
22 uint32_t guest_random_seed;
23 struct guest_random_state guest_rng;
24 static uint32_t last_guest_seed;
25 
26 static int vcpu_mmap_sz(void);
27 
28 int open_path_or_exit(const char *path, int flags)
29 {
30 	int fd;
31 
32 	fd = open(path, flags);
33 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
34 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
35 
36 	return fd;
37 }
38 
39 /*
40  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
41  *
42  * Input Args:
43  *   flags - The flags to pass when opening KVM_DEV_PATH.
44  *
45  * Return:
46  *   The opened file descriptor of /dev/kvm.
47  */
48 static int _open_kvm_dev_path_or_exit(int flags)
49 {
50 	return open_path_or_exit(KVM_DEV_PATH, flags);
51 }
52 
53 int open_kvm_dev_path_or_exit(void)
54 {
55 	return _open_kvm_dev_path_or_exit(O_RDONLY);
56 }
57 
58 static ssize_t get_module_param(const char *module_name, const char *param,
59 				void *buffer, size_t buffer_size)
60 {
61 	const int path_size = 128;
62 	char path[path_size];
63 	ssize_t bytes_read;
64 	int fd, r;
65 
66 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
67 		     module_name, param);
68 	TEST_ASSERT(r < path_size,
69 		    "Failed to construct sysfs path in %d bytes.", path_size);
70 
71 	fd = open_path_or_exit(path, O_RDONLY);
72 
73 	bytes_read = read(fd, buffer, buffer_size);
74 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
75 		    path, bytes_read, buffer_size);
76 
77 	r = close(fd);
78 	TEST_ASSERT(!r, "close(%s) failed", path);
79 	return bytes_read;
80 }
81 
82 static int get_module_param_integer(const char *module_name, const char *param)
83 {
84 	/*
85 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
86 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
87 	 * at the end.
88 	 */
89 	char value[16 + 1 + 1];
90 	ssize_t r;
91 
92 	memset(value, '\0', sizeof(value));
93 
94 	r = get_module_param(module_name, param, value, sizeof(value));
95 	TEST_ASSERT(value[r - 1] == '\n',
96 		    "Expected trailing newline, got char '%c'", value[r - 1]);
97 
98 	/*
99 	 * Squash the newline, otherwise atoi_paranoid() will complain about
100 	 * trailing non-NUL characters in the string.
101 	 */
102 	value[r - 1] = '\0';
103 	return atoi_paranoid(value);
104 }
105 
106 static bool get_module_param_bool(const char *module_name, const char *param)
107 {
108 	char value;
109 	ssize_t r;
110 
111 	r = get_module_param(module_name, param, &value, sizeof(value));
112 	TEST_ASSERT_EQ(r, 1);
113 
114 	if (value == 'Y')
115 		return true;
116 	else if (value == 'N')
117 		return false;
118 
119 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
120 }
121 
122 bool get_kvm_param_bool(const char *param)
123 {
124 	return get_module_param_bool("kvm", param);
125 }
126 
127 bool get_kvm_intel_param_bool(const char *param)
128 {
129 	return get_module_param_bool("kvm_intel", param);
130 }
131 
132 bool get_kvm_amd_param_bool(const char *param)
133 {
134 	return get_module_param_bool("kvm_amd", param);
135 }
136 
137 int get_kvm_param_integer(const char *param)
138 {
139 	return get_module_param_integer("kvm", param);
140 }
141 
142 int get_kvm_intel_param_integer(const char *param)
143 {
144 	return get_module_param_integer("kvm_intel", param);
145 }
146 
147 int get_kvm_amd_param_integer(const char *param)
148 {
149 	return get_module_param_integer("kvm_amd", param);
150 }
151 
152 /*
153  * Capability
154  *
155  * Input Args:
156  *   cap - Capability
157  *
158  * Output Args: None
159  *
160  * Return:
161  *   On success, the Value corresponding to the capability (KVM_CAP_*)
162  *   specified by the value of cap.  On failure a TEST_ASSERT failure
163  *   is produced.
164  *
165  * Looks up and returns the value corresponding to the capability
166  * (KVM_CAP_*) given by cap.
167  */
168 unsigned int kvm_check_cap(long cap)
169 {
170 	int ret;
171 	int kvm_fd;
172 
173 	kvm_fd = open_kvm_dev_path_or_exit();
174 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
175 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
176 
177 	close(kvm_fd);
178 
179 	return (unsigned int)ret;
180 }
181 
182 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
183 {
184 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
185 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
186 	else
187 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
188 	vm->dirty_ring_size = ring_size;
189 }
190 
191 static void vm_open(struct kvm_vm *vm)
192 {
193 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
194 
195 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
196 
197 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
198 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
199 }
200 
201 const char *vm_guest_mode_string(uint32_t i)
202 {
203 	static const char * const strings[] = {
204 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
205 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
206 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
207 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
208 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
209 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
210 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
211 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
212 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
213 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
214 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
215 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
216 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
217 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
218 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
219 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
220 	};
221 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
222 		       "Missing new mode strings?");
223 
224 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
225 
226 	return strings[i];
227 }
228 
229 const struct vm_guest_mode_params vm_guest_mode_params[] = {
230 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
231 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
232 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
233 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
234 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
235 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
236 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
237 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
238 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
239 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
240 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
241 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
242 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
243 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
244 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
245 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
246 };
247 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
248 	       "Missing new mode params?");
249 
250 /*
251  * Initializes vm->vpages_valid to match the canonical VA space of the
252  * architecture.
253  *
254  * The default implementation is valid for architectures which split the
255  * range addressed by a single page table into a low and high region
256  * based on the MSB of the VA. On architectures with this behavior
257  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
258  */
259 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
260 {
261 	sparsebit_set_num(vm->vpages_valid,
262 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263 	sparsebit_set_num(vm->vpages_valid,
264 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
265 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
266 }
267 
268 struct kvm_vm *____vm_create(struct vm_shape shape)
269 {
270 	struct kvm_vm *vm;
271 
272 	vm = calloc(1, sizeof(*vm));
273 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
274 
275 	INIT_LIST_HEAD(&vm->vcpus);
276 	vm->regions.gpa_tree = RB_ROOT;
277 	vm->regions.hva_tree = RB_ROOT;
278 	hash_init(vm->regions.slot_hash);
279 
280 	vm->mode = shape.mode;
281 	vm->type = shape.type;
282 
283 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
284 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
285 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
286 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
287 
288 	/* Setup mode specific traits. */
289 	switch (vm->mode) {
290 	case VM_MODE_P52V48_4K:
291 		vm->pgtable_levels = 4;
292 		break;
293 	case VM_MODE_P52V48_64K:
294 		vm->pgtable_levels = 3;
295 		break;
296 	case VM_MODE_P48V48_4K:
297 		vm->pgtable_levels = 4;
298 		break;
299 	case VM_MODE_P48V48_64K:
300 		vm->pgtable_levels = 3;
301 		break;
302 	case VM_MODE_P40V48_4K:
303 	case VM_MODE_P36V48_4K:
304 		vm->pgtable_levels = 4;
305 		break;
306 	case VM_MODE_P40V48_64K:
307 	case VM_MODE_P36V48_64K:
308 		vm->pgtable_levels = 3;
309 		break;
310 	case VM_MODE_P52V48_16K:
311 	case VM_MODE_P48V48_16K:
312 	case VM_MODE_P40V48_16K:
313 	case VM_MODE_P36V48_16K:
314 		vm->pgtable_levels = 4;
315 		break;
316 	case VM_MODE_P36V47_16K:
317 		vm->pgtable_levels = 3;
318 		break;
319 	case VM_MODE_PXXV48_4K:
320 #ifdef __x86_64__
321 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
322 		kvm_init_vm_address_properties(vm);
323 		/*
324 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
325 		 * it doesn't take effect unless a CR4.LA57 is set, which it
326 		 * isn't for this mode (48-bit virtual address space).
327 		 */
328 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
329 			    "Linear address width (%d bits) not supported",
330 			    vm->va_bits);
331 		pr_debug("Guest physical address width detected: %d\n",
332 			 vm->pa_bits);
333 		vm->pgtable_levels = 4;
334 		vm->va_bits = 48;
335 #else
336 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
337 #endif
338 		break;
339 	case VM_MODE_P47V64_4K:
340 		vm->pgtable_levels = 5;
341 		break;
342 	case VM_MODE_P44V64_4K:
343 		vm->pgtable_levels = 5;
344 		break;
345 	default:
346 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
347 	}
348 
349 #ifdef __aarch64__
350 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
351 	if (vm->pa_bits != 40)
352 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
353 #endif
354 
355 	vm_open(vm);
356 
357 	/* Limit to VA-bit canonical virtual addresses. */
358 	vm->vpages_valid = sparsebit_alloc();
359 	vm_vaddr_populate_bitmap(vm);
360 
361 	/* Limit physical addresses to PA-bits. */
362 	vm->max_gfn = vm_compute_max_gfn(vm);
363 
364 	/* Allocate and setup memory for guest. */
365 	vm->vpages_mapped = sparsebit_alloc();
366 
367 	return vm;
368 }
369 
370 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
371 				     uint32_t nr_runnable_vcpus,
372 				     uint64_t extra_mem_pages)
373 {
374 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
375 	uint64_t nr_pages;
376 
377 	TEST_ASSERT(nr_runnable_vcpus,
378 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
379 
380 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
381 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
382 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
383 
384 	/*
385 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
386 	 * test code and other per-VM assets that will be loaded into memslot0.
387 	 */
388 	nr_pages = 512;
389 
390 	/* Account for the per-vCPU stacks on behalf of the test. */
391 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
392 
393 	/*
394 	 * Account for the number of pages needed for the page tables.  The
395 	 * maximum page table size for a memory region will be when the
396 	 * smallest page size is used. Considering each page contains x page
397 	 * table descriptors, the total extra size for page tables (for extra
398 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
399 	 * than N/x*2.
400 	 */
401 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
402 
403 	/* Account for the number of pages needed by ucall. */
404 	nr_pages += ucall_nr_pages_required(page_size);
405 
406 	return vm_adjust_num_guest_pages(mode, nr_pages);
407 }
408 
409 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
410 			   uint64_t nr_extra_pages)
411 {
412 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
413 						 nr_extra_pages);
414 	struct userspace_mem_region *slot0;
415 	struct kvm_vm *vm;
416 	int i;
417 
418 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
419 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
420 
421 	vm = ____vm_create(shape);
422 
423 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
424 	for (i = 0; i < NR_MEM_REGIONS; i++)
425 		vm->memslots[i] = 0;
426 
427 	kvm_vm_elf_load(vm, program_invocation_name);
428 
429 	/*
430 	 * TODO: Add proper defines to protect the library's memslots, and then
431 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
432 	 * read-only memslots as MMIO, and creating a read-only memslot for the
433 	 * MMIO region would prevent silently clobbering the MMIO region.
434 	 */
435 	slot0 = memslot2region(vm, 0);
436 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
437 
438 	if (guest_random_seed != last_guest_seed) {
439 		pr_info("Random seed: 0x%x\n", guest_random_seed);
440 		last_guest_seed = guest_random_seed;
441 	}
442 	guest_rng = new_guest_random_state(guest_random_seed);
443 	sync_global_to_guest(vm, guest_rng);
444 
445 	kvm_arch_vm_post_create(vm);
446 
447 	return vm;
448 }
449 
450 /*
451  * VM Create with customized parameters
452  *
453  * Input Args:
454  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
455  *   nr_vcpus - VCPU count
456  *   extra_mem_pages - Non-slot0 physical memory total size
457  *   guest_code - Guest entry point
458  *   vcpuids - VCPU IDs
459  *
460  * Output Args: None
461  *
462  * Return:
463  *   Pointer to opaque structure that describes the created VM.
464  *
465  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
466  * extra_mem_pages is only used to calculate the maximum page table size,
467  * no real memory allocation for non-slot0 memory in this function.
468  */
469 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
470 				      uint64_t extra_mem_pages,
471 				      void *guest_code, struct kvm_vcpu *vcpus[])
472 {
473 	struct kvm_vm *vm;
474 	int i;
475 
476 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
477 
478 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
479 
480 	for (i = 0; i < nr_vcpus; ++i)
481 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
482 
483 	return vm;
484 }
485 
486 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
487 					       struct kvm_vcpu **vcpu,
488 					       uint64_t extra_mem_pages,
489 					       void *guest_code)
490 {
491 	struct kvm_vcpu *vcpus[1];
492 	struct kvm_vm *vm;
493 
494 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
495 
496 	*vcpu = vcpus[0];
497 	return vm;
498 }
499 
500 /*
501  * VM Restart
502  *
503  * Input Args:
504  *   vm - VM that has been released before
505  *
506  * Output Args: None
507  *
508  * Reopens the file descriptors associated to the VM and reinstates the
509  * global state, such as the irqchip and the memory regions that are mapped
510  * into the guest.
511  */
512 void kvm_vm_restart(struct kvm_vm *vmp)
513 {
514 	int ctr;
515 	struct userspace_mem_region *region;
516 
517 	vm_open(vmp);
518 	if (vmp->has_irqchip)
519 		vm_create_irqchip(vmp);
520 
521 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
522 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
523 
524 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
525 			    "  rc: %i errno: %i\n"
526 			    "  slot: %u flags: 0x%x\n"
527 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
528 			    ret, errno, region->region.slot,
529 			    region->region.flags,
530 			    region->region.guest_phys_addr,
531 			    region->region.memory_size);
532 	}
533 }
534 
535 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
536 					      uint32_t vcpu_id)
537 {
538 	return __vm_vcpu_add(vm, vcpu_id);
539 }
540 
541 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
542 {
543 	kvm_vm_restart(vm);
544 
545 	return vm_vcpu_recreate(vm, 0);
546 }
547 
548 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
549 {
550 	cpu_set_t mask;
551 	int r;
552 
553 	CPU_ZERO(&mask);
554 	CPU_SET(pcpu, &mask);
555 	r = sched_setaffinity(0, sizeof(mask), &mask);
556 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
557 }
558 
559 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
560 {
561 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
562 
563 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
564 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
565 	return pcpu;
566 }
567 
568 void kvm_print_vcpu_pinning_help(void)
569 {
570 	const char *name = program_invocation_name;
571 
572 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
573 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
574 	       "     entry for the main application task (specified via entry\n"
575 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
576 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
577 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
578 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
579 	       "         %s -v 3 -c 22,23,24,50\n\n"
580 	       "     To leave the application task unpinned, drop the final entry:\n\n"
581 	       "         %s -v 3 -c 22,23,24\n\n"
582 	       "     (default: no pinning)\n", name, name);
583 }
584 
585 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
586 			    int nr_vcpus)
587 {
588 	cpu_set_t allowed_mask;
589 	char *cpu, *cpu_list;
590 	char delim[2] = ",";
591 	int i, r;
592 
593 	cpu_list = strdup(pcpus_string);
594 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
595 
596 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
597 	TEST_ASSERT(!r, "sched_getaffinity() failed");
598 
599 	cpu = strtok(cpu_list, delim);
600 
601 	/* 1. Get all pcpus for vcpus. */
602 	for (i = 0; i < nr_vcpus; i++) {
603 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
604 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
605 		cpu = strtok(NULL, delim);
606 	}
607 
608 	/* 2. Check if the main worker needs to be pinned. */
609 	if (cpu) {
610 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
611 		cpu = strtok(NULL, delim);
612 	}
613 
614 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
615 	free(cpu_list);
616 }
617 
618 /*
619  * Userspace Memory Region Find
620  *
621  * Input Args:
622  *   vm - Virtual Machine
623  *   start - Starting VM physical address
624  *   end - Ending VM physical address, inclusive.
625  *
626  * Output Args: None
627  *
628  * Return:
629  *   Pointer to overlapping region, NULL if no such region.
630  *
631  * Searches for a region with any physical memory that overlaps with
632  * any portion of the guest physical addresses from start to end
633  * inclusive.  If multiple overlapping regions exist, a pointer to any
634  * of the regions is returned.  Null is returned only when no overlapping
635  * region exists.
636  */
637 static struct userspace_mem_region *
638 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
639 {
640 	struct rb_node *node;
641 
642 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
643 		struct userspace_mem_region *region =
644 			container_of(node, struct userspace_mem_region, gpa_node);
645 		uint64_t existing_start = region->region.guest_phys_addr;
646 		uint64_t existing_end = region->region.guest_phys_addr
647 			+ region->region.memory_size - 1;
648 		if (start <= existing_end && end >= existing_start)
649 			return region;
650 
651 		if (start < existing_start)
652 			node = node->rb_left;
653 		else
654 			node = node->rb_right;
655 	}
656 
657 	return NULL;
658 }
659 
660 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
661 {
662 
663 }
664 
665 /*
666  * VM VCPU Remove
667  *
668  * Input Args:
669  *   vcpu - VCPU to remove
670  *
671  * Output Args: None
672  *
673  * Return: None, TEST_ASSERT failures for all error conditions
674  *
675  * Removes a vCPU from a VM and frees its resources.
676  */
677 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
678 {
679 	int ret;
680 
681 	if (vcpu->dirty_gfns) {
682 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
683 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
684 		vcpu->dirty_gfns = NULL;
685 	}
686 
687 	ret = munmap(vcpu->run, vcpu_mmap_sz());
688 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
689 
690 	ret = close(vcpu->fd);
691 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
692 
693 	list_del(&vcpu->list);
694 
695 	vcpu_arch_free(vcpu);
696 	free(vcpu);
697 }
698 
699 void kvm_vm_release(struct kvm_vm *vmp)
700 {
701 	struct kvm_vcpu *vcpu, *tmp;
702 	int ret;
703 
704 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
705 		vm_vcpu_rm(vmp, vcpu);
706 
707 	ret = close(vmp->fd);
708 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
709 
710 	ret = close(vmp->kvm_fd);
711 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
712 }
713 
714 static void __vm_mem_region_delete(struct kvm_vm *vm,
715 				   struct userspace_mem_region *region,
716 				   bool unlink)
717 {
718 	int ret;
719 
720 	if (unlink) {
721 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
722 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
723 		hash_del(&region->slot_node);
724 	}
725 
726 	region->region.memory_size = 0;
727 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
728 
729 	sparsebit_free(&region->unused_phy_pages);
730 	sparsebit_free(&region->protected_phy_pages);
731 	ret = munmap(region->mmap_start, region->mmap_size);
732 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
733 	if (region->fd >= 0) {
734 		/* There's an extra map when using shared memory. */
735 		ret = munmap(region->mmap_alias, region->mmap_size);
736 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
737 		close(region->fd);
738 	}
739 	if (region->region.guest_memfd >= 0)
740 		close(region->region.guest_memfd);
741 
742 	free(region);
743 }
744 
745 /*
746  * Destroys and frees the VM pointed to by vmp.
747  */
748 void kvm_vm_free(struct kvm_vm *vmp)
749 {
750 	int ctr;
751 	struct hlist_node *node;
752 	struct userspace_mem_region *region;
753 
754 	if (vmp == NULL)
755 		return;
756 
757 	/* Free cached stats metadata and close FD */
758 	if (vmp->stats_fd) {
759 		free(vmp->stats_desc);
760 		close(vmp->stats_fd);
761 	}
762 
763 	/* Free userspace_mem_regions. */
764 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
765 		__vm_mem_region_delete(vmp, region, false);
766 
767 	/* Free sparsebit arrays. */
768 	sparsebit_free(&vmp->vpages_valid);
769 	sparsebit_free(&vmp->vpages_mapped);
770 
771 	kvm_vm_release(vmp);
772 
773 	/* Free the structure describing the VM. */
774 	free(vmp);
775 }
776 
777 int kvm_memfd_alloc(size_t size, bool hugepages)
778 {
779 	int memfd_flags = MFD_CLOEXEC;
780 	int fd, r;
781 
782 	if (hugepages)
783 		memfd_flags |= MFD_HUGETLB;
784 
785 	fd = memfd_create("kvm_selftest", memfd_flags);
786 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
787 
788 	r = ftruncate(fd, size);
789 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
790 
791 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
792 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
793 
794 	return fd;
795 }
796 
797 /*
798  * Memory Compare, host virtual to guest virtual
799  *
800  * Input Args:
801  *   hva - Starting host virtual address
802  *   vm - Virtual Machine
803  *   gva - Starting guest virtual address
804  *   len - number of bytes to compare
805  *
806  * Output Args: None
807  *
808  * Input/Output Args: None
809  *
810  * Return:
811  *   Returns 0 if the bytes starting at hva for a length of len
812  *   are equal the guest virtual bytes starting at gva.  Returns
813  *   a value < 0, if bytes at hva are less than those at gva.
814  *   Otherwise a value > 0 is returned.
815  *
816  * Compares the bytes starting at the host virtual address hva, for
817  * a length of len, to the guest bytes starting at the guest virtual
818  * address given by gva.
819  */
820 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
821 {
822 	size_t amt;
823 
824 	/*
825 	 * Compare a batch of bytes until either a match is found
826 	 * or all the bytes have been compared.
827 	 */
828 	for (uintptr_t offset = 0; offset < len; offset += amt) {
829 		uintptr_t ptr1 = (uintptr_t)hva + offset;
830 
831 		/*
832 		 * Determine host address for guest virtual address
833 		 * at offset.
834 		 */
835 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
836 
837 		/*
838 		 * Determine amount to compare on this pass.
839 		 * Don't allow the comparsion to cross a page boundary.
840 		 */
841 		amt = len - offset;
842 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
843 			amt = vm->page_size - (ptr1 % vm->page_size);
844 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
845 			amt = vm->page_size - (ptr2 % vm->page_size);
846 
847 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
848 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
849 
850 		/*
851 		 * Perform the comparison.  If there is a difference
852 		 * return that result to the caller, otherwise need
853 		 * to continue on looking for a mismatch.
854 		 */
855 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
856 		if (ret != 0)
857 			return ret;
858 	}
859 
860 	/*
861 	 * No mismatch found.  Let the caller know the two memory
862 	 * areas are equal.
863 	 */
864 	return 0;
865 }
866 
867 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
868 					       struct userspace_mem_region *region)
869 {
870 	struct rb_node **cur, *parent;
871 
872 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
873 		struct userspace_mem_region *cregion;
874 
875 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
876 		parent = *cur;
877 		if (region->region.guest_phys_addr <
878 		    cregion->region.guest_phys_addr)
879 			cur = &(*cur)->rb_left;
880 		else {
881 			TEST_ASSERT(region->region.guest_phys_addr !=
882 				    cregion->region.guest_phys_addr,
883 				    "Duplicate GPA in region tree");
884 
885 			cur = &(*cur)->rb_right;
886 		}
887 	}
888 
889 	rb_link_node(&region->gpa_node, parent, cur);
890 	rb_insert_color(&region->gpa_node, gpa_tree);
891 }
892 
893 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
894 					       struct userspace_mem_region *region)
895 {
896 	struct rb_node **cur, *parent;
897 
898 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
899 		struct userspace_mem_region *cregion;
900 
901 		cregion = container_of(*cur, typeof(*cregion), hva_node);
902 		parent = *cur;
903 		if (region->host_mem < cregion->host_mem)
904 			cur = &(*cur)->rb_left;
905 		else {
906 			TEST_ASSERT(region->host_mem !=
907 				    cregion->host_mem,
908 				    "Duplicate HVA in region tree");
909 
910 			cur = &(*cur)->rb_right;
911 		}
912 	}
913 
914 	rb_link_node(&region->hva_node, parent, cur);
915 	rb_insert_color(&region->hva_node, hva_tree);
916 }
917 
918 
919 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
920 				uint64_t gpa, uint64_t size, void *hva)
921 {
922 	struct kvm_userspace_memory_region region = {
923 		.slot = slot,
924 		.flags = flags,
925 		.guest_phys_addr = gpa,
926 		.memory_size = size,
927 		.userspace_addr = (uintptr_t)hva,
928 	};
929 
930 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
931 }
932 
933 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934 			       uint64_t gpa, uint64_t size, void *hva)
935 {
936 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
937 
938 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
939 		    errno, strerror(errno));
940 }
941 
942 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
943 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
944 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
945 
946 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
947 				 uint64_t gpa, uint64_t size, void *hva,
948 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
949 {
950 	struct kvm_userspace_memory_region2 region = {
951 		.slot = slot,
952 		.flags = flags,
953 		.guest_phys_addr = gpa,
954 		.memory_size = size,
955 		.userspace_addr = (uintptr_t)hva,
956 		.guest_memfd = guest_memfd,
957 		.guest_memfd_offset = guest_memfd_offset,
958 	};
959 
960 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
961 
962 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
963 }
964 
965 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
966 				uint64_t gpa, uint64_t size, void *hva,
967 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
968 {
969 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
970 					       guest_memfd, guest_memfd_offset);
971 
972 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
973 		    errno, strerror(errno));
974 }
975 
976 
977 /* FIXME: This thing needs to be ripped apart and rewritten. */
978 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
979 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
980 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
981 {
982 	int ret;
983 	struct userspace_mem_region *region;
984 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
985 	size_t mem_size = npages * vm->page_size;
986 	size_t alignment;
987 
988 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
989 
990 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
991 		"Number of guest pages is not compatible with the host. "
992 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
993 
994 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
995 		"address not on a page boundary.\n"
996 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
997 		guest_paddr, vm->page_size);
998 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
999 		<= vm->max_gfn, "Physical range beyond maximum "
1000 		"supported physical address,\n"
1001 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
1002 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
1003 		guest_paddr, npages, vm->max_gfn, vm->page_size);
1004 
1005 	/*
1006 	 * Confirm a mem region with an overlapping address doesn't
1007 	 * already exist.
1008 	 */
1009 	region = (struct userspace_mem_region *) userspace_mem_region_find(
1010 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
1011 	if (region != NULL)
1012 		TEST_FAIL("overlapping userspace_mem_region already "
1013 			"exists\n"
1014 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
1015 			"page_size: 0x%x\n"
1016 			"  existing guest_paddr: 0x%lx size: 0x%lx",
1017 			guest_paddr, npages, vm->page_size,
1018 			(uint64_t) region->region.guest_phys_addr,
1019 			(uint64_t) region->region.memory_size);
1020 
1021 	/* Confirm no region with the requested slot already exists. */
1022 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1023 			       slot) {
1024 		if (region->region.slot != slot)
1025 			continue;
1026 
1027 		TEST_FAIL("A mem region with the requested slot "
1028 			"already exists.\n"
1029 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1030 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1031 			slot, guest_paddr, npages,
1032 			region->region.slot,
1033 			(uint64_t) region->region.guest_phys_addr,
1034 			(uint64_t) region->region.memory_size);
1035 	}
1036 
1037 	/* Allocate and initialize new mem region structure. */
1038 	region = calloc(1, sizeof(*region));
1039 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1040 	region->mmap_size = mem_size;
1041 
1042 #ifdef __s390x__
1043 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1044 	alignment = 0x100000;
1045 #else
1046 	alignment = 1;
1047 #endif
1048 
1049 	/*
1050 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1051 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1052 	 * because mmap will always return an address aligned to the HugeTLB
1053 	 * page size.
1054 	 */
1055 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1056 		alignment = max(backing_src_pagesz, alignment);
1057 
1058 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1059 
1060 	/* Add enough memory to align up if necessary */
1061 	if (alignment > 1)
1062 		region->mmap_size += alignment;
1063 
1064 	region->fd = -1;
1065 	if (backing_src_is_shared(src_type))
1066 		region->fd = kvm_memfd_alloc(region->mmap_size,
1067 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1068 
1069 	region->mmap_start = mmap(NULL, region->mmap_size,
1070 				  PROT_READ | PROT_WRITE,
1071 				  vm_mem_backing_src_alias(src_type)->flag,
1072 				  region->fd, 0);
1073 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1074 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1075 
1076 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1077 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1078 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1079 		    region->mmap_start, backing_src_pagesz);
1080 
1081 	/* Align host address */
1082 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1083 
1084 	/* As needed perform madvise */
1085 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1086 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1087 		ret = madvise(region->host_mem, mem_size,
1088 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1089 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1090 			    region->host_mem, mem_size,
1091 			    vm_mem_backing_src_alias(src_type)->name);
1092 	}
1093 
1094 	region->backing_src_type = src_type;
1095 
1096 	if (flags & KVM_MEM_GUEST_MEMFD) {
1097 		if (guest_memfd < 0) {
1098 			uint32_t guest_memfd_flags = 0;
1099 			TEST_ASSERT(!guest_memfd_offset,
1100 				    "Offset must be zero when creating new guest_memfd");
1101 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1102 		} else {
1103 			/*
1104 			 * Install a unique fd for each memslot so that the fd
1105 			 * can be closed when the region is deleted without
1106 			 * needing to track if the fd is owned by the framework
1107 			 * or by the caller.
1108 			 */
1109 			guest_memfd = dup(guest_memfd);
1110 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1111 		}
1112 
1113 		region->region.guest_memfd = guest_memfd;
1114 		region->region.guest_memfd_offset = guest_memfd_offset;
1115 	} else {
1116 		region->region.guest_memfd = -1;
1117 	}
1118 
1119 	region->unused_phy_pages = sparsebit_alloc();
1120 	if (vm_arch_has_protected_memory(vm))
1121 		region->protected_phy_pages = sparsebit_alloc();
1122 	sparsebit_set_num(region->unused_phy_pages,
1123 		guest_paddr >> vm->page_shift, npages);
1124 	region->region.slot = slot;
1125 	region->region.flags = flags;
1126 	region->region.guest_phys_addr = guest_paddr;
1127 	region->region.memory_size = npages * vm->page_size;
1128 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1129 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1130 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1131 		"  rc: %i errno: %i\n"
1132 		"  slot: %u flags: 0x%x\n"
1133 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1134 		ret, errno, slot, flags,
1135 		guest_paddr, (uint64_t) region->region.memory_size,
1136 		region->region.guest_memfd);
1137 
1138 	/* Add to quick lookup data structures */
1139 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1140 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1141 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1142 
1143 	/* If shared memory, create an alias. */
1144 	if (region->fd >= 0) {
1145 		region->mmap_alias = mmap(NULL, region->mmap_size,
1146 					  PROT_READ | PROT_WRITE,
1147 					  vm_mem_backing_src_alias(src_type)->flag,
1148 					  region->fd, 0);
1149 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1150 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1151 
1152 		/* Align host alias address */
1153 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1154 	}
1155 }
1156 
1157 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1158 				 enum vm_mem_backing_src_type src_type,
1159 				 uint64_t guest_paddr, uint32_t slot,
1160 				 uint64_t npages, uint32_t flags)
1161 {
1162 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1163 }
1164 
1165 /*
1166  * Memslot to region
1167  *
1168  * Input Args:
1169  *   vm - Virtual Machine
1170  *   memslot - KVM memory slot ID
1171  *
1172  * Output Args: None
1173  *
1174  * Return:
1175  *   Pointer to memory region structure that describe memory region
1176  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1177  *   on error (e.g. currently no memory region using memslot as a KVM
1178  *   memory slot ID).
1179  */
1180 struct userspace_mem_region *
1181 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1182 {
1183 	struct userspace_mem_region *region;
1184 
1185 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1186 			       memslot)
1187 		if (region->region.slot == memslot)
1188 			return region;
1189 
1190 	fprintf(stderr, "No mem region with the requested slot found,\n"
1191 		"  requested slot: %u\n", memslot);
1192 	fputs("---- vm dump ----\n", stderr);
1193 	vm_dump(stderr, vm, 2);
1194 	TEST_FAIL("Mem region not found");
1195 	return NULL;
1196 }
1197 
1198 /*
1199  * VM Memory Region Flags Set
1200  *
1201  * Input Args:
1202  *   vm - Virtual Machine
1203  *   flags - Starting guest physical address
1204  *
1205  * Output Args: None
1206  *
1207  * Return: None
1208  *
1209  * Sets the flags of the memory region specified by the value of slot,
1210  * to the values given by flags.
1211  */
1212 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1213 {
1214 	int ret;
1215 	struct userspace_mem_region *region;
1216 
1217 	region = memslot2region(vm, slot);
1218 
1219 	region->region.flags = flags;
1220 
1221 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1222 
1223 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1224 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1225 		ret, errno, slot, flags);
1226 }
1227 
1228 /*
1229  * VM Memory Region Move
1230  *
1231  * Input Args:
1232  *   vm - Virtual Machine
1233  *   slot - Slot of the memory region to move
1234  *   new_gpa - Starting guest physical address
1235  *
1236  * Output Args: None
1237  *
1238  * Return: None
1239  *
1240  * Change the gpa of a memory region.
1241  */
1242 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1243 {
1244 	struct userspace_mem_region *region;
1245 	int ret;
1246 
1247 	region = memslot2region(vm, slot);
1248 
1249 	region->region.guest_phys_addr = new_gpa;
1250 
1251 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1252 
1253 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1254 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1255 		    ret, errno, slot, new_gpa);
1256 }
1257 
1258 /*
1259  * VM Memory Region Delete
1260  *
1261  * Input Args:
1262  *   vm - Virtual Machine
1263  *   slot - Slot of the memory region to delete
1264  *
1265  * Output Args: None
1266  *
1267  * Return: None
1268  *
1269  * Delete a memory region.
1270  */
1271 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1272 {
1273 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1274 }
1275 
1276 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1277 			    bool punch_hole)
1278 {
1279 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1280 	struct userspace_mem_region *region;
1281 	uint64_t end = base + size;
1282 	uint64_t gpa, len;
1283 	off_t fd_offset;
1284 	int ret;
1285 
1286 	for (gpa = base; gpa < end; gpa += len) {
1287 		uint64_t offset;
1288 
1289 		region = userspace_mem_region_find(vm, gpa, gpa);
1290 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1291 			    "Private memory region not found for GPA 0x%lx", gpa);
1292 
1293 		offset = gpa - region->region.guest_phys_addr;
1294 		fd_offset = region->region.guest_memfd_offset + offset;
1295 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1296 
1297 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1298 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1299 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1300 			    region->region.guest_memfd, mode, fd_offset);
1301 	}
1302 }
1303 
1304 /* Returns the size of a vCPU's kvm_run structure. */
1305 static int vcpu_mmap_sz(void)
1306 {
1307 	int dev_fd, ret;
1308 
1309 	dev_fd = open_kvm_dev_path_or_exit();
1310 
1311 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1312 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1313 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1314 
1315 	close(dev_fd);
1316 
1317 	return ret;
1318 }
1319 
1320 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1321 {
1322 	struct kvm_vcpu *vcpu;
1323 
1324 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1325 		if (vcpu->id == vcpu_id)
1326 			return true;
1327 	}
1328 
1329 	return false;
1330 }
1331 
1332 /*
1333  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1334  * No additional vCPU setup is done.  Returns the vCPU.
1335  */
1336 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1337 {
1338 	struct kvm_vcpu *vcpu;
1339 
1340 	/* Confirm a vcpu with the specified id doesn't already exist. */
1341 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1342 
1343 	/* Allocate and initialize new vcpu structure. */
1344 	vcpu = calloc(1, sizeof(*vcpu));
1345 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1346 
1347 	vcpu->vm = vm;
1348 	vcpu->id = vcpu_id;
1349 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1350 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1351 
1352 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1353 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1354 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1355 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1356 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1357 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1358 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1359 
1360 	/* Add to linked-list of VCPUs. */
1361 	list_add(&vcpu->list, &vm->vcpus);
1362 
1363 	return vcpu;
1364 }
1365 
1366 /*
1367  * VM Virtual Address Unused Gap
1368  *
1369  * Input Args:
1370  *   vm - Virtual Machine
1371  *   sz - Size (bytes)
1372  *   vaddr_min - Minimum Virtual Address
1373  *
1374  * Output Args: None
1375  *
1376  * Return:
1377  *   Lowest virtual address at or below vaddr_min, with at least
1378  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1379  *   size sz is available.
1380  *
1381  * Within the VM specified by vm, locates the lowest starting virtual
1382  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1383  * TEST_ASSERT failure occurs for invalid input or no area of at least
1384  * sz unallocated bytes >= vaddr_min is available.
1385  */
1386 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1387 			       vm_vaddr_t vaddr_min)
1388 {
1389 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1390 
1391 	/* Determine lowest permitted virtual page index. */
1392 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1393 	if ((pgidx_start * vm->page_size) < vaddr_min)
1394 		goto no_va_found;
1395 
1396 	/* Loop over section with enough valid virtual page indexes. */
1397 	if (!sparsebit_is_set_num(vm->vpages_valid,
1398 		pgidx_start, pages))
1399 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1400 			pgidx_start, pages);
1401 	do {
1402 		/*
1403 		 * Are there enough unused virtual pages available at
1404 		 * the currently proposed starting virtual page index.
1405 		 * If not, adjust proposed starting index to next
1406 		 * possible.
1407 		 */
1408 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1409 			pgidx_start, pages))
1410 			goto va_found;
1411 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1412 			pgidx_start, pages);
1413 		if (pgidx_start == 0)
1414 			goto no_va_found;
1415 
1416 		/*
1417 		 * If needed, adjust proposed starting virtual address,
1418 		 * to next range of valid virtual addresses.
1419 		 */
1420 		if (!sparsebit_is_set_num(vm->vpages_valid,
1421 			pgidx_start, pages)) {
1422 			pgidx_start = sparsebit_next_set_num(
1423 				vm->vpages_valid, pgidx_start, pages);
1424 			if (pgidx_start == 0)
1425 				goto no_va_found;
1426 		}
1427 	} while (pgidx_start != 0);
1428 
1429 no_va_found:
1430 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1431 
1432 	/* NOT REACHED */
1433 	return -1;
1434 
1435 va_found:
1436 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1437 		pgidx_start, pages),
1438 		"Unexpected, invalid virtual page index range,\n"
1439 		"  pgidx_start: 0x%lx\n"
1440 		"  pages: 0x%lx",
1441 		pgidx_start, pages);
1442 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1443 		pgidx_start, pages),
1444 		"Unexpected, pages already mapped,\n"
1445 		"  pgidx_start: 0x%lx\n"
1446 		"  pages: 0x%lx",
1447 		pgidx_start, pages);
1448 
1449 	return pgidx_start * vm->page_size;
1450 }
1451 
1452 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1453 				     vm_vaddr_t vaddr_min,
1454 				     enum kvm_mem_region_type type,
1455 				     bool protected)
1456 {
1457 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1458 
1459 	virt_pgd_alloc(vm);
1460 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1461 						KVM_UTIL_MIN_PFN * vm->page_size,
1462 						vm->memslots[type], protected);
1463 
1464 	/*
1465 	 * Find an unused range of virtual page addresses of at least
1466 	 * pages in length.
1467 	 */
1468 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1469 
1470 	/* Map the virtual pages. */
1471 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1472 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1473 
1474 		virt_pg_map(vm, vaddr, paddr);
1475 
1476 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1477 	}
1478 
1479 	return vaddr_start;
1480 }
1481 
1482 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1483 			    enum kvm_mem_region_type type)
1484 {
1485 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1486 				  vm_arch_has_protected_memory(vm));
1487 }
1488 
1489 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1490 				 vm_vaddr_t vaddr_min,
1491 				 enum kvm_mem_region_type type)
1492 {
1493 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1494 }
1495 
1496 /*
1497  * VM Virtual Address Allocate
1498  *
1499  * Input Args:
1500  *   vm - Virtual Machine
1501  *   sz - Size in bytes
1502  *   vaddr_min - Minimum starting virtual address
1503  *
1504  * Output Args: None
1505  *
1506  * Return:
1507  *   Starting guest virtual address
1508  *
1509  * Allocates at least sz bytes within the virtual address space of the vm
1510  * given by vm.  The allocated bytes are mapped to a virtual address >=
1511  * the address given by vaddr_min.  Note that each allocation uses a
1512  * a unique set of pages, with the minimum real allocation being at least
1513  * a page. The allocated physical space comes from the TEST_DATA memory region.
1514  */
1515 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1516 {
1517 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1518 }
1519 
1520 /*
1521  * VM Virtual Address Allocate Pages
1522  *
1523  * Input Args:
1524  *   vm - Virtual Machine
1525  *
1526  * Output Args: None
1527  *
1528  * Return:
1529  *   Starting guest virtual address
1530  *
1531  * Allocates at least N system pages worth of bytes within the virtual address
1532  * space of the vm.
1533  */
1534 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1535 {
1536 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1537 }
1538 
1539 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1540 {
1541 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1542 }
1543 
1544 /*
1545  * VM Virtual Address Allocate Page
1546  *
1547  * Input Args:
1548  *   vm - Virtual Machine
1549  *
1550  * Output Args: None
1551  *
1552  * Return:
1553  *   Starting guest virtual address
1554  *
1555  * Allocates at least one system page worth of bytes within the virtual address
1556  * space of the vm.
1557  */
1558 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1559 {
1560 	return vm_vaddr_alloc_pages(vm, 1);
1561 }
1562 
1563 /*
1564  * Map a range of VM virtual address to the VM's physical address
1565  *
1566  * Input Args:
1567  *   vm - Virtual Machine
1568  *   vaddr - Virtuall address to map
1569  *   paddr - VM Physical Address
1570  *   npages - The number of pages to map
1571  *
1572  * Output Args: None
1573  *
1574  * Return: None
1575  *
1576  * Within the VM given by @vm, creates a virtual translation for
1577  * @npages starting at @vaddr to the page range starting at @paddr.
1578  */
1579 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1580 	      unsigned int npages)
1581 {
1582 	size_t page_size = vm->page_size;
1583 	size_t size = npages * page_size;
1584 
1585 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1586 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1587 
1588 	while (npages--) {
1589 		virt_pg_map(vm, vaddr, paddr);
1590 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1591 
1592 		vaddr += page_size;
1593 		paddr += page_size;
1594 	}
1595 }
1596 
1597 /*
1598  * Address VM Physical to Host Virtual
1599  *
1600  * Input Args:
1601  *   vm - Virtual Machine
1602  *   gpa - VM physical address
1603  *
1604  * Output Args: None
1605  *
1606  * Return:
1607  *   Equivalent host virtual address
1608  *
1609  * Locates the memory region containing the VM physical address given
1610  * by gpa, within the VM given by vm.  When found, the host virtual
1611  * address providing the memory to the vm physical address is returned.
1612  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1613  */
1614 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1615 {
1616 	struct userspace_mem_region *region;
1617 
1618 	gpa = vm_untag_gpa(vm, gpa);
1619 
1620 	region = userspace_mem_region_find(vm, gpa, gpa);
1621 	if (!region) {
1622 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1623 		return NULL;
1624 	}
1625 
1626 	return (void *)((uintptr_t)region->host_mem
1627 		+ (gpa - region->region.guest_phys_addr));
1628 }
1629 
1630 /*
1631  * Address Host Virtual to VM Physical
1632  *
1633  * Input Args:
1634  *   vm - Virtual Machine
1635  *   hva - Host virtual address
1636  *
1637  * Output Args: None
1638  *
1639  * Return:
1640  *   Equivalent VM physical address
1641  *
1642  * Locates the memory region containing the host virtual address given
1643  * by hva, within the VM given by vm.  When found, the equivalent
1644  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1645  * region containing hva exists.
1646  */
1647 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1648 {
1649 	struct rb_node *node;
1650 
1651 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1652 		struct userspace_mem_region *region =
1653 			container_of(node, struct userspace_mem_region, hva_node);
1654 
1655 		if (hva >= region->host_mem) {
1656 			if (hva <= (region->host_mem
1657 				+ region->region.memory_size - 1))
1658 				return (vm_paddr_t)((uintptr_t)
1659 					region->region.guest_phys_addr
1660 					+ (hva - (uintptr_t)region->host_mem));
1661 
1662 			node = node->rb_right;
1663 		} else
1664 			node = node->rb_left;
1665 	}
1666 
1667 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1668 	return -1;
1669 }
1670 
1671 /*
1672  * Address VM physical to Host Virtual *alias*.
1673  *
1674  * Input Args:
1675  *   vm - Virtual Machine
1676  *   gpa - VM physical address
1677  *
1678  * Output Args: None
1679  *
1680  * Return:
1681  *   Equivalent address within the host virtual *alias* area, or NULL
1682  *   (without failing the test) if the guest memory is not shared (so
1683  *   no alias exists).
1684  *
1685  * Create a writable, shared virtual=>physical alias for the specific GPA.
1686  * The primary use case is to allow the host selftest to manipulate guest
1687  * memory without mapping said memory in the guest's address space. And, for
1688  * userfaultfd-based demand paging, to do so without triggering userfaults.
1689  */
1690 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1691 {
1692 	struct userspace_mem_region *region;
1693 	uintptr_t offset;
1694 
1695 	region = userspace_mem_region_find(vm, gpa, gpa);
1696 	if (!region)
1697 		return NULL;
1698 
1699 	if (!region->host_alias)
1700 		return NULL;
1701 
1702 	offset = gpa - region->region.guest_phys_addr;
1703 	return (void *) ((uintptr_t) region->host_alias + offset);
1704 }
1705 
1706 /* Create an interrupt controller chip for the specified VM. */
1707 void vm_create_irqchip(struct kvm_vm *vm)
1708 {
1709 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1710 
1711 	vm->has_irqchip = true;
1712 }
1713 
1714 int _vcpu_run(struct kvm_vcpu *vcpu)
1715 {
1716 	int rc;
1717 
1718 	do {
1719 		rc = __vcpu_run(vcpu);
1720 	} while (rc == -1 && errno == EINTR);
1721 
1722 	assert_on_unhandled_exception(vcpu);
1723 
1724 	return rc;
1725 }
1726 
1727 /*
1728  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1729  * Assert if the KVM returns an error (other than -EINTR).
1730  */
1731 void vcpu_run(struct kvm_vcpu *vcpu)
1732 {
1733 	int ret = _vcpu_run(vcpu);
1734 
1735 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1736 }
1737 
1738 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1739 {
1740 	int ret;
1741 
1742 	vcpu->run->immediate_exit = 1;
1743 	ret = __vcpu_run(vcpu);
1744 	vcpu->run->immediate_exit = 0;
1745 
1746 	TEST_ASSERT(ret == -1 && errno == EINTR,
1747 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1748 		    ret, errno);
1749 }
1750 
1751 /*
1752  * Get the list of guest registers which are supported for
1753  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1754  * it is the caller's responsibility to free the list.
1755  */
1756 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1757 {
1758 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1759 	int ret;
1760 
1761 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1762 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1763 
1764 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1765 	reg_list->n = reg_list_n.n;
1766 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1767 	return reg_list;
1768 }
1769 
1770 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1771 {
1772 	uint32_t page_size = getpagesize();
1773 	uint32_t size = vcpu->vm->dirty_ring_size;
1774 
1775 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1776 
1777 	if (!vcpu->dirty_gfns) {
1778 		void *addr;
1779 
1780 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1781 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1782 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1783 
1784 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1785 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1786 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1787 
1788 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1789 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1790 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1791 
1792 		vcpu->dirty_gfns = addr;
1793 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1794 	}
1795 
1796 	return vcpu->dirty_gfns;
1797 }
1798 
1799 /*
1800  * Device Ioctl
1801  */
1802 
1803 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1804 {
1805 	struct kvm_device_attr attribute = {
1806 		.group = group,
1807 		.attr = attr,
1808 		.flags = 0,
1809 	};
1810 
1811 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1812 }
1813 
1814 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1815 {
1816 	struct kvm_create_device create_dev = {
1817 		.type = type,
1818 		.flags = KVM_CREATE_DEVICE_TEST,
1819 	};
1820 
1821 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1822 }
1823 
1824 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1825 {
1826 	struct kvm_create_device create_dev = {
1827 		.type = type,
1828 		.fd = -1,
1829 		.flags = 0,
1830 	};
1831 	int err;
1832 
1833 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1834 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1835 	return err ? : create_dev.fd;
1836 }
1837 
1838 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1839 {
1840 	struct kvm_device_attr kvmattr = {
1841 		.group = group,
1842 		.attr = attr,
1843 		.flags = 0,
1844 		.addr = (uintptr_t)val,
1845 	};
1846 
1847 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1848 }
1849 
1850 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1851 {
1852 	struct kvm_device_attr kvmattr = {
1853 		.group = group,
1854 		.attr = attr,
1855 		.flags = 0,
1856 		.addr = (uintptr_t)val,
1857 	};
1858 
1859 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1860 }
1861 
1862 /*
1863  * IRQ related functions.
1864  */
1865 
1866 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1867 {
1868 	struct kvm_irq_level irq_level = {
1869 		.irq    = irq,
1870 		.level  = level,
1871 	};
1872 
1873 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1874 }
1875 
1876 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1877 {
1878 	int ret = _kvm_irq_line(vm, irq, level);
1879 
1880 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1881 }
1882 
1883 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1884 {
1885 	struct kvm_irq_routing *routing;
1886 	size_t size;
1887 
1888 	size = sizeof(struct kvm_irq_routing);
1889 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1890 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1891 	routing = calloc(1, size);
1892 	assert(routing);
1893 
1894 	return routing;
1895 }
1896 
1897 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1898 		uint32_t gsi, uint32_t pin)
1899 {
1900 	int i;
1901 
1902 	assert(routing);
1903 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1904 
1905 	i = routing->nr;
1906 	routing->entries[i].gsi = gsi;
1907 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1908 	routing->entries[i].flags = 0;
1909 	routing->entries[i].u.irqchip.irqchip = 0;
1910 	routing->entries[i].u.irqchip.pin = pin;
1911 	routing->nr++;
1912 }
1913 
1914 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1915 {
1916 	int ret;
1917 
1918 	assert(routing);
1919 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1920 	free(routing);
1921 
1922 	return ret;
1923 }
1924 
1925 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1926 {
1927 	int ret;
1928 
1929 	ret = _kvm_gsi_routing_write(vm, routing);
1930 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1931 }
1932 
1933 /*
1934  * VM Dump
1935  *
1936  * Input Args:
1937  *   vm - Virtual Machine
1938  *   indent - Left margin indent amount
1939  *
1940  * Output Args:
1941  *   stream - Output FILE stream
1942  *
1943  * Return: None
1944  *
1945  * Dumps the current state of the VM given by vm, to the FILE stream
1946  * given by stream.
1947  */
1948 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1949 {
1950 	int ctr;
1951 	struct userspace_mem_region *region;
1952 	struct kvm_vcpu *vcpu;
1953 
1954 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1955 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1956 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1957 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1958 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1959 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1960 			"host_virt: %p\n", indent + 2, "",
1961 			(uint64_t) region->region.guest_phys_addr,
1962 			(uint64_t) region->region.memory_size,
1963 			region->host_mem);
1964 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1965 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1966 		if (region->protected_phy_pages) {
1967 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1968 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1969 		}
1970 	}
1971 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1972 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1973 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1974 		vm->pgd_created);
1975 	if (vm->pgd_created) {
1976 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1977 			indent + 2, "");
1978 		virt_dump(stream, vm, indent + 4);
1979 	}
1980 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1981 
1982 	list_for_each_entry(vcpu, &vm->vcpus, list)
1983 		vcpu_dump(stream, vcpu, indent + 2);
1984 }
1985 
1986 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1987 
1988 /* Known KVM exit reasons */
1989 static struct exit_reason {
1990 	unsigned int reason;
1991 	const char *name;
1992 } exit_reasons_known[] = {
1993 	KVM_EXIT_STRING(UNKNOWN),
1994 	KVM_EXIT_STRING(EXCEPTION),
1995 	KVM_EXIT_STRING(IO),
1996 	KVM_EXIT_STRING(HYPERCALL),
1997 	KVM_EXIT_STRING(DEBUG),
1998 	KVM_EXIT_STRING(HLT),
1999 	KVM_EXIT_STRING(MMIO),
2000 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2001 	KVM_EXIT_STRING(SHUTDOWN),
2002 	KVM_EXIT_STRING(FAIL_ENTRY),
2003 	KVM_EXIT_STRING(INTR),
2004 	KVM_EXIT_STRING(SET_TPR),
2005 	KVM_EXIT_STRING(TPR_ACCESS),
2006 	KVM_EXIT_STRING(S390_SIEIC),
2007 	KVM_EXIT_STRING(S390_RESET),
2008 	KVM_EXIT_STRING(DCR),
2009 	KVM_EXIT_STRING(NMI),
2010 	KVM_EXIT_STRING(INTERNAL_ERROR),
2011 	KVM_EXIT_STRING(OSI),
2012 	KVM_EXIT_STRING(PAPR_HCALL),
2013 	KVM_EXIT_STRING(S390_UCONTROL),
2014 	KVM_EXIT_STRING(WATCHDOG),
2015 	KVM_EXIT_STRING(S390_TSCH),
2016 	KVM_EXIT_STRING(EPR),
2017 	KVM_EXIT_STRING(SYSTEM_EVENT),
2018 	KVM_EXIT_STRING(S390_STSI),
2019 	KVM_EXIT_STRING(IOAPIC_EOI),
2020 	KVM_EXIT_STRING(HYPERV),
2021 	KVM_EXIT_STRING(ARM_NISV),
2022 	KVM_EXIT_STRING(X86_RDMSR),
2023 	KVM_EXIT_STRING(X86_WRMSR),
2024 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2025 	KVM_EXIT_STRING(AP_RESET_HOLD),
2026 	KVM_EXIT_STRING(X86_BUS_LOCK),
2027 	KVM_EXIT_STRING(XEN),
2028 	KVM_EXIT_STRING(RISCV_SBI),
2029 	KVM_EXIT_STRING(RISCV_CSR),
2030 	KVM_EXIT_STRING(NOTIFY),
2031 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2032 	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
2033 #endif
2034 };
2035 
2036 /*
2037  * Exit Reason String
2038  *
2039  * Input Args:
2040  *   exit_reason - Exit reason
2041  *
2042  * Output Args: None
2043  *
2044  * Return:
2045  *   Constant string pointer describing the exit reason.
2046  *
2047  * Locates and returns a constant string that describes the KVM exit
2048  * reason given by exit_reason.  If no such string is found, a constant
2049  * string of "Unknown" is returned.
2050  */
2051 const char *exit_reason_str(unsigned int exit_reason)
2052 {
2053 	unsigned int n1;
2054 
2055 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2056 		if (exit_reason == exit_reasons_known[n1].reason)
2057 			return exit_reasons_known[n1].name;
2058 	}
2059 
2060 	return "Unknown";
2061 }
2062 
2063 /*
2064  * Physical Contiguous Page Allocator
2065  *
2066  * Input Args:
2067  *   vm - Virtual Machine
2068  *   num - number of pages
2069  *   paddr_min - Physical address minimum
2070  *   memslot - Memory region to allocate page from
2071  *   protected - True if the pages will be used as protected/private memory
2072  *
2073  * Output Args: None
2074  *
2075  * Return:
2076  *   Starting physical address
2077  *
2078  * Within the VM specified by vm, locates a range of available physical
2079  * pages at or above paddr_min. If found, the pages are marked as in use
2080  * and their base address is returned. A TEST_ASSERT failure occurs if
2081  * not enough pages are available at or above paddr_min.
2082  */
2083 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2084 				vm_paddr_t paddr_min, uint32_t memslot,
2085 				bool protected)
2086 {
2087 	struct userspace_mem_region *region;
2088 	sparsebit_idx_t pg, base;
2089 
2090 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2091 
2092 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2093 		"not divisible by page size.\n"
2094 		"  paddr_min: 0x%lx page_size: 0x%x",
2095 		paddr_min, vm->page_size);
2096 
2097 	region = memslot2region(vm, memslot);
2098 	TEST_ASSERT(!protected || region->protected_phy_pages,
2099 		    "Region doesn't support protected memory");
2100 
2101 	base = pg = paddr_min >> vm->page_shift;
2102 	do {
2103 		for (; pg < base + num; ++pg) {
2104 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2105 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2106 				break;
2107 			}
2108 		}
2109 	} while (pg && pg != base + num);
2110 
2111 	if (pg == 0) {
2112 		fprintf(stderr, "No guest physical page available, "
2113 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2114 			paddr_min, vm->page_size, memslot);
2115 		fputs("---- vm dump ----\n", stderr);
2116 		vm_dump(stderr, vm, 2);
2117 		abort();
2118 	}
2119 
2120 	for (pg = base; pg < base + num; ++pg) {
2121 		sparsebit_clear(region->unused_phy_pages, pg);
2122 		if (protected)
2123 			sparsebit_set(region->protected_phy_pages, pg);
2124 	}
2125 
2126 	return base * vm->page_size;
2127 }
2128 
2129 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2130 			     uint32_t memslot)
2131 {
2132 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2133 }
2134 
2135 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2136 {
2137 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2138 				 vm->memslots[MEM_REGION_PT]);
2139 }
2140 
2141 /*
2142  * Address Guest Virtual to Host Virtual
2143  *
2144  * Input Args:
2145  *   vm - Virtual Machine
2146  *   gva - VM virtual address
2147  *
2148  * Output Args: None
2149  *
2150  * Return:
2151  *   Equivalent host virtual address
2152  */
2153 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2154 {
2155 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2156 }
2157 
2158 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2159 {
2160 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2161 }
2162 
2163 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2164 				      unsigned int page_shift,
2165 				      unsigned int new_page_shift,
2166 				      bool ceil)
2167 {
2168 	unsigned int n = 1 << (new_page_shift - page_shift);
2169 
2170 	if (page_shift >= new_page_shift)
2171 		return num_pages * (1 << (page_shift - new_page_shift));
2172 
2173 	return num_pages / n + !!(ceil && num_pages % n);
2174 }
2175 
2176 static inline int getpageshift(void)
2177 {
2178 	return __builtin_ffs(getpagesize()) - 1;
2179 }
2180 
2181 unsigned int
2182 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2183 {
2184 	return vm_calc_num_pages(num_guest_pages,
2185 				 vm_guest_mode_params[mode].page_shift,
2186 				 getpageshift(), true);
2187 }
2188 
2189 unsigned int
2190 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2191 {
2192 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2193 				 vm_guest_mode_params[mode].page_shift, false);
2194 }
2195 
2196 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2197 {
2198 	unsigned int n;
2199 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2200 	return vm_adjust_num_guest_pages(mode, n);
2201 }
2202 
2203 /*
2204  * Read binary stats descriptors
2205  *
2206  * Input Args:
2207  *   stats_fd - the file descriptor for the binary stats file from which to read
2208  *   header - the binary stats metadata header corresponding to the given FD
2209  *
2210  * Output Args: None
2211  *
2212  * Return:
2213  *   A pointer to a newly allocated series of stat descriptors.
2214  *   Caller is responsible for freeing the returned kvm_stats_desc.
2215  *
2216  * Read the stats descriptors from the binary stats interface.
2217  */
2218 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2219 					      struct kvm_stats_header *header)
2220 {
2221 	struct kvm_stats_desc *stats_desc;
2222 	ssize_t desc_size, total_size, ret;
2223 
2224 	desc_size = get_stats_descriptor_size(header);
2225 	total_size = header->num_desc * desc_size;
2226 
2227 	stats_desc = calloc(header->num_desc, desc_size);
2228 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2229 
2230 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2231 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2232 
2233 	return stats_desc;
2234 }
2235 
2236 /*
2237  * Read stat data for a particular stat
2238  *
2239  * Input Args:
2240  *   stats_fd - the file descriptor for the binary stats file from which to read
2241  *   header - the binary stats metadata header corresponding to the given FD
2242  *   desc - the binary stat metadata for the particular stat to be read
2243  *   max_elements - the maximum number of 8-byte values to read into data
2244  *
2245  * Output Args:
2246  *   data - the buffer into which stat data should be read
2247  *
2248  * Read the data values of a specified stat from the binary stats interface.
2249  */
2250 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2251 		    struct kvm_stats_desc *desc, uint64_t *data,
2252 		    size_t max_elements)
2253 {
2254 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2255 	size_t size = nr_elements * sizeof(*data);
2256 	ssize_t ret;
2257 
2258 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2259 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2260 
2261 	ret = pread(stats_fd, data, size,
2262 		    header->data_offset + desc->offset);
2263 
2264 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2265 		    desc->name, errno, strerror(errno));
2266 	TEST_ASSERT(ret == size,
2267 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2268 		    desc->name, size, ret);
2269 }
2270 
2271 /*
2272  * Read the data of the named stat
2273  *
2274  * Input Args:
2275  *   vm - the VM for which the stat should be read
2276  *   stat_name - the name of the stat to read
2277  *   max_elements - the maximum number of 8-byte values to read into data
2278  *
2279  * Output Args:
2280  *   data - the buffer into which stat data should be read
2281  *
2282  * Read the data values of a specified stat from the binary stats interface.
2283  */
2284 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2285 		   size_t max_elements)
2286 {
2287 	struct kvm_stats_desc *desc;
2288 	size_t size_desc;
2289 	int i;
2290 
2291 	if (!vm->stats_fd) {
2292 		vm->stats_fd = vm_get_stats_fd(vm);
2293 		read_stats_header(vm->stats_fd, &vm->stats_header);
2294 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2295 							&vm->stats_header);
2296 	}
2297 
2298 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2299 
2300 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2301 		desc = (void *)vm->stats_desc + (i * size_desc);
2302 
2303 		if (strcmp(desc->name, stat_name))
2304 			continue;
2305 
2306 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2307 			       data, max_elements);
2308 
2309 		break;
2310 	}
2311 }
2312 
2313 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2314 {
2315 }
2316 
2317 __weak void kvm_selftest_arch_init(void)
2318 {
2319 }
2320 
2321 void __attribute((constructor)) kvm_selftest_init(void)
2322 {
2323 	/* Tell stdout not to buffer its content. */
2324 	setbuf(stdout, NULL);
2325 
2326 	guest_random_seed = last_guest_seed = random();
2327 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2328 
2329 	kvm_selftest_arch_init();
2330 }
2331 
2332 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2333 {
2334 	sparsebit_idx_t pg = 0;
2335 	struct userspace_mem_region *region;
2336 
2337 	if (!vm_arch_has_protected_memory(vm))
2338 		return false;
2339 
2340 	region = userspace_mem_region_find(vm, paddr, paddr);
2341 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2342 
2343 	pg = paddr >> vm->page_shift;
2344 	return sparsebit_is_set(region->protected_phy_pages, pg);
2345 }
2346