1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "processor.h" 10 #include "ucall_common.h" 11 12 #include <assert.h> 13 #include <sched.h> 14 #include <sys/mman.h> 15 #include <sys/types.h> 16 #include <sys/stat.h> 17 #include <unistd.h> 18 #include <linux/kernel.h> 19 20 #define KVM_UTIL_MIN_PFN 2 21 22 uint32_t guest_random_seed; 23 struct guest_random_state guest_rng; 24 static uint32_t last_guest_seed; 25 26 static int vcpu_mmap_sz(void); 27 28 int open_path_or_exit(const char *path, int flags) 29 { 30 int fd; 31 32 fd = open(path, flags); 33 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno)); 34 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path); 35 36 return fd; 37 } 38 39 /* 40 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 41 * 42 * Input Args: 43 * flags - The flags to pass when opening KVM_DEV_PATH. 44 * 45 * Return: 46 * The opened file descriptor of /dev/kvm. 47 */ 48 static int _open_kvm_dev_path_or_exit(int flags) 49 { 50 return open_path_or_exit(KVM_DEV_PATH, flags); 51 } 52 53 int open_kvm_dev_path_or_exit(void) 54 { 55 return _open_kvm_dev_path_or_exit(O_RDONLY); 56 } 57 58 static ssize_t get_module_param(const char *module_name, const char *param, 59 void *buffer, size_t buffer_size) 60 { 61 const int path_size = 128; 62 char path[path_size]; 63 ssize_t bytes_read; 64 int fd, r; 65 66 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 67 module_name, param); 68 TEST_ASSERT(r < path_size, 69 "Failed to construct sysfs path in %d bytes.", path_size); 70 71 fd = open_path_or_exit(path, O_RDONLY); 72 73 bytes_read = read(fd, buffer, buffer_size); 74 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes", 75 path, bytes_read, buffer_size); 76 77 r = close(fd); 78 TEST_ASSERT(!r, "close(%s) failed", path); 79 return bytes_read; 80 } 81 82 static int get_module_param_integer(const char *module_name, const char *param) 83 { 84 /* 85 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the 86 * NUL char, and 1 byte because the kernel sucks and inserts a newline 87 * at the end. 88 */ 89 char value[16 + 1 + 1]; 90 ssize_t r; 91 92 memset(value, '\0', sizeof(value)); 93 94 r = get_module_param(module_name, param, value, sizeof(value)); 95 TEST_ASSERT(value[r - 1] == '\n', 96 "Expected trailing newline, got char '%c'", value[r - 1]); 97 98 /* 99 * Squash the newline, otherwise atoi_paranoid() will complain about 100 * trailing non-NUL characters in the string. 101 */ 102 value[r - 1] = '\0'; 103 return atoi_paranoid(value); 104 } 105 106 static bool get_module_param_bool(const char *module_name, const char *param) 107 { 108 char value; 109 ssize_t r; 110 111 r = get_module_param(module_name, param, &value, sizeof(value)); 112 TEST_ASSERT_EQ(r, 1); 113 114 if (value == 'Y') 115 return true; 116 else if (value == 'N') 117 return false; 118 119 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 120 } 121 122 bool get_kvm_param_bool(const char *param) 123 { 124 return get_module_param_bool("kvm", param); 125 } 126 127 bool get_kvm_intel_param_bool(const char *param) 128 { 129 return get_module_param_bool("kvm_intel", param); 130 } 131 132 bool get_kvm_amd_param_bool(const char *param) 133 { 134 return get_module_param_bool("kvm_amd", param); 135 } 136 137 int get_kvm_param_integer(const char *param) 138 { 139 return get_module_param_integer("kvm", param); 140 } 141 142 int get_kvm_intel_param_integer(const char *param) 143 { 144 return get_module_param_integer("kvm_intel", param); 145 } 146 147 int get_kvm_amd_param_integer(const char *param) 148 { 149 return get_module_param_integer("kvm_amd", param); 150 } 151 152 /* 153 * Capability 154 * 155 * Input Args: 156 * cap - Capability 157 * 158 * Output Args: None 159 * 160 * Return: 161 * On success, the Value corresponding to the capability (KVM_CAP_*) 162 * specified by the value of cap. On failure a TEST_ASSERT failure 163 * is produced. 164 * 165 * Looks up and returns the value corresponding to the capability 166 * (KVM_CAP_*) given by cap. 167 */ 168 unsigned int kvm_check_cap(long cap) 169 { 170 int ret; 171 int kvm_fd; 172 173 kvm_fd = open_kvm_dev_path_or_exit(); 174 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 175 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 176 177 close(kvm_fd); 178 179 return (unsigned int)ret; 180 } 181 182 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 183 { 184 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 185 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 186 else 187 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 188 vm->dirty_ring_size = ring_size; 189 } 190 191 static void vm_open(struct kvm_vm *vm) 192 { 193 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 194 195 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 196 197 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 198 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 199 } 200 201 const char *vm_guest_mode_string(uint32_t i) 202 { 203 static const char * const strings[] = { 204 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 205 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 206 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 207 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 208 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 209 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 210 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 211 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 212 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 213 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 214 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 215 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 216 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 217 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 218 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 219 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 220 }; 221 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 222 "Missing new mode strings?"); 223 224 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 225 226 return strings[i]; 227 } 228 229 const struct vm_guest_mode_params vm_guest_mode_params[] = { 230 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 231 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 232 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 233 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 234 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 235 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 236 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 237 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 238 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 239 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 240 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 241 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 242 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 243 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 244 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 245 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 246 }; 247 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 248 "Missing new mode params?"); 249 250 /* 251 * Initializes vm->vpages_valid to match the canonical VA space of the 252 * architecture. 253 * 254 * The default implementation is valid for architectures which split the 255 * range addressed by a single page table into a low and high region 256 * based on the MSB of the VA. On architectures with this behavior 257 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 258 */ 259 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 260 { 261 sparsebit_set_num(vm->vpages_valid, 262 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 263 sparsebit_set_num(vm->vpages_valid, 264 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 265 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 266 } 267 268 struct kvm_vm *____vm_create(struct vm_shape shape) 269 { 270 struct kvm_vm *vm; 271 272 vm = calloc(1, sizeof(*vm)); 273 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 274 275 INIT_LIST_HEAD(&vm->vcpus); 276 vm->regions.gpa_tree = RB_ROOT; 277 vm->regions.hva_tree = RB_ROOT; 278 hash_init(vm->regions.slot_hash); 279 280 vm->mode = shape.mode; 281 vm->type = shape.type; 282 283 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 284 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 285 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 286 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 287 288 /* Setup mode specific traits. */ 289 switch (vm->mode) { 290 case VM_MODE_P52V48_4K: 291 vm->pgtable_levels = 4; 292 break; 293 case VM_MODE_P52V48_64K: 294 vm->pgtable_levels = 3; 295 break; 296 case VM_MODE_P48V48_4K: 297 vm->pgtable_levels = 4; 298 break; 299 case VM_MODE_P48V48_64K: 300 vm->pgtable_levels = 3; 301 break; 302 case VM_MODE_P40V48_4K: 303 case VM_MODE_P36V48_4K: 304 vm->pgtable_levels = 4; 305 break; 306 case VM_MODE_P40V48_64K: 307 case VM_MODE_P36V48_64K: 308 vm->pgtable_levels = 3; 309 break; 310 case VM_MODE_P52V48_16K: 311 case VM_MODE_P48V48_16K: 312 case VM_MODE_P40V48_16K: 313 case VM_MODE_P36V48_16K: 314 vm->pgtable_levels = 4; 315 break; 316 case VM_MODE_P36V47_16K: 317 vm->pgtable_levels = 3; 318 break; 319 case VM_MODE_PXXV48_4K: 320 #ifdef __x86_64__ 321 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 322 kvm_init_vm_address_properties(vm); 323 /* 324 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 325 * it doesn't take effect unless a CR4.LA57 is set, which it 326 * isn't for this mode (48-bit virtual address space). 327 */ 328 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 329 "Linear address width (%d bits) not supported", 330 vm->va_bits); 331 pr_debug("Guest physical address width detected: %d\n", 332 vm->pa_bits); 333 vm->pgtable_levels = 4; 334 vm->va_bits = 48; 335 #else 336 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 337 #endif 338 break; 339 case VM_MODE_P47V64_4K: 340 vm->pgtable_levels = 5; 341 break; 342 case VM_MODE_P44V64_4K: 343 vm->pgtable_levels = 5; 344 break; 345 default: 346 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 347 } 348 349 #ifdef __aarch64__ 350 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 351 if (vm->pa_bits != 40) 352 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 353 #endif 354 355 vm_open(vm); 356 357 /* Limit to VA-bit canonical virtual addresses. */ 358 vm->vpages_valid = sparsebit_alloc(); 359 vm_vaddr_populate_bitmap(vm); 360 361 /* Limit physical addresses to PA-bits. */ 362 vm->max_gfn = vm_compute_max_gfn(vm); 363 364 /* Allocate and setup memory for guest. */ 365 vm->vpages_mapped = sparsebit_alloc(); 366 367 return vm; 368 } 369 370 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 371 uint32_t nr_runnable_vcpus, 372 uint64_t extra_mem_pages) 373 { 374 uint64_t page_size = vm_guest_mode_params[mode].page_size; 375 uint64_t nr_pages; 376 377 TEST_ASSERT(nr_runnable_vcpus, 378 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 379 380 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 381 "nr_vcpus = %d too large for host, max-vcpus = %d", 382 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 383 384 /* 385 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 386 * test code and other per-VM assets that will be loaded into memslot0. 387 */ 388 nr_pages = 512; 389 390 /* Account for the per-vCPU stacks on behalf of the test. */ 391 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 392 393 /* 394 * Account for the number of pages needed for the page tables. The 395 * maximum page table size for a memory region will be when the 396 * smallest page size is used. Considering each page contains x page 397 * table descriptors, the total extra size for page tables (for extra 398 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 399 * than N/x*2. 400 */ 401 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 402 403 /* Account for the number of pages needed by ucall. */ 404 nr_pages += ucall_nr_pages_required(page_size); 405 406 return vm_adjust_num_guest_pages(mode, nr_pages); 407 } 408 409 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 410 uint64_t nr_extra_pages) 411 { 412 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 413 nr_extra_pages); 414 struct userspace_mem_region *slot0; 415 struct kvm_vm *vm; 416 int i; 417 418 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 419 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 420 421 vm = ____vm_create(shape); 422 423 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0); 424 for (i = 0; i < NR_MEM_REGIONS; i++) 425 vm->memslots[i] = 0; 426 427 kvm_vm_elf_load(vm, program_invocation_name); 428 429 /* 430 * TODO: Add proper defines to protect the library's memslots, and then 431 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 432 * read-only memslots as MMIO, and creating a read-only memslot for the 433 * MMIO region would prevent silently clobbering the MMIO region. 434 */ 435 slot0 = memslot2region(vm, 0); 436 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 437 438 if (guest_random_seed != last_guest_seed) { 439 pr_info("Random seed: 0x%x\n", guest_random_seed); 440 last_guest_seed = guest_random_seed; 441 } 442 guest_rng = new_guest_random_state(guest_random_seed); 443 sync_global_to_guest(vm, guest_rng); 444 445 kvm_arch_vm_post_create(vm); 446 447 return vm; 448 } 449 450 /* 451 * VM Create with customized parameters 452 * 453 * Input Args: 454 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 455 * nr_vcpus - VCPU count 456 * extra_mem_pages - Non-slot0 physical memory total size 457 * guest_code - Guest entry point 458 * vcpuids - VCPU IDs 459 * 460 * Output Args: None 461 * 462 * Return: 463 * Pointer to opaque structure that describes the created VM. 464 * 465 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 466 * extra_mem_pages is only used to calculate the maximum page table size, 467 * no real memory allocation for non-slot0 memory in this function. 468 */ 469 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 470 uint64_t extra_mem_pages, 471 void *guest_code, struct kvm_vcpu *vcpus[]) 472 { 473 struct kvm_vm *vm; 474 int i; 475 476 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 477 478 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 479 480 for (i = 0; i < nr_vcpus; ++i) 481 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 482 483 return vm; 484 } 485 486 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 487 struct kvm_vcpu **vcpu, 488 uint64_t extra_mem_pages, 489 void *guest_code) 490 { 491 struct kvm_vcpu *vcpus[1]; 492 struct kvm_vm *vm; 493 494 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 495 496 *vcpu = vcpus[0]; 497 return vm; 498 } 499 500 /* 501 * VM Restart 502 * 503 * Input Args: 504 * vm - VM that has been released before 505 * 506 * Output Args: None 507 * 508 * Reopens the file descriptors associated to the VM and reinstates the 509 * global state, such as the irqchip and the memory regions that are mapped 510 * into the guest. 511 */ 512 void kvm_vm_restart(struct kvm_vm *vmp) 513 { 514 int ctr; 515 struct userspace_mem_region *region; 516 517 vm_open(vmp); 518 if (vmp->has_irqchip) 519 vm_create_irqchip(vmp); 520 521 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 522 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 523 524 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 525 " rc: %i errno: %i\n" 526 " slot: %u flags: 0x%x\n" 527 " guest_phys_addr: 0x%llx size: 0x%llx", 528 ret, errno, region->region.slot, 529 region->region.flags, 530 region->region.guest_phys_addr, 531 region->region.memory_size); 532 } 533 } 534 535 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 536 uint32_t vcpu_id) 537 { 538 return __vm_vcpu_add(vm, vcpu_id); 539 } 540 541 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 542 { 543 kvm_vm_restart(vm); 544 545 return vm_vcpu_recreate(vm, 0); 546 } 547 548 void kvm_pin_this_task_to_pcpu(uint32_t pcpu) 549 { 550 cpu_set_t mask; 551 int r; 552 553 CPU_ZERO(&mask); 554 CPU_SET(pcpu, &mask); 555 r = sched_setaffinity(0, sizeof(mask), &mask); 556 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu); 557 } 558 559 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 560 { 561 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 562 563 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 564 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 565 return pcpu; 566 } 567 568 void kvm_print_vcpu_pinning_help(void) 569 { 570 const char *name = program_invocation_name; 571 572 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 573 " values (target pCPU), one for each vCPU, plus an optional\n" 574 " entry for the main application task (specified via entry\n" 575 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 576 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 577 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 578 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 579 " %s -v 3 -c 22,23,24,50\n\n" 580 " To leave the application task unpinned, drop the final entry:\n\n" 581 " %s -v 3 -c 22,23,24\n\n" 582 " (default: no pinning)\n", name, name); 583 } 584 585 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 586 int nr_vcpus) 587 { 588 cpu_set_t allowed_mask; 589 char *cpu, *cpu_list; 590 char delim[2] = ","; 591 int i, r; 592 593 cpu_list = strdup(pcpus_string); 594 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 595 596 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 597 TEST_ASSERT(!r, "sched_getaffinity() failed"); 598 599 cpu = strtok(cpu_list, delim); 600 601 /* 1. Get all pcpus for vcpus. */ 602 for (i = 0; i < nr_vcpus; i++) { 603 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 604 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 605 cpu = strtok(NULL, delim); 606 } 607 608 /* 2. Check if the main worker needs to be pinned. */ 609 if (cpu) { 610 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); 611 cpu = strtok(NULL, delim); 612 } 613 614 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 615 free(cpu_list); 616 } 617 618 /* 619 * Userspace Memory Region Find 620 * 621 * Input Args: 622 * vm - Virtual Machine 623 * start - Starting VM physical address 624 * end - Ending VM physical address, inclusive. 625 * 626 * Output Args: None 627 * 628 * Return: 629 * Pointer to overlapping region, NULL if no such region. 630 * 631 * Searches for a region with any physical memory that overlaps with 632 * any portion of the guest physical addresses from start to end 633 * inclusive. If multiple overlapping regions exist, a pointer to any 634 * of the regions is returned. Null is returned only when no overlapping 635 * region exists. 636 */ 637 static struct userspace_mem_region * 638 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 639 { 640 struct rb_node *node; 641 642 for (node = vm->regions.gpa_tree.rb_node; node; ) { 643 struct userspace_mem_region *region = 644 container_of(node, struct userspace_mem_region, gpa_node); 645 uint64_t existing_start = region->region.guest_phys_addr; 646 uint64_t existing_end = region->region.guest_phys_addr 647 + region->region.memory_size - 1; 648 if (start <= existing_end && end >= existing_start) 649 return region; 650 651 if (start < existing_start) 652 node = node->rb_left; 653 else 654 node = node->rb_right; 655 } 656 657 return NULL; 658 } 659 660 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 661 { 662 663 } 664 665 /* 666 * VM VCPU Remove 667 * 668 * Input Args: 669 * vcpu - VCPU to remove 670 * 671 * Output Args: None 672 * 673 * Return: None, TEST_ASSERT failures for all error conditions 674 * 675 * Removes a vCPU from a VM and frees its resources. 676 */ 677 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 678 { 679 int ret; 680 681 if (vcpu->dirty_gfns) { 682 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 683 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 684 vcpu->dirty_gfns = NULL; 685 } 686 687 ret = munmap(vcpu->run, vcpu_mmap_sz()); 688 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 689 690 ret = close(vcpu->fd); 691 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 692 693 list_del(&vcpu->list); 694 695 vcpu_arch_free(vcpu); 696 free(vcpu); 697 } 698 699 void kvm_vm_release(struct kvm_vm *vmp) 700 { 701 struct kvm_vcpu *vcpu, *tmp; 702 int ret; 703 704 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 705 vm_vcpu_rm(vmp, vcpu); 706 707 ret = close(vmp->fd); 708 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 709 710 ret = close(vmp->kvm_fd); 711 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 712 } 713 714 static void __vm_mem_region_delete(struct kvm_vm *vm, 715 struct userspace_mem_region *region) 716 { 717 int ret; 718 719 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 720 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 721 hash_del(®ion->slot_node); 722 723 region->region.memory_size = 0; 724 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 725 726 sparsebit_free(®ion->unused_phy_pages); 727 sparsebit_free(®ion->protected_phy_pages); 728 ret = munmap(region->mmap_start, region->mmap_size); 729 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 730 if (region->fd >= 0) { 731 /* There's an extra map when using shared memory. */ 732 ret = munmap(region->mmap_alias, region->mmap_size); 733 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 734 close(region->fd); 735 } 736 if (region->region.guest_memfd >= 0) 737 close(region->region.guest_memfd); 738 739 free(region); 740 } 741 742 /* 743 * Destroys and frees the VM pointed to by vmp. 744 */ 745 void kvm_vm_free(struct kvm_vm *vmp) 746 { 747 int ctr; 748 struct hlist_node *node; 749 struct userspace_mem_region *region; 750 751 if (vmp == NULL) 752 return; 753 754 /* Free cached stats metadata and close FD */ 755 if (vmp->stats_fd) { 756 free(vmp->stats_desc); 757 close(vmp->stats_fd); 758 } 759 760 /* Free userspace_mem_regions. */ 761 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 762 __vm_mem_region_delete(vmp, region); 763 764 /* Free sparsebit arrays. */ 765 sparsebit_free(&vmp->vpages_valid); 766 sparsebit_free(&vmp->vpages_mapped); 767 768 kvm_vm_release(vmp); 769 770 /* Free the structure describing the VM. */ 771 free(vmp); 772 } 773 774 int kvm_memfd_alloc(size_t size, bool hugepages) 775 { 776 int memfd_flags = MFD_CLOEXEC; 777 int fd, r; 778 779 if (hugepages) 780 memfd_flags |= MFD_HUGETLB; 781 782 fd = memfd_create("kvm_selftest", memfd_flags); 783 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 784 785 r = ftruncate(fd, size); 786 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 787 788 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 789 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 790 791 return fd; 792 } 793 794 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 795 struct userspace_mem_region *region) 796 { 797 struct rb_node **cur, *parent; 798 799 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 800 struct userspace_mem_region *cregion; 801 802 cregion = container_of(*cur, typeof(*cregion), gpa_node); 803 parent = *cur; 804 if (region->region.guest_phys_addr < 805 cregion->region.guest_phys_addr) 806 cur = &(*cur)->rb_left; 807 else { 808 TEST_ASSERT(region->region.guest_phys_addr != 809 cregion->region.guest_phys_addr, 810 "Duplicate GPA in region tree"); 811 812 cur = &(*cur)->rb_right; 813 } 814 } 815 816 rb_link_node(®ion->gpa_node, parent, cur); 817 rb_insert_color(®ion->gpa_node, gpa_tree); 818 } 819 820 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 821 struct userspace_mem_region *region) 822 { 823 struct rb_node **cur, *parent; 824 825 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 826 struct userspace_mem_region *cregion; 827 828 cregion = container_of(*cur, typeof(*cregion), hva_node); 829 parent = *cur; 830 if (region->host_mem < cregion->host_mem) 831 cur = &(*cur)->rb_left; 832 else { 833 TEST_ASSERT(region->host_mem != 834 cregion->host_mem, 835 "Duplicate HVA in region tree"); 836 837 cur = &(*cur)->rb_right; 838 } 839 } 840 841 rb_link_node(®ion->hva_node, parent, cur); 842 rb_insert_color(®ion->hva_node, hva_tree); 843 } 844 845 846 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 847 uint64_t gpa, uint64_t size, void *hva) 848 { 849 struct kvm_userspace_memory_region region = { 850 .slot = slot, 851 .flags = flags, 852 .guest_phys_addr = gpa, 853 .memory_size = size, 854 .userspace_addr = (uintptr_t)hva, 855 }; 856 857 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 858 } 859 860 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 861 uint64_t gpa, uint64_t size, void *hva) 862 { 863 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 864 865 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 866 errno, strerror(errno)); 867 } 868 869 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \ 870 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \ 871 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)") 872 873 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 874 uint64_t gpa, uint64_t size, void *hva, 875 uint32_t guest_memfd, uint64_t guest_memfd_offset) 876 { 877 struct kvm_userspace_memory_region2 region = { 878 .slot = slot, 879 .flags = flags, 880 .guest_phys_addr = gpa, 881 .memory_size = size, 882 .userspace_addr = (uintptr_t)hva, 883 .guest_memfd = guest_memfd, 884 .guest_memfd_offset = guest_memfd_offset, 885 }; 886 887 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 888 889 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 890 } 891 892 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 893 uint64_t gpa, uint64_t size, void *hva, 894 uint32_t guest_memfd, uint64_t guest_memfd_offset) 895 { 896 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 897 guest_memfd, guest_memfd_offset); 898 899 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 900 errno, strerror(errno)); 901 } 902 903 904 /* FIXME: This thing needs to be ripped apart and rewritten. */ 905 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 906 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 907 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 908 { 909 int ret; 910 struct userspace_mem_region *region; 911 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 912 size_t mem_size = npages * vm->page_size; 913 size_t alignment; 914 915 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 916 917 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 918 "Number of guest pages is not compatible with the host. " 919 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 920 921 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 922 "address not on a page boundary.\n" 923 " guest_paddr: 0x%lx vm->page_size: 0x%x", 924 guest_paddr, vm->page_size); 925 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 926 <= vm->max_gfn, "Physical range beyond maximum " 927 "supported physical address,\n" 928 " guest_paddr: 0x%lx npages: 0x%lx\n" 929 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 930 guest_paddr, npages, vm->max_gfn, vm->page_size); 931 932 /* 933 * Confirm a mem region with an overlapping address doesn't 934 * already exist. 935 */ 936 region = (struct userspace_mem_region *) userspace_mem_region_find( 937 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 938 if (region != NULL) 939 TEST_FAIL("overlapping userspace_mem_region already " 940 "exists\n" 941 " requested guest_paddr: 0x%lx npages: 0x%lx " 942 "page_size: 0x%x\n" 943 " existing guest_paddr: 0x%lx size: 0x%lx", 944 guest_paddr, npages, vm->page_size, 945 (uint64_t) region->region.guest_phys_addr, 946 (uint64_t) region->region.memory_size); 947 948 /* Confirm no region with the requested slot already exists. */ 949 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 950 slot) { 951 if (region->region.slot != slot) 952 continue; 953 954 TEST_FAIL("A mem region with the requested slot " 955 "already exists.\n" 956 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 957 " existing slot: %u paddr: 0x%lx size: 0x%lx", 958 slot, guest_paddr, npages, 959 region->region.slot, 960 (uint64_t) region->region.guest_phys_addr, 961 (uint64_t) region->region.memory_size); 962 } 963 964 /* Allocate and initialize new mem region structure. */ 965 region = calloc(1, sizeof(*region)); 966 TEST_ASSERT(region != NULL, "Insufficient Memory"); 967 region->mmap_size = mem_size; 968 969 #ifdef __s390x__ 970 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 971 alignment = 0x100000; 972 #else 973 alignment = 1; 974 #endif 975 976 /* 977 * When using THP mmap is not guaranteed to returned a hugepage aligned 978 * address so we have to pad the mmap. Padding is not needed for HugeTLB 979 * because mmap will always return an address aligned to the HugeTLB 980 * page size. 981 */ 982 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 983 alignment = max(backing_src_pagesz, alignment); 984 985 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 986 987 /* Add enough memory to align up if necessary */ 988 if (alignment > 1) 989 region->mmap_size += alignment; 990 991 region->fd = -1; 992 if (backing_src_is_shared(src_type)) 993 region->fd = kvm_memfd_alloc(region->mmap_size, 994 src_type == VM_MEM_SRC_SHARED_HUGETLB); 995 996 region->mmap_start = mmap(NULL, region->mmap_size, 997 PROT_READ | PROT_WRITE, 998 vm_mem_backing_src_alias(src_type)->flag, 999 region->fd, 0); 1000 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1001 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1002 1003 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1004 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1005 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1006 region->mmap_start, backing_src_pagesz); 1007 1008 /* Align host address */ 1009 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1010 1011 /* As needed perform madvise */ 1012 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1013 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1014 ret = madvise(region->host_mem, mem_size, 1015 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1016 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1017 region->host_mem, mem_size, 1018 vm_mem_backing_src_alias(src_type)->name); 1019 } 1020 1021 region->backing_src_type = src_type; 1022 1023 if (flags & KVM_MEM_GUEST_MEMFD) { 1024 if (guest_memfd < 0) { 1025 uint32_t guest_memfd_flags = 0; 1026 TEST_ASSERT(!guest_memfd_offset, 1027 "Offset must be zero when creating new guest_memfd"); 1028 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1029 } else { 1030 /* 1031 * Install a unique fd for each memslot so that the fd 1032 * can be closed when the region is deleted without 1033 * needing to track if the fd is owned by the framework 1034 * or by the caller. 1035 */ 1036 guest_memfd = dup(guest_memfd); 1037 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1038 } 1039 1040 region->region.guest_memfd = guest_memfd; 1041 region->region.guest_memfd_offset = guest_memfd_offset; 1042 } else { 1043 region->region.guest_memfd = -1; 1044 } 1045 1046 region->unused_phy_pages = sparsebit_alloc(); 1047 if (vm_arch_has_protected_memory(vm)) 1048 region->protected_phy_pages = sparsebit_alloc(); 1049 sparsebit_set_num(region->unused_phy_pages, 1050 guest_paddr >> vm->page_shift, npages); 1051 region->region.slot = slot; 1052 region->region.flags = flags; 1053 region->region.guest_phys_addr = guest_paddr; 1054 region->region.memory_size = npages * vm->page_size; 1055 region->region.userspace_addr = (uintptr_t) region->host_mem; 1056 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1057 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1058 " rc: %i errno: %i\n" 1059 " slot: %u flags: 0x%x\n" 1060 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1061 ret, errno, slot, flags, 1062 guest_paddr, (uint64_t) region->region.memory_size, 1063 region->region.guest_memfd); 1064 1065 /* Add to quick lookup data structures */ 1066 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1067 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1068 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1069 1070 /* If shared memory, create an alias. */ 1071 if (region->fd >= 0) { 1072 region->mmap_alias = mmap(NULL, region->mmap_size, 1073 PROT_READ | PROT_WRITE, 1074 vm_mem_backing_src_alias(src_type)->flag, 1075 region->fd, 0); 1076 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1077 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1078 1079 /* Align host alias address */ 1080 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1081 } 1082 } 1083 1084 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1085 enum vm_mem_backing_src_type src_type, 1086 uint64_t guest_paddr, uint32_t slot, 1087 uint64_t npages, uint32_t flags) 1088 { 1089 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1090 } 1091 1092 /* 1093 * Memslot to region 1094 * 1095 * Input Args: 1096 * vm - Virtual Machine 1097 * memslot - KVM memory slot ID 1098 * 1099 * Output Args: None 1100 * 1101 * Return: 1102 * Pointer to memory region structure that describe memory region 1103 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1104 * on error (e.g. currently no memory region using memslot as a KVM 1105 * memory slot ID). 1106 */ 1107 struct userspace_mem_region * 1108 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1109 { 1110 struct userspace_mem_region *region; 1111 1112 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1113 memslot) 1114 if (region->region.slot == memslot) 1115 return region; 1116 1117 fprintf(stderr, "No mem region with the requested slot found,\n" 1118 " requested slot: %u\n", memslot); 1119 fputs("---- vm dump ----\n", stderr); 1120 vm_dump(stderr, vm, 2); 1121 TEST_FAIL("Mem region not found"); 1122 return NULL; 1123 } 1124 1125 /* 1126 * VM Memory Region Flags Set 1127 * 1128 * Input Args: 1129 * vm - Virtual Machine 1130 * flags - Starting guest physical address 1131 * 1132 * Output Args: None 1133 * 1134 * Return: None 1135 * 1136 * Sets the flags of the memory region specified by the value of slot, 1137 * to the values given by flags. 1138 */ 1139 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1140 { 1141 int ret; 1142 struct userspace_mem_region *region; 1143 1144 region = memslot2region(vm, slot); 1145 1146 region->region.flags = flags; 1147 1148 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1149 1150 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1151 " rc: %i errno: %i slot: %u flags: 0x%x", 1152 ret, errno, slot, flags); 1153 } 1154 1155 /* 1156 * VM Memory Region Move 1157 * 1158 * Input Args: 1159 * vm - Virtual Machine 1160 * slot - Slot of the memory region to move 1161 * new_gpa - Starting guest physical address 1162 * 1163 * Output Args: None 1164 * 1165 * Return: None 1166 * 1167 * Change the gpa of a memory region. 1168 */ 1169 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1170 { 1171 struct userspace_mem_region *region; 1172 int ret; 1173 1174 region = memslot2region(vm, slot); 1175 1176 region->region.guest_phys_addr = new_gpa; 1177 1178 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1179 1180 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1181 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1182 ret, errno, slot, new_gpa); 1183 } 1184 1185 /* 1186 * VM Memory Region Delete 1187 * 1188 * Input Args: 1189 * vm - Virtual Machine 1190 * slot - Slot of the memory region to delete 1191 * 1192 * Output Args: None 1193 * 1194 * Return: None 1195 * 1196 * Delete a memory region. 1197 */ 1198 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1199 { 1200 __vm_mem_region_delete(vm, memslot2region(vm, slot)); 1201 } 1202 1203 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1204 bool punch_hole) 1205 { 1206 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1207 struct userspace_mem_region *region; 1208 uint64_t end = base + size; 1209 uint64_t gpa, len; 1210 off_t fd_offset; 1211 int ret; 1212 1213 for (gpa = base; gpa < end; gpa += len) { 1214 uint64_t offset; 1215 1216 region = userspace_mem_region_find(vm, gpa, gpa); 1217 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1218 "Private memory region not found for GPA 0x%lx", gpa); 1219 1220 offset = gpa - region->region.guest_phys_addr; 1221 fd_offset = region->region.guest_memfd_offset + offset; 1222 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1223 1224 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1225 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1226 punch_hole ? "punch hole" : "allocate", gpa, len, 1227 region->region.guest_memfd, mode, fd_offset); 1228 } 1229 } 1230 1231 /* Returns the size of a vCPU's kvm_run structure. */ 1232 static int vcpu_mmap_sz(void) 1233 { 1234 int dev_fd, ret; 1235 1236 dev_fd = open_kvm_dev_path_or_exit(); 1237 1238 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1239 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1240 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1241 1242 close(dev_fd); 1243 1244 return ret; 1245 } 1246 1247 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1248 { 1249 struct kvm_vcpu *vcpu; 1250 1251 list_for_each_entry(vcpu, &vm->vcpus, list) { 1252 if (vcpu->id == vcpu_id) 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 /* 1260 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1261 * No additional vCPU setup is done. Returns the vCPU. 1262 */ 1263 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1264 { 1265 struct kvm_vcpu *vcpu; 1266 1267 /* Confirm a vcpu with the specified id doesn't already exist. */ 1268 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1269 1270 /* Allocate and initialize new vcpu structure. */ 1271 vcpu = calloc(1, sizeof(*vcpu)); 1272 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1273 1274 vcpu->vm = vm; 1275 vcpu->id = vcpu_id; 1276 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1277 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1278 1279 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1280 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1281 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1282 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1283 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1284 TEST_ASSERT(vcpu->run != MAP_FAILED, 1285 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1286 1287 /* Add to linked-list of VCPUs. */ 1288 list_add(&vcpu->list, &vm->vcpus); 1289 1290 return vcpu; 1291 } 1292 1293 /* 1294 * VM Virtual Address Unused Gap 1295 * 1296 * Input Args: 1297 * vm - Virtual Machine 1298 * sz - Size (bytes) 1299 * vaddr_min - Minimum Virtual Address 1300 * 1301 * Output Args: None 1302 * 1303 * Return: 1304 * Lowest virtual address at or below vaddr_min, with at least 1305 * sz unused bytes. TEST_ASSERT failure if no area of at least 1306 * size sz is available. 1307 * 1308 * Within the VM specified by vm, locates the lowest starting virtual 1309 * address >= vaddr_min, that has at least sz unallocated bytes. A 1310 * TEST_ASSERT failure occurs for invalid input or no area of at least 1311 * sz unallocated bytes >= vaddr_min is available. 1312 */ 1313 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1314 vm_vaddr_t vaddr_min) 1315 { 1316 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1317 1318 /* Determine lowest permitted virtual page index. */ 1319 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1320 if ((pgidx_start * vm->page_size) < vaddr_min) 1321 goto no_va_found; 1322 1323 /* Loop over section with enough valid virtual page indexes. */ 1324 if (!sparsebit_is_set_num(vm->vpages_valid, 1325 pgidx_start, pages)) 1326 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1327 pgidx_start, pages); 1328 do { 1329 /* 1330 * Are there enough unused virtual pages available at 1331 * the currently proposed starting virtual page index. 1332 * If not, adjust proposed starting index to next 1333 * possible. 1334 */ 1335 if (sparsebit_is_clear_num(vm->vpages_mapped, 1336 pgidx_start, pages)) 1337 goto va_found; 1338 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1339 pgidx_start, pages); 1340 if (pgidx_start == 0) 1341 goto no_va_found; 1342 1343 /* 1344 * If needed, adjust proposed starting virtual address, 1345 * to next range of valid virtual addresses. 1346 */ 1347 if (!sparsebit_is_set_num(vm->vpages_valid, 1348 pgidx_start, pages)) { 1349 pgidx_start = sparsebit_next_set_num( 1350 vm->vpages_valid, pgidx_start, pages); 1351 if (pgidx_start == 0) 1352 goto no_va_found; 1353 } 1354 } while (pgidx_start != 0); 1355 1356 no_va_found: 1357 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1358 1359 /* NOT REACHED */ 1360 return -1; 1361 1362 va_found: 1363 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1364 pgidx_start, pages), 1365 "Unexpected, invalid virtual page index range,\n" 1366 " pgidx_start: 0x%lx\n" 1367 " pages: 0x%lx", 1368 pgidx_start, pages); 1369 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1370 pgidx_start, pages), 1371 "Unexpected, pages already mapped,\n" 1372 " pgidx_start: 0x%lx\n" 1373 " pages: 0x%lx", 1374 pgidx_start, pages); 1375 1376 return pgidx_start * vm->page_size; 1377 } 1378 1379 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1380 vm_vaddr_t vaddr_min, 1381 enum kvm_mem_region_type type, 1382 bool protected) 1383 { 1384 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1385 1386 virt_pgd_alloc(vm); 1387 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1388 KVM_UTIL_MIN_PFN * vm->page_size, 1389 vm->memslots[type], protected); 1390 1391 /* 1392 * Find an unused range of virtual page addresses of at least 1393 * pages in length. 1394 */ 1395 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1396 1397 /* Map the virtual pages. */ 1398 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1399 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1400 1401 virt_pg_map(vm, vaddr, paddr); 1402 1403 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1404 } 1405 1406 return vaddr_start; 1407 } 1408 1409 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1410 enum kvm_mem_region_type type) 1411 { 1412 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1413 vm_arch_has_protected_memory(vm)); 1414 } 1415 1416 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1417 vm_vaddr_t vaddr_min, 1418 enum kvm_mem_region_type type) 1419 { 1420 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1421 } 1422 1423 /* 1424 * VM Virtual Address Allocate 1425 * 1426 * Input Args: 1427 * vm - Virtual Machine 1428 * sz - Size in bytes 1429 * vaddr_min - Minimum starting virtual address 1430 * 1431 * Output Args: None 1432 * 1433 * Return: 1434 * Starting guest virtual address 1435 * 1436 * Allocates at least sz bytes within the virtual address space of the vm 1437 * given by vm. The allocated bytes are mapped to a virtual address >= 1438 * the address given by vaddr_min. Note that each allocation uses a 1439 * a unique set of pages, with the minimum real allocation being at least 1440 * a page. The allocated physical space comes from the TEST_DATA memory region. 1441 */ 1442 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1443 { 1444 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1445 } 1446 1447 /* 1448 * VM Virtual Address Allocate Pages 1449 * 1450 * Input Args: 1451 * vm - Virtual Machine 1452 * 1453 * Output Args: None 1454 * 1455 * Return: 1456 * Starting guest virtual address 1457 * 1458 * Allocates at least N system pages worth of bytes within the virtual address 1459 * space of the vm. 1460 */ 1461 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1462 { 1463 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1464 } 1465 1466 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1467 { 1468 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1469 } 1470 1471 /* 1472 * VM Virtual Address Allocate Page 1473 * 1474 * Input Args: 1475 * vm - Virtual Machine 1476 * 1477 * Output Args: None 1478 * 1479 * Return: 1480 * Starting guest virtual address 1481 * 1482 * Allocates at least one system page worth of bytes within the virtual address 1483 * space of the vm. 1484 */ 1485 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1486 { 1487 return vm_vaddr_alloc_pages(vm, 1); 1488 } 1489 1490 /* 1491 * Map a range of VM virtual address to the VM's physical address 1492 * 1493 * Input Args: 1494 * vm - Virtual Machine 1495 * vaddr - Virtuall address to map 1496 * paddr - VM Physical Address 1497 * npages - The number of pages to map 1498 * 1499 * Output Args: None 1500 * 1501 * Return: None 1502 * 1503 * Within the VM given by @vm, creates a virtual translation for 1504 * @npages starting at @vaddr to the page range starting at @paddr. 1505 */ 1506 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1507 unsigned int npages) 1508 { 1509 size_t page_size = vm->page_size; 1510 size_t size = npages * page_size; 1511 1512 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1513 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1514 1515 while (npages--) { 1516 virt_pg_map(vm, vaddr, paddr); 1517 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1518 1519 vaddr += page_size; 1520 paddr += page_size; 1521 } 1522 } 1523 1524 /* 1525 * Address VM Physical to Host Virtual 1526 * 1527 * Input Args: 1528 * vm - Virtual Machine 1529 * gpa - VM physical address 1530 * 1531 * Output Args: None 1532 * 1533 * Return: 1534 * Equivalent host virtual address 1535 * 1536 * Locates the memory region containing the VM physical address given 1537 * by gpa, within the VM given by vm. When found, the host virtual 1538 * address providing the memory to the vm physical address is returned. 1539 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1540 */ 1541 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1542 { 1543 struct userspace_mem_region *region; 1544 1545 gpa = vm_untag_gpa(vm, gpa); 1546 1547 region = userspace_mem_region_find(vm, gpa, gpa); 1548 if (!region) { 1549 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1550 return NULL; 1551 } 1552 1553 return (void *)((uintptr_t)region->host_mem 1554 + (gpa - region->region.guest_phys_addr)); 1555 } 1556 1557 /* 1558 * Address Host Virtual to VM Physical 1559 * 1560 * Input Args: 1561 * vm - Virtual Machine 1562 * hva - Host virtual address 1563 * 1564 * Output Args: None 1565 * 1566 * Return: 1567 * Equivalent VM physical address 1568 * 1569 * Locates the memory region containing the host virtual address given 1570 * by hva, within the VM given by vm. When found, the equivalent 1571 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1572 * region containing hva exists. 1573 */ 1574 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1575 { 1576 struct rb_node *node; 1577 1578 for (node = vm->regions.hva_tree.rb_node; node; ) { 1579 struct userspace_mem_region *region = 1580 container_of(node, struct userspace_mem_region, hva_node); 1581 1582 if (hva >= region->host_mem) { 1583 if (hva <= (region->host_mem 1584 + region->region.memory_size - 1)) 1585 return (vm_paddr_t)((uintptr_t) 1586 region->region.guest_phys_addr 1587 + (hva - (uintptr_t)region->host_mem)); 1588 1589 node = node->rb_right; 1590 } else 1591 node = node->rb_left; 1592 } 1593 1594 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1595 return -1; 1596 } 1597 1598 /* 1599 * Address VM physical to Host Virtual *alias*. 1600 * 1601 * Input Args: 1602 * vm - Virtual Machine 1603 * gpa - VM physical address 1604 * 1605 * Output Args: None 1606 * 1607 * Return: 1608 * Equivalent address within the host virtual *alias* area, or NULL 1609 * (without failing the test) if the guest memory is not shared (so 1610 * no alias exists). 1611 * 1612 * Create a writable, shared virtual=>physical alias for the specific GPA. 1613 * The primary use case is to allow the host selftest to manipulate guest 1614 * memory without mapping said memory in the guest's address space. And, for 1615 * userfaultfd-based demand paging, to do so without triggering userfaults. 1616 */ 1617 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1618 { 1619 struct userspace_mem_region *region; 1620 uintptr_t offset; 1621 1622 region = userspace_mem_region_find(vm, gpa, gpa); 1623 if (!region) 1624 return NULL; 1625 1626 if (!region->host_alias) 1627 return NULL; 1628 1629 offset = gpa - region->region.guest_phys_addr; 1630 return (void *) ((uintptr_t) region->host_alias + offset); 1631 } 1632 1633 /* Create an interrupt controller chip for the specified VM. */ 1634 void vm_create_irqchip(struct kvm_vm *vm) 1635 { 1636 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1637 1638 vm->has_irqchip = true; 1639 } 1640 1641 int _vcpu_run(struct kvm_vcpu *vcpu) 1642 { 1643 int rc; 1644 1645 do { 1646 rc = __vcpu_run(vcpu); 1647 } while (rc == -1 && errno == EINTR); 1648 1649 assert_on_unhandled_exception(vcpu); 1650 1651 return rc; 1652 } 1653 1654 /* 1655 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1656 * Assert if the KVM returns an error (other than -EINTR). 1657 */ 1658 void vcpu_run(struct kvm_vcpu *vcpu) 1659 { 1660 int ret = _vcpu_run(vcpu); 1661 1662 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1663 } 1664 1665 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1666 { 1667 int ret; 1668 1669 vcpu->run->immediate_exit = 1; 1670 ret = __vcpu_run(vcpu); 1671 vcpu->run->immediate_exit = 0; 1672 1673 TEST_ASSERT(ret == -1 && errno == EINTR, 1674 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1675 ret, errno); 1676 } 1677 1678 /* 1679 * Get the list of guest registers which are supported for 1680 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1681 * it is the caller's responsibility to free the list. 1682 */ 1683 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1684 { 1685 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1686 int ret; 1687 1688 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1689 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1690 1691 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1692 reg_list->n = reg_list_n.n; 1693 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1694 return reg_list; 1695 } 1696 1697 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1698 { 1699 uint32_t page_size = getpagesize(); 1700 uint32_t size = vcpu->vm->dirty_ring_size; 1701 1702 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1703 1704 if (!vcpu->dirty_gfns) { 1705 void *addr; 1706 1707 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1708 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1709 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1710 1711 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1712 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1713 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1714 1715 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1716 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1717 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1718 1719 vcpu->dirty_gfns = addr; 1720 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1721 } 1722 1723 return vcpu->dirty_gfns; 1724 } 1725 1726 /* 1727 * Device Ioctl 1728 */ 1729 1730 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1731 { 1732 struct kvm_device_attr attribute = { 1733 .group = group, 1734 .attr = attr, 1735 .flags = 0, 1736 }; 1737 1738 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1739 } 1740 1741 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1742 { 1743 struct kvm_create_device create_dev = { 1744 .type = type, 1745 .flags = KVM_CREATE_DEVICE_TEST, 1746 }; 1747 1748 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1749 } 1750 1751 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1752 { 1753 struct kvm_create_device create_dev = { 1754 .type = type, 1755 .fd = -1, 1756 .flags = 0, 1757 }; 1758 int err; 1759 1760 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1761 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1762 return err ? : create_dev.fd; 1763 } 1764 1765 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1766 { 1767 struct kvm_device_attr kvmattr = { 1768 .group = group, 1769 .attr = attr, 1770 .flags = 0, 1771 .addr = (uintptr_t)val, 1772 }; 1773 1774 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1775 } 1776 1777 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1778 { 1779 struct kvm_device_attr kvmattr = { 1780 .group = group, 1781 .attr = attr, 1782 .flags = 0, 1783 .addr = (uintptr_t)val, 1784 }; 1785 1786 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1787 } 1788 1789 /* 1790 * IRQ related functions. 1791 */ 1792 1793 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1794 { 1795 struct kvm_irq_level irq_level = { 1796 .irq = irq, 1797 .level = level, 1798 }; 1799 1800 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1801 } 1802 1803 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1804 { 1805 int ret = _kvm_irq_line(vm, irq, level); 1806 1807 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1808 } 1809 1810 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1811 { 1812 struct kvm_irq_routing *routing; 1813 size_t size; 1814 1815 size = sizeof(struct kvm_irq_routing); 1816 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1817 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1818 routing = calloc(1, size); 1819 assert(routing); 1820 1821 return routing; 1822 } 1823 1824 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1825 uint32_t gsi, uint32_t pin) 1826 { 1827 int i; 1828 1829 assert(routing); 1830 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1831 1832 i = routing->nr; 1833 routing->entries[i].gsi = gsi; 1834 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1835 routing->entries[i].flags = 0; 1836 routing->entries[i].u.irqchip.irqchip = 0; 1837 routing->entries[i].u.irqchip.pin = pin; 1838 routing->nr++; 1839 } 1840 1841 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1842 { 1843 int ret; 1844 1845 assert(routing); 1846 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1847 free(routing); 1848 1849 return ret; 1850 } 1851 1852 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1853 { 1854 int ret; 1855 1856 ret = _kvm_gsi_routing_write(vm, routing); 1857 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1858 } 1859 1860 /* 1861 * VM Dump 1862 * 1863 * Input Args: 1864 * vm - Virtual Machine 1865 * indent - Left margin indent amount 1866 * 1867 * Output Args: 1868 * stream - Output FILE stream 1869 * 1870 * Return: None 1871 * 1872 * Dumps the current state of the VM given by vm, to the FILE stream 1873 * given by stream. 1874 */ 1875 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1876 { 1877 int ctr; 1878 struct userspace_mem_region *region; 1879 struct kvm_vcpu *vcpu; 1880 1881 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1882 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1883 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1884 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1885 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1886 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1887 "host_virt: %p\n", indent + 2, "", 1888 (uint64_t) region->region.guest_phys_addr, 1889 (uint64_t) region->region.memory_size, 1890 region->host_mem); 1891 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1892 sparsebit_dump(stream, region->unused_phy_pages, 0); 1893 if (region->protected_phy_pages) { 1894 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1895 sparsebit_dump(stream, region->protected_phy_pages, 0); 1896 } 1897 } 1898 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1899 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1900 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1901 vm->pgd_created); 1902 if (vm->pgd_created) { 1903 fprintf(stream, "%*sVirtual Translation Tables:\n", 1904 indent + 2, ""); 1905 virt_dump(stream, vm, indent + 4); 1906 } 1907 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1908 1909 list_for_each_entry(vcpu, &vm->vcpus, list) 1910 vcpu_dump(stream, vcpu, indent + 2); 1911 } 1912 1913 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1914 1915 /* Known KVM exit reasons */ 1916 static struct exit_reason { 1917 unsigned int reason; 1918 const char *name; 1919 } exit_reasons_known[] = { 1920 KVM_EXIT_STRING(UNKNOWN), 1921 KVM_EXIT_STRING(EXCEPTION), 1922 KVM_EXIT_STRING(IO), 1923 KVM_EXIT_STRING(HYPERCALL), 1924 KVM_EXIT_STRING(DEBUG), 1925 KVM_EXIT_STRING(HLT), 1926 KVM_EXIT_STRING(MMIO), 1927 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 1928 KVM_EXIT_STRING(SHUTDOWN), 1929 KVM_EXIT_STRING(FAIL_ENTRY), 1930 KVM_EXIT_STRING(INTR), 1931 KVM_EXIT_STRING(SET_TPR), 1932 KVM_EXIT_STRING(TPR_ACCESS), 1933 KVM_EXIT_STRING(S390_SIEIC), 1934 KVM_EXIT_STRING(S390_RESET), 1935 KVM_EXIT_STRING(DCR), 1936 KVM_EXIT_STRING(NMI), 1937 KVM_EXIT_STRING(INTERNAL_ERROR), 1938 KVM_EXIT_STRING(OSI), 1939 KVM_EXIT_STRING(PAPR_HCALL), 1940 KVM_EXIT_STRING(S390_UCONTROL), 1941 KVM_EXIT_STRING(WATCHDOG), 1942 KVM_EXIT_STRING(S390_TSCH), 1943 KVM_EXIT_STRING(EPR), 1944 KVM_EXIT_STRING(SYSTEM_EVENT), 1945 KVM_EXIT_STRING(S390_STSI), 1946 KVM_EXIT_STRING(IOAPIC_EOI), 1947 KVM_EXIT_STRING(HYPERV), 1948 KVM_EXIT_STRING(ARM_NISV), 1949 KVM_EXIT_STRING(X86_RDMSR), 1950 KVM_EXIT_STRING(X86_WRMSR), 1951 KVM_EXIT_STRING(DIRTY_RING_FULL), 1952 KVM_EXIT_STRING(AP_RESET_HOLD), 1953 KVM_EXIT_STRING(X86_BUS_LOCK), 1954 KVM_EXIT_STRING(XEN), 1955 KVM_EXIT_STRING(RISCV_SBI), 1956 KVM_EXIT_STRING(RISCV_CSR), 1957 KVM_EXIT_STRING(NOTIFY), 1958 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 1959 KVM_EXIT_STRING(MEMORY_NOT_PRESENT), 1960 #endif 1961 }; 1962 1963 /* 1964 * Exit Reason String 1965 * 1966 * Input Args: 1967 * exit_reason - Exit reason 1968 * 1969 * Output Args: None 1970 * 1971 * Return: 1972 * Constant string pointer describing the exit reason. 1973 * 1974 * Locates and returns a constant string that describes the KVM exit 1975 * reason given by exit_reason. If no such string is found, a constant 1976 * string of "Unknown" is returned. 1977 */ 1978 const char *exit_reason_str(unsigned int exit_reason) 1979 { 1980 unsigned int n1; 1981 1982 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 1983 if (exit_reason == exit_reasons_known[n1].reason) 1984 return exit_reasons_known[n1].name; 1985 } 1986 1987 return "Unknown"; 1988 } 1989 1990 /* 1991 * Physical Contiguous Page Allocator 1992 * 1993 * Input Args: 1994 * vm - Virtual Machine 1995 * num - number of pages 1996 * paddr_min - Physical address minimum 1997 * memslot - Memory region to allocate page from 1998 * protected - True if the pages will be used as protected/private memory 1999 * 2000 * Output Args: None 2001 * 2002 * Return: 2003 * Starting physical address 2004 * 2005 * Within the VM specified by vm, locates a range of available physical 2006 * pages at or above paddr_min. If found, the pages are marked as in use 2007 * and their base address is returned. A TEST_ASSERT failure occurs if 2008 * not enough pages are available at or above paddr_min. 2009 */ 2010 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2011 vm_paddr_t paddr_min, uint32_t memslot, 2012 bool protected) 2013 { 2014 struct userspace_mem_region *region; 2015 sparsebit_idx_t pg, base; 2016 2017 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2018 2019 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2020 "not divisible by page size.\n" 2021 " paddr_min: 0x%lx page_size: 0x%x", 2022 paddr_min, vm->page_size); 2023 2024 region = memslot2region(vm, memslot); 2025 TEST_ASSERT(!protected || region->protected_phy_pages, 2026 "Region doesn't support protected memory"); 2027 2028 base = pg = paddr_min >> vm->page_shift; 2029 do { 2030 for (; pg < base + num; ++pg) { 2031 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2032 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2033 break; 2034 } 2035 } 2036 } while (pg && pg != base + num); 2037 2038 if (pg == 0) { 2039 fprintf(stderr, "No guest physical page available, " 2040 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2041 paddr_min, vm->page_size, memslot); 2042 fputs("---- vm dump ----\n", stderr); 2043 vm_dump(stderr, vm, 2); 2044 abort(); 2045 } 2046 2047 for (pg = base; pg < base + num; ++pg) { 2048 sparsebit_clear(region->unused_phy_pages, pg); 2049 if (protected) 2050 sparsebit_set(region->protected_phy_pages, pg); 2051 } 2052 2053 return base * vm->page_size; 2054 } 2055 2056 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2057 uint32_t memslot) 2058 { 2059 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2060 } 2061 2062 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2063 { 2064 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2065 vm->memslots[MEM_REGION_PT]); 2066 } 2067 2068 /* 2069 * Address Guest Virtual to Host Virtual 2070 * 2071 * Input Args: 2072 * vm - Virtual Machine 2073 * gva - VM virtual address 2074 * 2075 * Output Args: None 2076 * 2077 * Return: 2078 * Equivalent host virtual address 2079 */ 2080 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2081 { 2082 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2083 } 2084 2085 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2086 { 2087 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2088 } 2089 2090 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2091 unsigned int page_shift, 2092 unsigned int new_page_shift, 2093 bool ceil) 2094 { 2095 unsigned int n = 1 << (new_page_shift - page_shift); 2096 2097 if (page_shift >= new_page_shift) 2098 return num_pages * (1 << (page_shift - new_page_shift)); 2099 2100 return num_pages / n + !!(ceil && num_pages % n); 2101 } 2102 2103 static inline int getpageshift(void) 2104 { 2105 return __builtin_ffs(getpagesize()) - 1; 2106 } 2107 2108 unsigned int 2109 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2110 { 2111 return vm_calc_num_pages(num_guest_pages, 2112 vm_guest_mode_params[mode].page_shift, 2113 getpageshift(), true); 2114 } 2115 2116 unsigned int 2117 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2118 { 2119 return vm_calc_num_pages(num_host_pages, getpageshift(), 2120 vm_guest_mode_params[mode].page_shift, false); 2121 } 2122 2123 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2124 { 2125 unsigned int n; 2126 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2127 return vm_adjust_num_guest_pages(mode, n); 2128 } 2129 2130 /* 2131 * Read binary stats descriptors 2132 * 2133 * Input Args: 2134 * stats_fd - the file descriptor for the binary stats file from which to read 2135 * header - the binary stats metadata header corresponding to the given FD 2136 * 2137 * Output Args: None 2138 * 2139 * Return: 2140 * A pointer to a newly allocated series of stat descriptors. 2141 * Caller is responsible for freeing the returned kvm_stats_desc. 2142 * 2143 * Read the stats descriptors from the binary stats interface. 2144 */ 2145 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2146 struct kvm_stats_header *header) 2147 { 2148 struct kvm_stats_desc *stats_desc; 2149 ssize_t desc_size, total_size, ret; 2150 2151 desc_size = get_stats_descriptor_size(header); 2152 total_size = header->num_desc * desc_size; 2153 2154 stats_desc = calloc(header->num_desc, desc_size); 2155 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2156 2157 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2158 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2159 2160 return stats_desc; 2161 } 2162 2163 /* 2164 * Read stat data for a particular stat 2165 * 2166 * Input Args: 2167 * stats_fd - the file descriptor for the binary stats file from which to read 2168 * header - the binary stats metadata header corresponding to the given FD 2169 * desc - the binary stat metadata for the particular stat to be read 2170 * max_elements - the maximum number of 8-byte values to read into data 2171 * 2172 * Output Args: 2173 * data - the buffer into which stat data should be read 2174 * 2175 * Read the data values of a specified stat from the binary stats interface. 2176 */ 2177 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2178 struct kvm_stats_desc *desc, uint64_t *data, 2179 size_t max_elements) 2180 { 2181 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2182 size_t size = nr_elements * sizeof(*data); 2183 ssize_t ret; 2184 2185 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2186 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2187 2188 ret = pread(stats_fd, data, size, 2189 header->data_offset + desc->offset); 2190 2191 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2192 desc->name, errno, strerror(errno)); 2193 TEST_ASSERT(ret == size, 2194 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2195 desc->name, size, ret); 2196 } 2197 2198 /* 2199 * Read the data of the named stat 2200 * 2201 * Input Args: 2202 * vm - the VM for which the stat should be read 2203 * stat_name - the name of the stat to read 2204 * max_elements - the maximum number of 8-byte values to read into data 2205 * 2206 * Output Args: 2207 * data - the buffer into which stat data should be read 2208 * 2209 * Read the data values of a specified stat from the binary stats interface. 2210 */ 2211 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 2212 size_t max_elements) 2213 { 2214 struct kvm_stats_desc *desc; 2215 size_t size_desc; 2216 int i; 2217 2218 if (!vm->stats_fd) { 2219 vm->stats_fd = vm_get_stats_fd(vm); 2220 read_stats_header(vm->stats_fd, &vm->stats_header); 2221 vm->stats_desc = read_stats_descriptors(vm->stats_fd, 2222 &vm->stats_header); 2223 } 2224 2225 size_desc = get_stats_descriptor_size(&vm->stats_header); 2226 2227 for (i = 0; i < vm->stats_header.num_desc; ++i) { 2228 desc = (void *)vm->stats_desc + (i * size_desc); 2229 2230 if (strcmp(desc->name, stat_name)) 2231 continue; 2232 2233 read_stat_data(vm->stats_fd, &vm->stats_header, desc, 2234 data, max_elements); 2235 2236 break; 2237 } 2238 } 2239 2240 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2241 { 2242 } 2243 2244 __weak void kvm_selftest_arch_init(void) 2245 { 2246 } 2247 2248 void __attribute((constructor)) kvm_selftest_init(void) 2249 { 2250 /* Tell stdout not to buffer its content. */ 2251 setbuf(stdout, NULL); 2252 2253 guest_random_seed = last_guest_seed = random(); 2254 pr_info("Random seed: 0x%x\n", guest_random_seed); 2255 2256 kvm_selftest_arch_init(); 2257 } 2258 2259 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2260 { 2261 sparsebit_idx_t pg = 0; 2262 struct userspace_mem_region *region; 2263 2264 if (!vm_arch_has_protected_memory(vm)) 2265 return false; 2266 2267 region = userspace_mem_region_find(vm, paddr, paddr); 2268 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2269 2270 pg = paddr >> vm->page_shift; 2271 return sparsebit_is_set(region->protected_phy_pages, pg); 2272 } 2273