xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13 
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	if (fd < 0) {
31 		print_skip("%s not available (errno: %d)", path, errno);
32 		exit(KSFT_SKIP);
33 	}
34 
35 	return fd;
36 }
37 
38 /*
39  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
40  *
41  * Input Args:
42  *   flags - The flags to pass when opening KVM_DEV_PATH.
43  *
44  * Return:
45  *   The opened file descriptor of /dev/kvm.
46  */
47 static int _open_kvm_dev_path_or_exit(int flags)
48 {
49 	return open_path_or_exit(KVM_DEV_PATH, flags);
50 }
51 
52 int open_kvm_dev_path_or_exit(void)
53 {
54 	return _open_kvm_dev_path_or_exit(O_RDONLY);
55 }
56 
57 /*
58  * Capability
59  *
60  * Input Args:
61  *   cap - Capability
62  *
63  * Output Args: None
64  *
65  * Return:
66  *   On success, the Value corresponding to the capability (KVM_CAP_*)
67  *   specified by the value of cap.  On failure a TEST_ASSERT failure
68  *   is produced.
69  *
70  * Looks up and returns the value corresponding to the capability
71  * (KVM_CAP_*) given by cap.
72  */
73 int kvm_check_cap(long cap)
74 {
75 	int ret;
76 	int kvm_fd;
77 
78 	kvm_fd = open_kvm_dev_path_or_exit();
79 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
80 	TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
81 		"  rc: %i errno: %i", ret, errno);
82 
83 	close(kvm_fd);
84 
85 	return ret;
86 }
87 
88 /* VM Check Capability
89  *
90  * Input Args:
91  *   vm - Virtual Machine
92  *   cap - Capability
93  *
94  * Output Args: None
95  *
96  * Return:
97  *   On success, the Value corresponding to the capability (KVM_CAP_*)
98  *   specified by the value of cap.  On failure a TEST_ASSERT failure
99  *   is produced.
100  *
101  * Looks up and returns the value corresponding to the capability
102  * (KVM_CAP_*) given by cap.
103  */
104 int vm_check_cap(struct kvm_vm *vm, long cap)
105 {
106 	int ret;
107 
108 	ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap);
109 	TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n"
110 		"  rc: %i errno: %i", ret, errno);
111 
112 	return ret;
113 }
114 
115 /* VM Enable Capability
116  *
117  * Input Args:
118  *   vm - Virtual Machine
119  *   cap - Capability
120  *
121  * Output Args: None
122  *
123  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
124  *
125  * Enables a capability (KVM_CAP_*) on the VM.
126  */
127 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
128 {
129 	int ret;
130 
131 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
132 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
133 		"  rc: %i errno: %i", ret, errno);
134 
135 	return ret;
136 }
137 
138 /* VCPU Enable Capability
139  *
140  * Input Args:
141  *   vm - Virtual Machine
142  *   vcpu_id - VCPU
143  *   cap - Capability
144  *
145  * Output Args: None
146  *
147  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
148  *
149  * Enables a capability (KVM_CAP_*) on the VCPU.
150  */
151 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
152 		    struct kvm_enable_cap *cap)
153 {
154 	struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
155 	int r;
156 
157 	TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
158 
159 	r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
160 	TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
161 			"  rc: %i, errno: %i", r, errno);
162 
163 	return r;
164 }
165 
166 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
167 {
168 	struct kvm_enable_cap cap = { 0 };
169 
170 	cap.cap = KVM_CAP_DIRTY_LOG_RING;
171 	cap.args[0] = ring_size;
172 	vm_enable_cap(vm, &cap);
173 	vm->dirty_ring_size = ring_size;
174 }
175 
176 static void vm_open(struct kvm_vm *vm, int perm)
177 {
178 	vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
179 
180 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
181 		print_skip("immediate_exit not available");
182 		exit(KSFT_SKIP);
183 	}
184 
185 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
186 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
187 		"rc: %i errno: %i", vm->fd, errno);
188 }
189 
190 const char *vm_guest_mode_string(uint32_t i)
191 {
192 	static const char * const strings[] = {
193 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
194 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
195 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
196 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
197 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
198 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
199 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
200 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
201 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
202 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
203 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
204 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
205 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
206 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
207 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
208 	};
209 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
210 		       "Missing new mode strings?");
211 
212 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
213 
214 	return strings[i];
215 }
216 
217 const struct vm_guest_mode_params vm_guest_mode_params[] = {
218 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
219 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
220 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
221 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
222 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
223 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
224 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
225 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
226 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
227 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
228 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
229 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
230 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
231 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
232 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
233 };
234 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
235 	       "Missing new mode params?");
236 
237 /*
238  * VM Create
239  *
240  * Input Args:
241  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
242  *   phy_pages - Physical memory pages
243  *   perm - permission
244  *
245  * Output Args: None
246  *
247  * Return:
248  *   Pointer to opaque structure that describes the created VM.
249  *
250  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
251  * When phy_pages is non-zero, a memory region of phy_pages physical pages
252  * is created and mapped starting at guest physical address 0.  The file
253  * descriptor to control the created VM is created with the permissions
254  * given by perm (e.g. O_RDWR).
255  */
256 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
257 {
258 	struct kvm_vm *vm;
259 
260 	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
261 		 vm_guest_mode_string(mode), phy_pages, perm);
262 
263 	vm = calloc(1, sizeof(*vm));
264 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
265 
266 	INIT_LIST_HEAD(&vm->vcpus);
267 	vm->regions.gpa_tree = RB_ROOT;
268 	vm->regions.hva_tree = RB_ROOT;
269 	hash_init(vm->regions.slot_hash);
270 
271 	vm->mode = mode;
272 	vm->type = 0;
273 
274 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
275 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
276 	vm->page_size = vm_guest_mode_params[mode].page_size;
277 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
278 
279 	/* Setup mode specific traits. */
280 	switch (vm->mode) {
281 	case VM_MODE_P52V48_4K:
282 		vm->pgtable_levels = 4;
283 		break;
284 	case VM_MODE_P52V48_64K:
285 		vm->pgtable_levels = 3;
286 		break;
287 	case VM_MODE_P48V48_4K:
288 		vm->pgtable_levels = 4;
289 		break;
290 	case VM_MODE_P48V48_64K:
291 		vm->pgtable_levels = 3;
292 		break;
293 	case VM_MODE_P40V48_4K:
294 	case VM_MODE_P36V48_4K:
295 		vm->pgtable_levels = 4;
296 		break;
297 	case VM_MODE_P40V48_64K:
298 	case VM_MODE_P36V48_64K:
299 		vm->pgtable_levels = 3;
300 		break;
301 	case VM_MODE_P48V48_16K:
302 	case VM_MODE_P40V48_16K:
303 	case VM_MODE_P36V48_16K:
304 		vm->pgtable_levels = 4;
305 		break;
306 	case VM_MODE_P36V47_16K:
307 		vm->pgtable_levels = 3;
308 		break;
309 	case VM_MODE_PXXV48_4K:
310 #ifdef __x86_64__
311 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
312 		/*
313 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
314 		 * it doesn't take effect unless a CR4.LA57 is set, which it
315 		 * isn't for this VM_MODE.
316 		 */
317 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
318 			    "Linear address width (%d bits) not supported",
319 			    vm->va_bits);
320 		pr_debug("Guest physical address width detected: %d\n",
321 			 vm->pa_bits);
322 		vm->pgtable_levels = 4;
323 		vm->va_bits = 48;
324 #else
325 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
326 #endif
327 		break;
328 	case VM_MODE_P47V64_4K:
329 		vm->pgtable_levels = 5;
330 		break;
331 	case VM_MODE_P44V64_4K:
332 		vm->pgtable_levels = 5;
333 		break;
334 	default:
335 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
336 	}
337 
338 #ifdef __aarch64__
339 	if (vm->pa_bits != 40)
340 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
341 #endif
342 
343 	vm_open(vm, perm);
344 
345 	/* Limit to VA-bit canonical virtual addresses. */
346 	vm->vpages_valid = sparsebit_alloc();
347 	sparsebit_set_num(vm->vpages_valid,
348 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
349 	sparsebit_set_num(vm->vpages_valid,
350 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
351 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
352 
353 	/* Limit physical addresses to PA-bits. */
354 	vm->max_gfn = vm_compute_max_gfn(vm);
355 
356 	/* Allocate and setup memory for guest. */
357 	vm->vpages_mapped = sparsebit_alloc();
358 	if (phy_pages != 0)
359 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
360 					    0, 0, phy_pages, 0);
361 
362 	return vm;
363 }
364 
365 /*
366  * VM Create with customized parameters
367  *
368  * Input Args:
369  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
370  *   nr_vcpus - VCPU count
371  *   slot0_mem_pages - Slot0 physical memory size
372  *   extra_mem_pages - Non-slot0 physical memory total size
373  *   num_percpu_pages - Per-cpu physical memory pages
374  *   guest_code - Guest entry point
375  *   vcpuids - VCPU IDs
376  *
377  * Output Args: None
378  *
379  * Return:
380  *   Pointer to opaque structure that describes the created VM.
381  *
382  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
383  * with customized slot0 memory size, at least 512 pages currently.
384  * extra_mem_pages is only used to calculate the maximum page table size,
385  * no real memory allocation for non-slot0 memory in this function.
386  */
387 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
388 				    uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
389 				    uint32_t num_percpu_pages, void *guest_code,
390 				    uint32_t vcpuids[])
391 {
392 	uint64_t vcpu_pages, extra_pg_pages, pages;
393 	struct kvm_vm *vm;
394 	int i;
395 
396 	/* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
397 	if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
398 		slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
399 
400 	/* The maximum page table size for a memory region will be when the
401 	 * smallest pages are used. Considering each page contains x page
402 	 * table descriptors, the total extra size for page tables (for extra
403 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
404 	 * than N/x*2.
405 	 */
406 	vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
407 	extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
408 	pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
409 
410 	TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
411 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
412 		    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
413 
414 	pages = vm_adjust_num_guest_pages(mode, pages);
415 	vm = vm_create(mode, pages, O_RDWR);
416 
417 	kvm_vm_elf_load(vm, program_invocation_name);
418 
419 #ifdef __x86_64__
420 	vm_create_irqchip(vm);
421 #endif
422 
423 	for (i = 0; i < nr_vcpus; ++i) {
424 		uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
425 
426 		vm_vcpu_add_default(vm, vcpuid, guest_code);
427 	}
428 
429 	return vm;
430 }
431 
432 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
433 					    uint32_t num_percpu_pages, void *guest_code,
434 					    uint32_t vcpuids[])
435 {
436 	return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
437 				    extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
438 }
439 
440 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
441 				 void *guest_code)
442 {
443 	return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
444 					    (uint32_t []){ vcpuid });
445 }
446 
447 /*
448  * VM Restart
449  *
450  * Input Args:
451  *   vm - VM that has been released before
452  *   perm - permission
453  *
454  * Output Args: None
455  *
456  * Reopens the file descriptors associated to the VM and reinstates the
457  * global state, such as the irqchip and the memory regions that are mapped
458  * into the guest.
459  */
460 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
461 {
462 	int ctr;
463 	struct userspace_mem_region *region;
464 
465 	vm_open(vmp, perm);
466 	if (vmp->has_irqchip)
467 		vm_create_irqchip(vmp);
468 
469 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
470 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
471 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
472 			    "  rc: %i errno: %i\n"
473 			    "  slot: %u flags: 0x%x\n"
474 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
475 			    ret, errno, region->region.slot,
476 			    region->region.flags,
477 			    region->region.guest_phys_addr,
478 			    region->region.memory_size);
479 	}
480 }
481 
482 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
483 {
484 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
485 	int ret;
486 
487 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
488 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
489 		    __func__, strerror(-ret));
490 }
491 
492 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
493 			    uint64_t first_page, uint32_t num_pages)
494 {
495 	struct kvm_clear_dirty_log args = {
496 		.dirty_bitmap = log, .slot = slot,
497 		.first_page = first_page,
498 		.num_pages = num_pages
499 	};
500 	int ret;
501 
502 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
503 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
504 		    __func__, strerror(-ret));
505 }
506 
507 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
508 {
509 	return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
510 }
511 
512 /*
513  * Userspace Memory Region Find
514  *
515  * Input Args:
516  *   vm - Virtual Machine
517  *   start - Starting VM physical address
518  *   end - Ending VM physical address, inclusive.
519  *
520  * Output Args: None
521  *
522  * Return:
523  *   Pointer to overlapping region, NULL if no such region.
524  *
525  * Searches for a region with any physical memory that overlaps with
526  * any portion of the guest physical addresses from start to end
527  * inclusive.  If multiple overlapping regions exist, a pointer to any
528  * of the regions is returned.  Null is returned only when no overlapping
529  * region exists.
530  */
531 static struct userspace_mem_region *
532 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
533 {
534 	struct rb_node *node;
535 
536 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
537 		struct userspace_mem_region *region =
538 			container_of(node, struct userspace_mem_region, gpa_node);
539 		uint64_t existing_start = region->region.guest_phys_addr;
540 		uint64_t existing_end = region->region.guest_phys_addr
541 			+ region->region.memory_size - 1;
542 		if (start <= existing_end && end >= existing_start)
543 			return region;
544 
545 		if (start < existing_start)
546 			node = node->rb_left;
547 		else
548 			node = node->rb_right;
549 	}
550 
551 	return NULL;
552 }
553 
554 /*
555  * KVM Userspace Memory Region Find
556  *
557  * Input Args:
558  *   vm - Virtual Machine
559  *   start - Starting VM physical address
560  *   end - Ending VM physical address, inclusive.
561  *
562  * Output Args: None
563  *
564  * Return:
565  *   Pointer to overlapping region, NULL if no such region.
566  *
567  * Public interface to userspace_mem_region_find. Allows tests to look up
568  * the memslot datastructure for a given range of guest physical memory.
569  */
570 struct kvm_userspace_memory_region *
571 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
572 				 uint64_t end)
573 {
574 	struct userspace_mem_region *region;
575 
576 	region = userspace_mem_region_find(vm, start, end);
577 	if (!region)
578 		return NULL;
579 
580 	return &region->region;
581 }
582 
583 /*
584  * VCPU Find
585  *
586  * Input Args:
587  *   vm - Virtual Machine
588  *   vcpuid - VCPU ID
589  *
590  * Output Args: None
591  *
592  * Return:
593  *   Pointer to VCPU structure
594  *
595  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
596  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
597  * for the specified vcpuid.
598  */
599 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
600 {
601 	struct vcpu *vcpu;
602 
603 	list_for_each_entry(vcpu, &vm->vcpus, list) {
604 		if (vcpu->id == vcpuid)
605 			return vcpu;
606 	}
607 
608 	return NULL;
609 }
610 
611 /*
612  * VM VCPU Remove
613  *
614  * Input Args:
615  *   vcpu - VCPU to remove
616  *
617  * Output Args: None
618  *
619  * Return: None, TEST_ASSERT failures for all error conditions
620  *
621  * Removes a vCPU from a VM and frees its resources.
622  */
623 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
624 {
625 	int ret;
626 
627 	if (vcpu->dirty_gfns) {
628 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
629 		TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
630 			    "rc: %i errno: %i", ret, errno);
631 		vcpu->dirty_gfns = NULL;
632 	}
633 
634 	ret = munmap(vcpu->state, vcpu_mmap_sz());
635 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
636 		"errno: %i", ret, errno);
637 	ret = close(vcpu->fd);
638 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
639 		"errno: %i", ret, errno);
640 
641 	list_del(&vcpu->list);
642 	free(vcpu);
643 }
644 
645 void kvm_vm_release(struct kvm_vm *vmp)
646 {
647 	struct vcpu *vcpu, *tmp;
648 	int ret;
649 
650 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
651 		vm_vcpu_rm(vmp, vcpu);
652 
653 	ret = close(vmp->fd);
654 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
655 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
656 
657 	ret = close(vmp->kvm_fd);
658 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
659 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
660 }
661 
662 static void __vm_mem_region_delete(struct kvm_vm *vm,
663 				   struct userspace_mem_region *region,
664 				   bool unlink)
665 {
666 	int ret;
667 
668 	if (unlink) {
669 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
670 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
671 		hash_del(&region->slot_node);
672 	}
673 
674 	region->region.memory_size = 0;
675 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
676 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
677 		    "rc: %i errno: %i", ret, errno);
678 
679 	sparsebit_free(&region->unused_phy_pages);
680 	ret = munmap(region->mmap_start, region->mmap_size);
681 	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
682 
683 	free(region);
684 }
685 
686 /*
687  * Destroys and frees the VM pointed to by vmp.
688  */
689 void kvm_vm_free(struct kvm_vm *vmp)
690 {
691 	int ctr;
692 	struct hlist_node *node;
693 	struct userspace_mem_region *region;
694 
695 	if (vmp == NULL)
696 		return;
697 
698 	/* Free userspace_mem_regions. */
699 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
700 		__vm_mem_region_delete(vmp, region, false);
701 
702 	/* Free sparsebit arrays. */
703 	sparsebit_free(&vmp->vpages_valid);
704 	sparsebit_free(&vmp->vpages_mapped);
705 
706 	kvm_vm_release(vmp);
707 
708 	/* Free the structure describing the VM. */
709 	free(vmp);
710 }
711 
712 /*
713  * Memory Compare, host virtual to guest virtual
714  *
715  * Input Args:
716  *   hva - Starting host virtual address
717  *   vm - Virtual Machine
718  *   gva - Starting guest virtual address
719  *   len - number of bytes to compare
720  *
721  * Output Args: None
722  *
723  * Input/Output Args: None
724  *
725  * Return:
726  *   Returns 0 if the bytes starting at hva for a length of len
727  *   are equal the guest virtual bytes starting at gva.  Returns
728  *   a value < 0, if bytes at hva are less than those at gva.
729  *   Otherwise a value > 0 is returned.
730  *
731  * Compares the bytes starting at the host virtual address hva, for
732  * a length of len, to the guest bytes starting at the guest virtual
733  * address given by gva.
734  */
735 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
736 {
737 	size_t amt;
738 
739 	/*
740 	 * Compare a batch of bytes until either a match is found
741 	 * or all the bytes have been compared.
742 	 */
743 	for (uintptr_t offset = 0; offset < len; offset += amt) {
744 		uintptr_t ptr1 = (uintptr_t)hva + offset;
745 
746 		/*
747 		 * Determine host address for guest virtual address
748 		 * at offset.
749 		 */
750 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
751 
752 		/*
753 		 * Determine amount to compare on this pass.
754 		 * Don't allow the comparsion to cross a page boundary.
755 		 */
756 		amt = len - offset;
757 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
758 			amt = vm->page_size - (ptr1 % vm->page_size);
759 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
760 			amt = vm->page_size - (ptr2 % vm->page_size);
761 
762 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
763 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
764 
765 		/*
766 		 * Perform the comparison.  If there is a difference
767 		 * return that result to the caller, otherwise need
768 		 * to continue on looking for a mismatch.
769 		 */
770 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
771 		if (ret != 0)
772 			return ret;
773 	}
774 
775 	/*
776 	 * No mismatch found.  Let the caller know the two memory
777 	 * areas are equal.
778 	 */
779 	return 0;
780 }
781 
782 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
783 					       struct userspace_mem_region *region)
784 {
785 	struct rb_node **cur, *parent;
786 
787 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
788 		struct userspace_mem_region *cregion;
789 
790 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
791 		parent = *cur;
792 		if (region->region.guest_phys_addr <
793 		    cregion->region.guest_phys_addr)
794 			cur = &(*cur)->rb_left;
795 		else {
796 			TEST_ASSERT(region->region.guest_phys_addr !=
797 				    cregion->region.guest_phys_addr,
798 				    "Duplicate GPA in region tree");
799 
800 			cur = &(*cur)->rb_right;
801 		}
802 	}
803 
804 	rb_link_node(&region->gpa_node, parent, cur);
805 	rb_insert_color(&region->gpa_node, gpa_tree);
806 }
807 
808 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
809 					       struct userspace_mem_region *region)
810 {
811 	struct rb_node **cur, *parent;
812 
813 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
814 		struct userspace_mem_region *cregion;
815 
816 		cregion = container_of(*cur, typeof(*cregion), hva_node);
817 		parent = *cur;
818 		if (region->host_mem < cregion->host_mem)
819 			cur = &(*cur)->rb_left;
820 		else {
821 			TEST_ASSERT(region->host_mem !=
822 				    cregion->host_mem,
823 				    "Duplicate HVA in region tree");
824 
825 			cur = &(*cur)->rb_right;
826 		}
827 	}
828 
829 	rb_link_node(&region->hva_node, parent, cur);
830 	rb_insert_color(&region->hva_node, hva_tree);
831 }
832 
833 /*
834  * VM Userspace Memory Region Add
835  *
836  * Input Args:
837  *   vm - Virtual Machine
838  *   src_type - Storage source for this region.
839  *              NULL to use anonymous memory.
840  *   guest_paddr - Starting guest physical address
841  *   slot - KVM region slot
842  *   npages - Number of physical pages
843  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
844  *
845  * Output Args: None
846  *
847  * Return: None
848  *
849  * Allocates a memory area of the number of pages specified by npages
850  * and maps it to the VM specified by vm, at a starting physical address
851  * given by guest_paddr.  The region is created with a KVM region slot
852  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
853  * region is created with the flags given by flags.
854  */
855 void vm_userspace_mem_region_add(struct kvm_vm *vm,
856 	enum vm_mem_backing_src_type src_type,
857 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
858 	uint32_t flags)
859 {
860 	int ret;
861 	struct userspace_mem_region *region;
862 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
863 	size_t alignment;
864 
865 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
866 		"Number of guest pages is not compatible with the host. "
867 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
868 
869 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
870 		"address not on a page boundary.\n"
871 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
872 		guest_paddr, vm->page_size);
873 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
874 		<= vm->max_gfn, "Physical range beyond maximum "
875 		"supported physical address,\n"
876 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
877 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
878 		guest_paddr, npages, vm->max_gfn, vm->page_size);
879 
880 	/*
881 	 * Confirm a mem region with an overlapping address doesn't
882 	 * already exist.
883 	 */
884 	region = (struct userspace_mem_region *) userspace_mem_region_find(
885 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
886 	if (region != NULL)
887 		TEST_FAIL("overlapping userspace_mem_region already "
888 			"exists\n"
889 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
890 			"page_size: 0x%x\n"
891 			"  existing guest_paddr: 0x%lx size: 0x%lx",
892 			guest_paddr, npages, vm->page_size,
893 			(uint64_t) region->region.guest_phys_addr,
894 			(uint64_t) region->region.memory_size);
895 
896 	/* Confirm no region with the requested slot already exists. */
897 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
898 			       slot) {
899 		if (region->region.slot != slot)
900 			continue;
901 
902 		TEST_FAIL("A mem region with the requested slot "
903 			"already exists.\n"
904 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
905 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
906 			slot, guest_paddr, npages,
907 			region->region.slot,
908 			(uint64_t) region->region.guest_phys_addr,
909 			(uint64_t) region->region.memory_size);
910 	}
911 
912 	/* Allocate and initialize new mem region structure. */
913 	region = calloc(1, sizeof(*region));
914 	TEST_ASSERT(region != NULL, "Insufficient Memory");
915 	region->mmap_size = npages * vm->page_size;
916 
917 #ifdef __s390x__
918 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
919 	alignment = 0x100000;
920 #else
921 	alignment = 1;
922 #endif
923 
924 	/*
925 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
926 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
927 	 * because mmap will always return an address aligned to the HugeTLB
928 	 * page size.
929 	 */
930 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
931 		alignment = max(backing_src_pagesz, alignment);
932 
933 	ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
934 
935 	/* Add enough memory to align up if necessary */
936 	if (alignment > 1)
937 		region->mmap_size += alignment;
938 
939 	region->fd = -1;
940 	if (backing_src_is_shared(src_type)) {
941 		int memfd_flags = MFD_CLOEXEC;
942 
943 		if (src_type == VM_MEM_SRC_SHARED_HUGETLB)
944 			memfd_flags |= MFD_HUGETLB;
945 
946 		region->fd = memfd_create("kvm_selftest", memfd_flags);
947 		TEST_ASSERT(region->fd != -1,
948 			    "memfd_create failed, errno: %i", errno);
949 
950 		ret = ftruncate(region->fd, region->mmap_size);
951 		TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno);
952 
953 		ret = fallocate(region->fd,
954 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
955 				region->mmap_size);
956 		TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno);
957 	}
958 
959 	region->mmap_start = mmap(NULL, region->mmap_size,
960 				  PROT_READ | PROT_WRITE,
961 				  vm_mem_backing_src_alias(src_type)->flag,
962 				  region->fd, 0);
963 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
964 		    "test_malloc failed, mmap_start: %p errno: %i",
965 		    region->mmap_start, errno);
966 
967 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
968 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
969 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
970 		    region->mmap_start, backing_src_pagesz);
971 
972 	/* Align host address */
973 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
974 
975 	/* As needed perform madvise */
976 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
977 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
978 		ret = madvise(region->host_mem, npages * vm->page_size,
979 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
980 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
981 			    region->host_mem, npages * vm->page_size,
982 			    vm_mem_backing_src_alias(src_type)->name);
983 	}
984 
985 	region->unused_phy_pages = sparsebit_alloc();
986 	sparsebit_set_num(region->unused_phy_pages,
987 		guest_paddr >> vm->page_shift, npages);
988 	region->region.slot = slot;
989 	region->region.flags = flags;
990 	region->region.guest_phys_addr = guest_paddr;
991 	region->region.memory_size = npages * vm->page_size;
992 	region->region.userspace_addr = (uintptr_t) region->host_mem;
993 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
994 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
995 		"  rc: %i errno: %i\n"
996 		"  slot: %u flags: 0x%x\n"
997 		"  guest_phys_addr: 0x%lx size: 0x%lx",
998 		ret, errno, slot, flags,
999 		guest_paddr, (uint64_t) region->region.memory_size);
1000 
1001 	/* Add to quick lookup data structures */
1002 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1003 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1004 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1005 
1006 	/* If shared memory, create an alias. */
1007 	if (region->fd >= 0) {
1008 		region->mmap_alias = mmap(NULL, region->mmap_size,
1009 					  PROT_READ | PROT_WRITE,
1010 					  vm_mem_backing_src_alias(src_type)->flag,
1011 					  region->fd, 0);
1012 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1013 			    "mmap of alias failed, errno: %i", errno);
1014 
1015 		/* Align host alias address */
1016 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1017 	}
1018 }
1019 
1020 /*
1021  * Memslot to region
1022  *
1023  * Input Args:
1024  *   vm - Virtual Machine
1025  *   memslot - KVM memory slot ID
1026  *
1027  * Output Args: None
1028  *
1029  * Return:
1030  *   Pointer to memory region structure that describe memory region
1031  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1032  *   on error (e.g. currently no memory region using memslot as a KVM
1033  *   memory slot ID).
1034  */
1035 struct userspace_mem_region *
1036 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1037 {
1038 	struct userspace_mem_region *region;
1039 
1040 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1041 			       memslot)
1042 		if (region->region.slot == memslot)
1043 			return region;
1044 
1045 	fprintf(stderr, "No mem region with the requested slot found,\n"
1046 		"  requested slot: %u\n", memslot);
1047 	fputs("---- vm dump ----\n", stderr);
1048 	vm_dump(stderr, vm, 2);
1049 	TEST_FAIL("Mem region not found");
1050 	return NULL;
1051 }
1052 
1053 /*
1054  * VM Memory Region Flags Set
1055  *
1056  * Input Args:
1057  *   vm - Virtual Machine
1058  *   flags - Starting guest physical address
1059  *
1060  * Output Args: None
1061  *
1062  * Return: None
1063  *
1064  * Sets the flags of the memory region specified by the value of slot,
1065  * to the values given by flags.
1066  */
1067 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1068 {
1069 	int ret;
1070 	struct userspace_mem_region *region;
1071 
1072 	region = memslot2region(vm, slot);
1073 
1074 	region->region.flags = flags;
1075 
1076 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1077 
1078 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1079 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1080 		ret, errno, slot, flags);
1081 }
1082 
1083 /*
1084  * VM Memory Region Move
1085  *
1086  * Input Args:
1087  *   vm - Virtual Machine
1088  *   slot - Slot of the memory region to move
1089  *   new_gpa - Starting guest physical address
1090  *
1091  * Output Args: None
1092  *
1093  * Return: None
1094  *
1095  * Change the gpa of a memory region.
1096  */
1097 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1098 {
1099 	struct userspace_mem_region *region;
1100 	int ret;
1101 
1102 	region = memslot2region(vm, slot);
1103 
1104 	region->region.guest_phys_addr = new_gpa;
1105 
1106 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1107 
1108 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1109 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1110 		    ret, errno, slot, new_gpa);
1111 }
1112 
1113 /*
1114  * VM Memory Region Delete
1115  *
1116  * Input Args:
1117  *   vm - Virtual Machine
1118  *   slot - Slot of the memory region to delete
1119  *
1120  * Output Args: None
1121  *
1122  * Return: None
1123  *
1124  * Delete a memory region.
1125  */
1126 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1127 {
1128 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1129 }
1130 
1131 /*
1132  * VCPU mmap Size
1133  *
1134  * Input Args: None
1135  *
1136  * Output Args: None
1137  *
1138  * Return:
1139  *   Size of VCPU state
1140  *
1141  * Returns the size of the structure pointed to by the return value
1142  * of vcpu_state().
1143  */
1144 static int vcpu_mmap_sz(void)
1145 {
1146 	int dev_fd, ret;
1147 
1148 	dev_fd = open_kvm_dev_path_or_exit();
1149 
1150 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1151 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1152 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1153 		__func__, ret, errno);
1154 
1155 	close(dev_fd);
1156 
1157 	return ret;
1158 }
1159 
1160 /*
1161  * VM VCPU Add
1162  *
1163  * Input Args:
1164  *   vm - Virtual Machine
1165  *   vcpuid - VCPU ID
1166  *
1167  * Output Args: None
1168  *
1169  * Return: None
1170  *
1171  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1172  * No additional VCPU setup is done.
1173  */
1174 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1175 {
1176 	struct vcpu *vcpu;
1177 
1178 	/* Confirm a vcpu with the specified id doesn't already exist. */
1179 	vcpu = vcpu_find(vm, vcpuid);
1180 	if (vcpu != NULL)
1181 		TEST_FAIL("vcpu with the specified id "
1182 			"already exists,\n"
1183 			"  requested vcpuid: %u\n"
1184 			"  existing vcpuid: %u state: %p",
1185 			vcpuid, vcpu->id, vcpu->state);
1186 
1187 	/* Allocate and initialize new vcpu structure. */
1188 	vcpu = calloc(1, sizeof(*vcpu));
1189 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1190 	vcpu->id = vcpuid;
1191 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1192 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1193 		vcpu->fd, errno);
1194 
1195 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1196 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1197 		vcpu_mmap_sz(), sizeof(*vcpu->state));
1198 	vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1199 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1200 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1201 		"vcpu id: %u errno: %i", vcpuid, errno);
1202 
1203 	/* Add to linked-list of VCPUs. */
1204 	list_add(&vcpu->list, &vm->vcpus);
1205 }
1206 
1207 /*
1208  * VM Virtual Address Unused Gap
1209  *
1210  * Input Args:
1211  *   vm - Virtual Machine
1212  *   sz - Size (bytes)
1213  *   vaddr_min - Minimum Virtual Address
1214  *
1215  * Output Args: None
1216  *
1217  * Return:
1218  *   Lowest virtual address at or below vaddr_min, with at least
1219  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1220  *   size sz is available.
1221  *
1222  * Within the VM specified by vm, locates the lowest starting virtual
1223  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1224  * TEST_ASSERT failure occurs for invalid input or no area of at least
1225  * sz unallocated bytes >= vaddr_min is available.
1226  */
1227 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1228 				      vm_vaddr_t vaddr_min)
1229 {
1230 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1231 
1232 	/* Determine lowest permitted virtual page index. */
1233 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1234 	if ((pgidx_start * vm->page_size) < vaddr_min)
1235 		goto no_va_found;
1236 
1237 	/* Loop over section with enough valid virtual page indexes. */
1238 	if (!sparsebit_is_set_num(vm->vpages_valid,
1239 		pgidx_start, pages))
1240 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1241 			pgidx_start, pages);
1242 	do {
1243 		/*
1244 		 * Are there enough unused virtual pages available at
1245 		 * the currently proposed starting virtual page index.
1246 		 * If not, adjust proposed starting index to next
1247 		 * possible.
1248 		 */
1249 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1250 			pgidx_start, pages))
1251 			goto va_found;
1252 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1253 			pgidx_start, pages);
1254 		if (pgidx_start == 0)
1255 			goto no_va_found;
1256 
1257 		/*
1258 		 * If needed, adjust proposed starting virtual address,
1259 		 * to next range of valid virtual addresses.
1260 		 */
1261 		if (!sparsebit_is_set_num(vm->vpages_valid,
1262 			pgidx_start, pages)) {
1263 			pgidx_start = sparsebit_next_set_num(
1264 				vm->vpages_valid, pgidx_start, pages);
1265 			if (pgidx_start == 0)
1266 				goto no_va_found;
1267 		}
1268 	} while (pgidx_start != 0);
1269 
1270 no_va_found:
1271 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1272 
1273 	/* NOT REACHED */
1274 	return -1;
1275 
1276 va_found:
1277 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1278 		pgidx_start, pages),
1279 		"Unexpected, invalid virtual page index range,\n"
1280 		"  pgidx_start: 0x%lx\n"
1281 		"  pages: 0x%lx",
1282 		pgidx_start, pages);
1283 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1284 		pgidx_start, pages),
1285 		"Unexpected, pages already mapped,\n"
1286 		"  pgidx_start: 0x%lx\n"
1287 		"  pages: 0x%lx",
1288 		pgidx_start, pages);
1289 
1290 	return pgidx_start * vm->page_size;
1291 }
1292 
1293 /*
1294  * VM Virtual Address Allocate
1295  *
1296  * Input Args:
1297  *   vm - Virtual Machine
1298  *   sz - Size in bytes
1299  *   vaddr_min - Minimum starting virtual address
1300  *   data_memslot - Memory region slot for data pages
1301  *   pgd_memslot - Memory region slot for new virtual translation tables
1302  *
1303  * Output Args: None
1304  *
1305  * Return:
1306  *   Starting guest virtual address
1307  *
1308  * Allocates at least sz bytes within the virtual address space of the vm
1309  * given by vm.  The allocated bytes are mapped to a virtual address >=
1310  * the address given by vaddr_min.  Note that each allocation uses a
1311  * a unique set of pages, with the minimum real allocation being at least
1312  * a page.
1313  */
1314 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1315 {
1316 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1317 
1318 	virt_pgd_alloc(vm);
1319 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1320 					      KVM_UTIL_MIN_PFN * vm->page_size, 0);
1321 
1322 	/*
1323 	 * Find an unused range of virtual page addresses of at least
1324 	 * pages in length.
1325 	 */
1326 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1327 
1328 	/* Map the virtual pages. */
1329 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1330 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1331 
1332 		virt_pg_map(vm, vaddr, paddr);
1333 
1334 		sparsebit_set(vm->vpages_mapped,
1335 			vaddr >> vm->page_shift);
1336 	}
1337 
1338 	return vaddr_start;
1339 }
1340 
1341 /*
1342  * VM Virtual Address Allocate Pages
1343  *
1344  * Input Args:
1345  *   vm - Virtual Machine
1346  *
1347  * Output Args: None
1348  *
1349  * Return:
1350  *   Starting guest virtual address
1351  *
1352  * Allocates at least N system pages worth of bytes within the virtual address
1353  * space of the vm.
1354  */
1355 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1356 {
1357 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1358 }
1359 
1360 /*
1361  * VM Virtual Address Allocate Page
1362  *
1363  * Input Args:
1364  *   vm - Virtual Machine
1365  *
1366  * Output Args: None
1367  *
1368  * Return:
1369  *   Starting guest virtual address
1370  *
1371  * Allocates at least one system page worth of bytes within the virtual address
1372  * space of the vm.
1373  */
1374 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1375 {
1376 	return vm_vaddr_alloc_pages(vm, 1);
1377 }
1378 
1379 /*
1380  * Map a range of VM virtual address to the VM's physical address
1381  *
1382  * Input Args:
1383  *   vm - Virtual Machine
1384  *   vaddr - Virtuall address to map
1385  *   paddr - VM Physical Address
1386  *   npages - The number of pages to map
1387  *   pgd_memslot - Memory region slot for new virtual translation tables
1388  *
1389  * Output Args: None
1390  *
1391  * Return: None
1392  *
1393  * Within the VM given by @vm, creates a virtual translation for
1394  * @npages starting at @vaddr to the page range starting at @paddr.
1395  */
1396 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1397 	      unsigned int npages)
1398 {
1399 	size_t page_size = vm->page_size;
1400 	size_t size = npages * page_size;
1401 
1402 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1403 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1404 
1405 	while (npages--) {
1406 		virt_pg_map(vm, vaddr, paddr);
1407 		vaddr += page_size;
1408 		paddr += page_size;
1409 	}
1410 }
1411 
1412 /*
1413  * Address VM Physical to Host Virtual
1414  *
1415  * Input Args:
1416  *   vm - Virtual Machine
1417  *   gpa - VM physical address
1418  *
1419  * Output Args: None
1420  *
1421  * Return:
1422  *   Equivalent host virtual address
1423  *
1424  * Locates the memory region containing the VM physical address given
1425  * by gpa, within the VM given by vm.  When found, the host virtual
1426  * address providing the memory to the vm physical address is returned.
1427  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1428  */
1429 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1430 {
1431 	struct userspace_mem_region *region;
1432 
1433 	region = userspace_mem_region_find(vm, gpa, gpa);
1434 	if (!region) {
1435 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1436 		return NULL;
1437 	}
1438 
1439 	return (void *)((uintptr_t)region->host_mem
1440 		+ (gpa - region->region.guest_phys_addr));
1441 }
1442 
1443 /*
1444  * Address Host Virtual to VM Physical
1445  *
1446  * Input Args:
1447  *   vm - Virtual Machine
1448  *   hva - Host virtual address
1449  *
1450  * Output Args: None
1451  *
1452  * Return:
1453  *   Equivalent VM physical address
1454  *
1455  * Locates the memory region containing the host virtual address given
1456  * by hva, within the VM given by vm.  When found, the equivalent
1457  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1458  * region containing hva exists.
1459  */
1460 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1461 {
1462 	struct rb_node *node;
1463 
1464 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1465 		struct userspace_mem_region *region =
1466 			container_of(node, struct userspace_mem_region, hva_node);
1467 
1468 		if (hva >= region->host_mem) {
1469 			if (hva <= (region->host_mem
1470 				+ region->region.memory_size - 1))
1471 				return (vm_paddr_t)((uintptr_t)
1472 					region->region.guest_phys_addr
1473 					+ (hva - (uintptr_t)region->host_mem));
1474 
1475 			node = node->rb_right;
1476 		} else
1477 			node = node->rb_left;
1478 	}
1479 
1480 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1481 	return -1;
1482 }
1483 
1484 /*
1485  * Address VM physical to Host Virtual *alias*.
1486  *
1487  * Input Args:
1488  *   vm - Virtual Machine
1489  *   gpa - VM physical address
1490  *
1491  * Output Args: None
1492  *
1493  * Return:
1494  *   Equivalent address within the host virtual *alias* area, or NULL
1495  *   (without failing the test) if the guest memory is not shared (so
1496  *   no alias exists).
1497  *
1498  * When vm_create() and related functions are called with a shared memory
1499  * src_type, we also create a writable, shared alias mapping of the
1500  * underlying guest memory. This allows the host to manipulate guest memory
1501  * without mapping that memory in the guest's address space. And, for
1502  * userfaultfd-based demand paging, we can do so without triggering userfaults.
1503  */
1504 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1505 {
1506 	struct userspace_mem_region *region;
1507 	uintptr_t offset;
1508 
1509 	region = userspace_mem_region_find(vm, gpa, gpa);
1510 	if (!region)
1511 		return NULL;
1512 
1513 	if (!region->host_alias)
1514 		return NULL;
1515 
1516 	offset = gpa - region->region.guest_phys_addr;
1517 	return (void *) ((uintptr_t) region->host_alias + offset);
1518 }
1519 
1520 /*
1521  * VM Create IRQ Chip
1522  *
1523  * Input Args:
1524  *   vm - Virtual Machine
1525  *
1526  * Output Args: None
1527  *
1528  * Return: None
1529  *
1530  * Creates an interrupt controller chip for the VM specified by vm.
1531  */
1532 void vm_create_irqchip(struct kvm_vm *vm)
1533 {
1534 	int ret;
1535 
1536 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1537 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1538 		"rc: %i errno: %i", ret, errno);
1539 
1540 	vm->has_irqchip = true;
1541 }
1542 
1543 /*
1544  * VM VCPU State
1545  *
1546  * Input Args:
1547  *   vm - Virtual Machine
1548  *   vcpuid - VCPU ID
1549  *
1550  * Output Args: None
1551  *
1552  * Return:
1553  *   Pointer to structure that describes the state of the VCPU.
1554  *
1555  * Locates and returns a pointer to a structure that describes the
1556  * state of the VCPU with the given vcpuid.
1557  */
1558 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1559 {
1560 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1561 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1562 
1563 	return vcpu->state;
1564 }
1565 
1566 /*
1567  * VM VCPU Run
1568  *
1569  * Input Args:
1570  *   vm - Virtual Machine
1571  *   vcpuid - VCPU ID
1572  *
1573  * Output Args: None
1574  *
1575  * Return: None
1576  *
1577  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1578  * given by vm.
1579  */
1580 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1581 {
1582 	int ret = _vcpu_run(vm, vcpuid);
1583 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1584 		"rc: %i errno: %i", ret, errno);
1585 }
1586 
1587 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1588 {
1589 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1590 	int rc;
1591 
1592 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1593 	do {
1594 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1595 	} while (rc == -1 && errno == EINTR);
1596 
1597 	assert_on_unhandled_exception(vm, vcpuid);
1598 
1599 	return rc;
1600 }
1601 
1602 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1603 {
1604 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1605 
1606 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1607 
1608 	return vcpu->fd;
1609 }
1610 
1611 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1612 {
1613 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1614 	int ret;
1615 
1616 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1617 
1618 	vcpu->state->immediate_exit = 1;
1619 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1620 	vcpu->state->immediate_exit = 0;
1621 
1622 	TEST_ASSERT(ret == -1 && errno == EINTR,
1623 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1624 		    ret, errno);
1625 }
1626 
1627 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1628 			  struct kvm_guest_debug *debug)
1629 {
1630 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1631 	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1632 
1633 	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1634 }
1635 
1636 /*
1637  * VM VCPU Set MP State
1638  *
1639  * Input Args:
1640  *   vm - Virtual Machine
1641  *   vcpuid - VCPU ID
1642  *   mp_state - mp_state to be set
1643  *
1644  * Output Args: None
1645  *
1646  * Return: None
1647  *
1648  * Sets the MP state of the VCPU given by vcpuid, to the state given
1649  * by mp_state.
1650  */
1651 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1652 		       struct kvm_mp_state *mp_state)
1653 {
1654 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1655 	int ret;
1656 
1657 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1658 
1659 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1660 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1661 		"rc: %i errno: %i", ret, errno);
1662 }
1663 
1664 /*
1665  * VM VCPU Get Reg List
1666  *
1667  * Input Args:
1668  *   vm - Virtual Machine
1669  *   vcpuid - VCPU ID
1670  *
1671  * Output Args:
1672  *   None
1673  *
1674  * Return:
1675  *   A pointer to an allocated struct kvm_reg_list
1676  *
1677  * Get the list of guest registers which are supported for
1678  * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1679  */
1680 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1681 {
1682 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1683 	int ret;
1684 
1685 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1686 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1687 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1688 	reg_list->n = reg_list_n.n;
1689 	vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1690 	return reg_list;
1691 }
1692 
1693 /*
1694  * VM VCPU Regs Get
1695  *
1696  * Input Args:
1697  *   vm - Virtual Machine
1698  *   vcpuid - VCPU ID
1699  *
1700  * Output Args:
1701  *   regs - current state of VCPU regs
1702  *
1703  * Return: None
1704  *
1705  * Obtains the current register state for the VCPU specified by vcpuid
1706  * and stores it at the location given by regs.
1707  */
1708 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1709 {
1710 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1711 	int ret;
1712 
1713 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1714 
1715 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1716 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1717 		ret, errno);
1718 }
1719 
1720 /*
1721  * VM VCPU Regs Set
1722  *
1723  * Input Args:
1724  *   vm - Virtual Machine
1725  *   vcpuid - VCPU ID
1726  *   regs - Values to set VCPU regs to
1727  *
1728  * Output Args: None
1729  *
1730  * Return: None
1731  *
1732  * Sets the regs of the VCPU specified by vcpuid to the values
1733  * given by regs.
1734  */
1735 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1736 {
1737 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1738 	int ret;
1739 
1740 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1741 
1742 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1743 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1744 		ret, errno);
1745 }
1746 
1747 #ifdef __KVM_HAVE_VCPU_EVENTS
1748 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1749 		     struct kvm_vcpu_events *events)
1750 {
1751 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1752 	int ret;
1753 
1754 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1755 
1756 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1757 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1758 		ret, errno);
1759 }
1760 
1761 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1762 		     struct kvm_vcpu_events *events)
1763 {
1764 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1765 	int ret;
1766 
1767 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1768 
1769 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1770 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1771 		ret, errno);
1772 }
1773 #endif
1774 
1775 #ifdef __x86_64__
1776 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1777 			   struct kvm_nested_state *state)
1778 {
1779 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1780 	int ret;
1781 
1782 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1783 
1784 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1785 	TEST_ASSERT(ret == 0,
1786 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1787 		ret, errno);
1788 }
1789 
1790 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1791 			  struct kvm_nested_state *state, bool ignore_error)
1792 {
1793 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1794 	int ret;
1795 
1796 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1797 
1798 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1799 	if (!ignore_error) {
1800 		TEST_ASSERT(ret == 0,
1801 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1802 			ret, errno);
1803 	}
1804 
1805 	return ret;
1806 }
1807 #endif
1808 
1809 /*
1810  * VM VCPU System Regs Get
1811  *
1812  * Input Args:
1813  *   vm - Virtual Machine
1814  *   vcpuid - VCPU ID
1815  *
1816  * Output Args:
1817  *   sregs - current state of VCPU system regs
1818  *
1819  * Return: None
1820  *
1821  * Obtains the current system register state for the VCPU specified by
1822  * vcpuid and stores it at the location given by sregs.
1823  */
1824 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1825 {
1826 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1827 	int ret;
1828 
1829 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1830 
1831 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1832 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1833 		ret, errno);
1834 }
1835 
1836 /*
1837  * VM VCPU System Regs Set
1838  *
1839  * Input Args:
1840  *   vm - Virtual Machine
1841  *   vcpuid - VCPU ID
1842  *   sregs - Values to set VCPU system regs to
1843  *
1844  * Output Args: None
1845  *
1846  * Return: None
1847  *
1848  * Sets the system regs of the VCPU specified by vcpuid to the values
1849  * given by sregs.
1850  */
1851 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1852 {
1853 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1854 	TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1855 		"rc: %i errno: %i", ret, errno);
1856 }
1857 
1858 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1859 {
1860 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1861 
1862 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1863 
1864 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1865 }
1866 
1867 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1868 {
1869 	int ret;
1870 
1871 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1872 	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1873 		    ret, errno, strerror(errno));
1874 }
1875 
1876 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1877 {
1878 	int ret;
1879 
1880 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1881 	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1882 		    ret, errno, strerror(errno));
1883 }
1884 
1885 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1886 {
1887 	int ret;
1888 
1889 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1890 	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1891 		    ret, errno, strerror(errno));
1892 }
1893 
1894 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1895 {
1896 	int ret;
1897 
1898 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1899 	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1900 		    ret, errno, strerror(errno));
1901 }
1902 
1903 /*
1904  * VCPU Ioctl
1905  *
1906  * Input Args:
1907  *   vm - Virtual Machine
1908  *   vcpuid - VCPU ID
1909  *   cmd - Ioctl number
1910  *   arg - Argument to pass to the ioctl
1911  *
1912  * Return: None
1913  *
1914  * Issues an arbitrary ioctl on a VCPU fd.
1915  */
1916 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1917 		unsigned long cmd, void *arg)
1918 {
1919 	int ret;
1920 
1921 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1922 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1923 		cmd, ret, errno, strerror(errno));
1924 }
1925 
1926 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1927 		unsigned long cmd, void *arg)
1928 {
1929 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1930 	int ret;
1931 
1932 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1933 
1934 	ret = ioctl(vcpu->fd, cmd, arg);
1935 
1936 	return ret;
1937 }
1938 
1939 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1940 {
1941 	struct vcpu *vcpu;
1942 	uint32_t size = vm->dirty_ring_size;
1943 
1944 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1945 
1946 	vcpu = vcpu_find(vm, vcpuid);
1947 
1948 	TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1949 
1950 	if (!vcpu->dirty_gfns) {
1951 		void *addr;
1952 
1953 		addr = mmap(NULL, size, PROT_READ,
1954 			    MAP_PRIVATE, vcpu->fd,
1955 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1956 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1957 
1958 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1959 			    MAP_PRIVATE, vcpu->fd,
1960 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1961 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1962 
1963 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1964 			    MAP_SHARED, vcpu->fd,
1965 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1966 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1967 
1968 		vcpu->dirty_gfns = addr;
1969 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1970 	}
1971 
1972 	return vcpu->dirty_gfns;
1973 }
1974 
1975 /*
1976  * VM Ioctl
1977  *
1978  * Input Args:
1979  *   vm - Virtual Machine
1980  *   cmd - Ioctl number
1981  *   arg - Argument to pass to the ioctl
1982  *
1983  * Return: None
1984  *
1985  * Issues an arbitrary ioctl on a VM fd.
1986  */
1987 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1988 {
1989 	int ret;
1990 
1991 	ret = _vm_ioctl(vm, cmd, arg);
1992 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1993 		cmd, ret, errno, strerror(errno));
1994 }
1995 
1996 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1997 {
1998 	return ioctl(vm->fd, cmd, arg);
1999 }
2000 
2001 /*
2002  * KVM system ioctl
2003  *
2004  * Input Args:
2005  *   vm - Virtual Machine
2006  *   cmd - Ioctl number
2007  *   arg - Argument to pass to the ioctl
2008  *
2009  * Return: None
2010  *
2011  * Issues an arbitrary ioctl on a KVM fd.
2012  */
2013 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2014 {
2015 	int ret;
2016 
2017 	ret = ioctl(vm->kvm_fd, cmd, arg);
2018 	TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
2019 		cmd, ret, errno, strerror(errno));
2020 }
2021 
2022 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2023 {
2024 	return ioctl(vm->kvm_fd, cmd, arg);
2025 }
2026 
2027 /*
2028  * Device Ioctl
2029  */
2030 
2031 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2032 {
2033 	struct kvm_device_attr attribute = {
2034 		.group = group,
2035 		.attr = attr,
2036 		.flags = 0,
2037 	};
2038 
2039 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
2040 }
2041 
2042 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2043 {
2044 	int ret = _kvm_device_check_attr(dev_fd, group, attr);
2045 
2046 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
2047 	return ret;
2048 }
2049 
2050 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2051 {
2052 	struct kvm_create_device create_dev;
2053 	int ret;
2054 
2055 	create_dev.type = type;
2056 	create_dev.fd = -1;
2057 	create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2058 	ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2059 	*fd = create_dev.fd;
2060 	return ret;
2061 }
2062 
2063 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2064 {
2065 	int fd, ret;
2066 
2067 	ret = _kvm_create_device(vm, type, test, &fd);
2068 
2069 	if (!test) {
2070 		TEST_ASSERT(!ret,
2071 			    "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2072 		return fd;
2073 	}
2074 	return ret;
2075 }
2076 
2077 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2078 		      void *val, bool write)
2079 {
2080 	struct kvm_device_attr kvmattr = {
2081 		.group = group,
2082 		.attr = attr,
2083 		.flags = 0,
2084 		.addr = (uintptr_t)val,
2085 	};
2086 	int ret;
2087 
2088 	ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2089 		    &kvmattr);
2090 	return ret;
2091 }
2092 
2093 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2094 		      void *val, bool write)
2095 {
2096 	int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2097 
2098 	TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2099 	return ret;
2100 }
2101 
2102 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2103 			  uint64_t attr)
2104 {
2105 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2106 
2107 	TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2108 
2109 	return _kvm_device_check_attr(vcpu->fd, group, attr);
2110 }
2111 
2112 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2113 				 uint64_t attr)
2114 {
2115 	int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2116 
2117 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2118 	return ret;
2119 }
2120 
2121 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2122 			     uint64_t attr, void *val, bool write)
2123 {
2124 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2125 
2126 	TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2127 
2128 	return _kvm_device_access(vcpu->fd, group, attr, val, write);
2129 }
2130 
2131 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2132 			    uint64_t attr, void *val, bool write)
2133 {
2134 	int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2135 
2136 	TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2137 	return ret;
2138 }
2139 
2140 /*
2141  * IRQ related functions.
2142  */
2143 
2144 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2145 {
2146 	struct kvm_irq_level irq_level = {
2147 		.irq    = irq,
2148 		.level  = level,
2149 	};
2150 
2151 	return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
2152 }
2153 
2154 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2155 {
2156 	int ret = _kvm_irq_line(vm, irq, level);
2157 
2158 	TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno);
2159 }
2160 
2161 struct kvm_irq_routing *kvm_gsi_routing_create(void)
2162 {
2163 	struct kvm_irq_routing *routing;
2164 	size_t size;
2165 
2166 	size = sizeof(struct kvm_irq_routing);
2167 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
2168 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
2169 	routing = calloc(1, size);
2170 	assert(routing);
2171 
2172 	return routing;
2173 }
2174 
2175 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
2176 		uint32_t gsi, uint32_t pin)
2177 {
2178 	int i;
2179 
2180 	assert(routing);
2181 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
2182 
2183 	i = routing->nr;
2184 	routing->entries[i].gsi = gsi;
2185 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
2186 	routing->entries[i].flags = 0;
2187 	routing->entries[i].u.irqchip.irqchip = 0;
2188 	routing->entries[i].u.irqchip.pin = pin;
2189 	routing->nr++;
2190 }
2191 
2192 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2193 {
2194 	int ret;
2195 
2196 	assert(routing);
2197 	ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing);
2198 	free(routing);
2199 
2200 	return ret;
2201 }
2202 
2203 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2204 {
2205 	int ret;
2206 
2207 	ret = _kvm_gsi_routing_write(vm, routing);
2208 	TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i",
2209 				ret, errno);
2210 }
2211 
2212 /*
2213  * VM Dump
2214  *
2215  * Input Args:
2216  *   vm - Virtual Machine
2217  *   indent - Left margin indent amount
2218  *
2219  * Output Args:
2220  *   stream - Output FILE stream
2221  *
2222  * Return: None
2223  *
2224  * Dumps the current state of the VM given by vm, to the FILE stream
2225  * given by stream.
2226  */
2227 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2228 {
2229 	int ctr;
2230 	struct userspace_mem_region *region;
2231 	struct vcpu *vcpu;
2232 
2233 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2234 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2235 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2236 	fprintf(stream, "%*sMem Regions:\n", indent, "");
2237 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2238 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2239 			"host_virt: %p\n", indent + 2, "",
2240 			(uint64_t) region->region.guest_phys_addr,
2241 			(uint64_t) region->region.memory_size,
2242 			region->host_mem);
2243 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2244 		sparsebit_dump(stream, region->unused_phy_pages, 0);
2245 	}
2246 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2247 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2248 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
2249 		vm->pgd_created);
2250 	if (vm->pgd_created) {
2251 		fprintf(stream, "%*sVirtual Translation Tables:\n",
2252 			indent + 2, "");
2253 		virt_dump(stream, vm, indent + 4);
2254 	}
2255 	fprintf(stream, "%*sVCPUs:\n", indent, "");
2256 	list_for_each_entry(vcpu, &vm->vcpus, list)
2257 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
2258 }
2259 
2260 /* Known KVM exit reasons */
2261 static struct exit_reason {
2262 	unsigned int reason;
2263 	const char *name;
2264 } exit_reasons_known[] = {
2265 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
2266 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
2267 	{KVM_EXIT_IO, "IO"},
2268 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
2269 	{KVM_EXIT_DEBUG, "DEBUG"},
2270 	{KVM_EXIT_HLT, "HLT"},
2271 	{KVM_EXIT_MMIO, "MMIO"},
2272 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2273 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2274 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2275 	{KVM_EXIT_INTR, "INTR"},
2276 	{KVM_EXIT_SET_TPR, "SET_TPR"},
2277 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2278 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2279 	{KVM_EXIT_S390_RESET, "S390_RESET"},
2280 	{KVM_EXIT_DCR, "DCR"},
2281 	{KVM_EXIT_NMI, "NMI"},
2282 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2283 	{KVM_EXIT_OSI, "OSI"},
2284 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2285 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2286 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
2287 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
2288 	{KVM_EXIT_XEN, "XEN"},
2289 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2290 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2291 #endif
2292 };
2293 
2294 /*
2295  * Exit Reason String
2296  *
2297  * Input Args:
2298  *   exit_reason - Exit reason
2299  *
2300  * Output Args: None
2301  *
2302  * Return:
2303  *   Constant string pointer describing the exit reason.
2304  *
2305  * Locates and returns a constant string that describes the KVM exit
2306  * reason given by exit_reason.  If no such string is found, a constant
2307  * string of "Unknown" is returned.
2308  */
2309 const char *exit_reason_str(unsigned int exit_reason)
2310 {
2311 	unsigned int n1;
2312 
2313 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2314 		if (exit_reason == exit_reasons_known[n1].reason)
2315 			return exit_reasons_known[n1].name;
2316 	}
2317 
2318 	return "Unknown";
2319 }
2320 
2321 /*
2322  * Physical Contiguous Page Allocator
2323  *
2324  * Input Args:
2325  *   vm - Virtual Machine
2326  *   num - number of pages
2327  *   paddr_min - Physical address minimum
2328  *   memslot - Memory region to allocate page from
2329  *
2330  * Output Args: None
2331  *
2332  * Return:
2333  *   Starting physical address
2334  *
2335  * Within the VM specified by vm, locates a range of available physical
2336  * pages at or above paddr_min. If found, the pages are marked as in use
2337  * and their base address is returned. A TEST_ASSERT failure occurs if
2338  * not enough pages are available at or above paddr_min.
2339  */
2340 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2341 			      vm_paddr_t paddr_min, uint32_t memslot)
2342 {
2343 	struct userspace_mem_region *region;
2344 	sparsebit_idx_t pg, base;
2345 
2346 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2347 
2348 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2349 		"not divisible by page size.\n"
2350 		"  paddr_min: 0x%lx page_size: 0x%x",
2351 		paddr_min, vm->page_size);
2352 
2353 	region = memslot2region(vm, memslot);
2354 	base = pg = paddr_min >> vm->page_shift;
2355 
2356 	do {
2357 		for (; pg < base + num; ++pg) {
2358 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2359 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2360 				break;
2361 			}
2362 		}
2363 	} while (pg && pg != base + num);
2364 
2365 	if (pg == 0) {
2366 		fprintf(stderr, "No guest physical page available, "
2367 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2368 			paddr_min, vm->page_size, memslot);
2369 		fputs("---- vm dump ----\n", stderr);
2370 		vm_dump(stderr, vm, 2);
2371 		abort();
2372 	}
2373 
2374 	for (pg = base; pg < base + num; ++pg)
2375 		sparsebit_clear(region->unused_phy_pages, pg);
2376 
2377 	return base * vm->page_size;
2378 }
2379 
2380 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2381 			     uint32_t memslot)
2382 {
2383 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2384 }
2385 
2386 /* Arbitrary minimum physical address used for virtual translation tables. */
2387 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2388 
2389 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2390 {
2391 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2392 }
2393 
2394 /*
2395  * Address Guest Virtual to Host Virtual
2396  *
2397  * Input Args:
2398  *   vm - Virtual Machine
2399  *   gva - VM virtual address
2400  *
2401  * Output Args: None
2402  *
2403  * Return:
2404  *   Equivalent host virtual address
2405  */
2406 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2407 {
2408 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2409 }
2410 
2411 /*
2412  * Is Unrestricted Guest
2413  *
2414  * Input Args:
2415  *   vm - Virtual Machine
2416  *
2417  * Output Args: None
2418  *
2419  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2420  *
2421  * Check if the unrestricted guest flag is enabled.
2422  */
2423 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2424 {
2425 	char val = 'N';
2426 	size_t count;
2427 	FILE *f;
2428 
2429 	if (vm == NULL) {
2430 		/* Ensure that the KVM vendor-specific module is loaded. */
2431 		close(open_kvm_dev_path_or_exit());
2432 	}
2433 
2434 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2435 	if (f) {
2436 		count = fread(&val, sizeof(char), 1, f);
2437 		TEST_ASSERT(count == 1, "Unable to read from param file.");
2438 		fclose(f);
2439 	}
2440 
2441 	return val == 'Y';
2442 }
2443 
2444 unsigned int vm_get_page_size(struct kvm_vm *vm)
2445 {
2446 	return vm->page_size;
2447 }
2448 
2449 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2450 {
2451 	return vm->page_shift;
2452 }
2453 
2454 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2455 {
2456 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2457 }
2458 
2459 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2460 {
2461 	return vm->max_gfn;
2462 }
2463 
2464 int vm_get_fd(struct kvm_vm *vm)
2465 {
2466 	return vm->fd;
2467 }
2468 
2469 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2470 				      unsigned int page_shift,
2471 				      unsigned int new_page_shift,
2472 				      bool ceil)
2473 {
2474 	unsigned int n = 1 << (new_page_shift - page_shift);
2475 
2476 	if (page_shift >= new_page_shift)
2477 		return num_pages * (1 << (page_shift - new_page_shift));
2478 
2479 	return num_pages / n + !!(ceil && num_pages % n);
2480 }
2481 
2482 static inline int getpageshift(void)
2483 {
2484 	return __builtin_ffs(getpagesize()) - 1;
2485 }
2486 
2487 unsigned int
2488 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2489 {
2490 	return vm_calc_num_pages(num_guest_pages,
2491 				 vm_guest_mode_params[mode].page_shift,
2492 				 getpageshift(), true);
2493 }
2494 
2495 unsigned int
2496 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2497 {
2498 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2499 				 vm_guest_mode_params[mode].page_shift, false);
2500 }
2501 
2502 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2503 {
2504 	unsigned int n;
2505 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2506 	return vm_adjust_num_guest_pages(mode, n);
2507 }
2508 
2509 int vm_get_stats_fd(struct kvm_vm *vm)
2510 {
2511 	return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2512 }
2513 
2514 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2515 {
2516 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2517 
2518 	return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2519 }
2520