xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sched.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
31 
32 	return fd;
33 }
34 
35 /*
36  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
37  *
38  * Input Args:
39  *   flags - The flags to pass when opening KVM_DEV_PATH.
40  *
41  * Return:
42  *   The opened file descriptor of /dev/kvm.
43  */
44 static int _open_kvm_dev_path_or_exit(int flags)
45 {
46 	return open_path_or_exit(KVM_DEV_PATH, flags);
47 }
48 
49 int open_kvm_dev_path_or_exit(void)
50 {
51 	return _open_kvm_dev_path_or_exit(O_RDONLY);
52 }
53 
54 static bool get_module_param_bool(const char *module_name, const char *param)
55 {
56 	const int path_size = 128;
57 	char path[path_size];
58 	char value;
59 	ssize_t r;
60 	int fd;
61 
62 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
63 		     module_name, param);
64 	TEST_ASSERT(r < path_size,
65 		    "Failed to construct sysfs path in %d bytes.", path_size);
66 
67 	fd = open_path_or_exit(path, O_RDONLY);
68 
69 	r = read(fd, &value, 1);
70 	TEST_ASSERT(r == 1, "read(%s) failed", path);
71 
72 	r = close(fd);
73 	TEST_ASSERT(!r, "close(%s) failed", path);
74 
75 	if (value == 'Y')
76 		return true;
77 	else if (value == 'N')
78 		return false;
79 
80 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
81 }
82 
83 bool get_kvm_intel_param_bool(const char *param)
84 {
85 	return get_module_param_bool("kvm_intel", param);
86 }
87 
88 bool get_kvm_amd_param_bool(const char *param)
89 {
90 	return get_module_param_bool("kvm_amd", param);
91 }
92 
93 /*
94  * Capability
95  *
96  * Input Args:
97  *   cap - Capability
98  *
99  * Output Args: None
100  *
101  * Return:
102  *   On success, the Value corresponding to the capability (KVM_CAP_*)
103  *   specified by the value of cap.  On failure a TEST_ASSERT failure
104  *   is produced.
105  *
106  * Looks up and returns the value corresponding to the capability
107  * (KVM_CAP_*) given by cap.
108  */
109 unsigned int kvm_check_cap(long cap)
110 {
111 	int ret;
112 	int kvm_fd;
113 
114 	kvm_fd = open_kvm_dev_path_or_exit();
115 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
116 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
117 
118 	close(kvm_fd);
119 
120 	return (unsigned int)ret;
121 }
122 
123 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
124 {
125 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
126 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
127 	else
128 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
129 	vm->dirty_ring_size = ring_size;
130 }
131 
132 static void vm_open(struct kvm_vm *vm)
133 {
134 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
135 
136 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
137 
138 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
139 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
140 }
141 
142 const char *vm_guest_mode_string(uint32_t i)
143 {
144 	static const char * const strings[] = {
145 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
146 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
147 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
148 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
149 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
150 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
151 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
152 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
153 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
154 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
155 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
156 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
157 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
158 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
159 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
160 	};
161 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
162 		       "Missing new mode strings?");
163 
164 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
165 
166 	return strings[i];
167 }
168 
169 const struct vm_guest_mode_params vm_guest_mode_params[] = {
170 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
171 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
172 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
173 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
174 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
175 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
176 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
177 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
178 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
179 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
180 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
181 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
182 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
183 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
184 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
185 };
186 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
187 	       "Missing new mode params?");
188 
189 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
190 {
191 	sparsebit_set_num(vm->vpages_valid,
192 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
193 	sparsebit_set_num(vm->vpages_valid,
194 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
195 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
196 }
197 
198 struct kvm_vm *____vm_create(enum vm_guest_mode mode)
199 {
200 	struct kvm_vm *vm;
201 
202 	vm = calloc(1, sizeof(*vm));
203 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
204 
205 	INIT_LIST_HEAD(&vm->vcpus);
206 	vm->regions.gpa_tree = RB_ROOT;
207 	vm->regions.hva_tree = RB_ROOT;
208 	hash_init(vm->regions.slot_hash);
209 
210 	vm->mode = mode;
211 	vm->type = 0;
212 
213 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
214 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
215 	vm->page_size = vm_guest_mode_params[mode].page_size;
216 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
217 
218 	/* Setup mode specific traits. */
219 	switch (vm->mode) {
220 	case VM_MODE_P52V48_4K:
221 		vm->pgtable_levels = 4;
222 		break;
223 	case VM_MODE_P52V48_64K:
224 		vm->pgtable_levels = 3;
225 		break;
226 	case VM_MODE_P48V48_4K:
227 		vm->pgtable_levels = 4;
228 		break;
229 	case VM_MODE_P48V48_64K:
230 		vm->pgtable_levels = 3;
231 		break;
232 	case VM_MODE_P40V48_4K:
233 	case VM_MODE_P36V48_4K:
234 		vm->pgtable_levels = 4;
235 		break;
236 	case VM_MODE_P40V48_64K:
237 	case VM_MODE_P36V48_64K:
238 		vm->pgtable_levels = 3;
239 		break;
240 	case VM_MODE_P48V48_16K:
241 	case VM_MODE_P40V48_16K:
242 	case VM_MODE_P36V48_16K:
243 		vm->pgtable_levels = 4;
244 		break;
245 	case VM_MODE_P36V47_16K:
246 		vm->pgtable_levels = 3;
247 		break;
248 	case VM_MODE_PXXV48_4K:
249 #ifdef __x86_64__
250 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
251 		/*
252 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
253 		 * it doesn't take effect unless a CR4.LA57 is set, which it
254 		 * isn't for this VM_MODE.
255 		 */
256 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
257 			    "Linear address width (%d bits) not supported",
258 			    vm->va_bits);
259 		pr_debug("Guest physical address width detected: %d\n",
260 			 vm->pa_bits);
261 		vm->pgtable_levels = 4;
262 		vm->va_bits = 48;
263 #else
264 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
265 #endif
266 		break;
267 	case VM_MODE_P47V64_4K:
268 		vm->pgtable_levels = 5;
269 		break;
270 	case VM_MODE_P44V64_4K:
271 		vm->pgtable_levels = 5;
272 		break;
273 	default:
274 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
275 	}
276 
277 #ifdef __aarch64__
278 	if (vm->pa_bits != 40)
279 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
280 #endif
281 
282 	vm_open(vm);
283 
284 	/* Limit to VA-bit canonical virtual addresses. */
285 	vm->vpages_valid = sparsebit_alloc();
286 	vm_vaddr_populate_bitmap(vm);
287 
288 	/* Limit physical addresses to PA-bits. */
289 	vm->max_gfn = vm_compute_max_gfn(vm);
290 
291 	/* Allocate and setup memory for guest. */
292 	vm->vpages_mapped = sparsebit_alloc();
293 
294 	return vm;
295 }
296 
297 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
298 				     uint32_t nr_runnable_vcpus,
299 				     uint64_t extra_mem_pages)
300 {
301 	uint64_t nr_pages;
302 
303 	TEST_ASSERT(nr_runnable_vcpus,
304 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
305 
306 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
307 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
308 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
309 
310 	/*
311 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
312 	 * test code and other per-VM assets that will be loaded into memslot0.
313 	 */
314 	nr_pages = 512;
315 
316 	/* Account for the per-vCPU stacks on behalf of the test. */
317 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
318 
319 	/*
320 	 * Account for the number of pages needed for the page tables.  The
321 	 * maximum page table size for a memory region will be when the
322 	 * smallest page size is used. Considering each page contains x page
323 	 * table descriptors, the total extra size for page tables (for extra
324 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
325 	 * than N/x*2.
326 	 */
327 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
328 
329 	return vm_adjust_num_guest_pages(mode, nr_pages);
330 }
331 
332 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
333 			   uint64_t nr_extra_pages)
334 {
335 	uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
336 						 nr_extra_pages);
337 	struct userspace_mem_region *slot0;
338 	struct kvm_vm *vm;
339 	int i;
340 
341 	pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
342 		 vm_guest_mode_string(mode), nr_pages);
343 
344 	vm = ____vm_create(mode);
345 
346 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
347 	for (i = 0; i < NR_MEM_REGIONS; i++)
348 		vm->memslots[i] = 0;
349 
350 	kvm_vm_elf_load(vm, program_invocation_name);
351 
352 	/*
353 	 * TODO: Add proper defines to protect the library's memslots, and then
354 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
355 	 * read-only memslots as MMIO, and creating a read-only memslot for the
356 	 * MMIO region would prevent silently clobbering the MMIO region.
357 	 */
358 	slot0 = memslot2region(vm, 0);
359 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
360 
361 	kvm_arch_vm_post_create(vm);
362 
363 	return vm;
364 }
365 
366 /*
367  * VM Create with customized parameters
368  *
369  * Input Args:
370  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
371  *   nr_vcpus - VCPU count
372  *   extra_mem_pages - Non-slot0 physical memory total size
373  *   guest_code - Guest entry point
374  *   vcpuids - VCPU IDs
375  *
376  * Output Args: None
377  *
378  * Return:
379  *   Pointer to opaque structure that describes the created VM.
380  *
381  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
382  * extra_mem_pages is only used to calculate the maximum page table size,
383  * no real memory allocation for non-slot0 memory in this function.
384  */
385 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
386 				      uint64_t extra_mem_pages,
387 				      void *guest_code, struct kvm_vcpu *vcpus[])
388 {
389 	struct kvm_vm *vm;
390 	int i;
391 
392 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
393 
394 	vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
395 
396 	for (i = 0; i < nr_vcpus; ++i)
397 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
398 
399 	return vm;
400 }
401 
402 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
403 					 uint64_t extra_mem_pages,
404 					 void *guest_code)
405 {
406 	struct kvm_vcpu *vcpus[1];
407 	struct kvm_vm *vm;
408 
409 	vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
410 				    guest_code, vcpus);
411 
412 	*vcpu = vcpus[0];
413 	return vm;
414 }
415 
416 /*
417  * VM Restart
418  *
419  * Input Args:
420  *   vm - VM that has been released before
421  *
422  * Output Args: None
423  *
424  * Reopens the file descriptors associated to the VM and reinstates the
425  * global state, such as the irqchip and the memory regions that are mapped
426  * into the guest.
427  */
428 void kvm_vm_restart(struct kvm_vm *vmp)
429 {
430 	int ctr;
431 	struct userspace_mem_region *region;
432 
433 	vm_open(vmp);
434 	if (vmp->has_irqchip)
435 		vm_create_irqchip(vmp);
436 
437 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
438 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
439 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
440 			    "  rc: %i errno: %i\n"
441 			    "  slot: %u flags: 0x%x\n"
442 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
443 			    ret, errno, region->region.slot,
444 			    region->region.flags,
445 			    region->region.guest_phys_addr,
446 			    region->region.memory_size);
447 	}
448 }
449 
450 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
451 					      uint32_t vcpu_id)
452 {
453 	return __vm_vcpu_add(vm, vcpu_id);
454 }
455 
456 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
457 {
458 	kvm_vm_restart(vm);
459 
460 	return vm_vcpu_recreate(vm, 0);
461 }
462 
463 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
464 {
465 	cpu_set_t mask;
466 	int r;
467 
468 	CPU_ZERO(&mask);
469 	CPU_SET(pcpu, &mask);
470 	r = sched_setaffinity(0, sizeof(mask), &mask);
471 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu);
472 }
473 
474 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
475 {
476 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
477 
478 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
479 		    "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu);
480 	return pcpu;
481 }
482 
483 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
484 			    int nr_vcpus)
485 {
486 	cpu_set_t allowed_mask;
487 	char *cpu, *cpu_list;
488 	char delim[2] = ",";
489 	int i, r;
490 
491 	cpu_list = strdup(pcpus_string);
492 	TEST_ASSERT(cpu_list, "strdup() allocation failed.\n");
493 
494 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
495 	TEST_ASSERT(!r, "sched_getaffinity() failed");
496 
497 	cpu = strtok(cpu_list, delim);
498 
499 	/* 1. Get all pcpus for vcpus. */
500 	for (i = 0; i < nr_vcpus; i++) {
501 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i);
502 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
503 		cpu = strtok(NULL, delim);
504 	}
505 
506 	/* 2. Check if the main worker needs to be pinned. */
507 	if (cpu) {
508 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
509 		cpu = strtok(NULL, delim);
510 	}
511 
512 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
513 	free(cpu_list);
514 }
515 
516 /*
517  * Userspace Memory Region Find
518  *
519  * Input Args:
520  *   vm - Virtual Machine
521  *   start - Starting VM physical address
522  *   end - Ending VM physical address, inclusive.
523  *
524  * Output Args: None
525  *
526  * Return:
527  *   Pointer to overlapping region, NULL if no such region.
528  *
529  * Searches for a region with any physical memory that overlaps with
530  * any portion of the guest physical addresses from start to end
531  * inclusive.  If multiple overlapping regions exist, a pointer to any
532  * of the regions is returned.  Null is returned only when no overlapping
533  * region exists.
534  */
535 static struct userspace_mem_region *
536 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
537 {
538 	struct rb_node *node;
539 
540 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
541 		struct userspace_mem_region *region =
542 			container_of(node, struct userspace_mem_region, gpa_node);
543 		uint64_t existing_start = region->region.guest_phys_addr;
544 		uint64_t existing_end = region->region.guest_phys_addr
545 			+ region->region.memory_size - 1;
546 		if (start <= existing_end && end >= existing_start)
547 			return region;
548 
549 		if (start < existing_start)
550 			node = node->rb_left;
551 		else
552 			node = node->rb_right;
553 	}
554 
555 	return NULL;
556 }
557 
558 /*
559  * KVM Userspace Memory Region Find
560  *
561  * Input Args:
562  *   vm - Virtual Machine
563  *   start - Starting VM physical address
564  *   end - Ending VM physical address, inclusive.
565  *
566  * Output Args: None
567  *
568  * Return:
569  *   Pointer to overlapping region, NULL if no such region.
570  *
571  * Public interface to userspace_mem_region_find. Allows tests to look up
572  * the memslot datastructure for a given range of guest physical memory.
573  */
574 struct kvm_userspace_memory_region *
575 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
576 				 uint64_t end)
577 {
578 	struct userspace_mem_region *region;
579 
580 	region = userspace_mem_region_find(vm, start, end);
581 	if (!region)
582 		return NULL;
583 
584 	return &region->region;
585 }
586 
587 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
588 {
589 
590 }
591 
592 /*
593  * VM VCPU Remove
594  *
595  * Input Args:
596  *   vcpu - VCPU to remove
597  *
598  * Output Args: None
599  *
600  * Return: None, TEST_ASSERT failures for all error conditions
601  *
602  * Removes a vCPU from a VM and frees its resources.
603  */
604 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
605 {
606 	int ret;
607 
608 	if (vcpu->dirty_gfns) {
609 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
610 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
611 		vcpu->dirty_gfns = NULL;
612 	}
613 
614 	ret = munmap(vcpu->run, vcpu_mmap_sz());
615 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
616 
617 	ret = close(vcpu->fd);
618 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
619 
620 	list_del(&vcpu->list);
621 
622 	vcpu_arch_free(vcpu);
623 	free(vcpu);
624 }
625 
626 void kvm_vm_release(struct kvm_vm *vmp)
627 {
628 	struct kvm_vcpu *vcpu, *tmp;
629 	int ret;
630 
631 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
632 		vm_vcpu_rm(vmp, vcpu);
633 
634 	ret = close(vmp->fd);
635 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
636 
637 	ret = close(vmp->kvm_fd);
638 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
639 }
640 
641 static void __vm_mem_region_delete(struct kvm_vm *vm,
642 				   struct userspace_mem_region *region,
643 				   bool unlink)
644 {
645 	int ret;
646 
647 	if (unlink) {
648 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
649 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
650 		hash_del(&region->slot_node);
651 	}
652 
653 	region->region.memory_size = 0;
654 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
655 
656 	sparsebit_free(&region->unused_phy_pages);
657 	ret = munmap(region->mmap_start, region->mmap_size);
658 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
659 	if (region->fd >= 0) {
660 		/* There's an extra map when using shared memory. */
661 		ret = munmap(region->mmap_alias, region->mmap_size);
662 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
663 		close(region->fd);
664 	}
665 
666 	free(region);
667 }
668 
669 /*
670  * Destroys and frees the VM pointed to by vmp.
671  */
672 void kvm_vm_free(struct kvm_vm *vmp)
673 {
674 	int ctr;
675 	struct hlist_node *node;
676 	struct userspace_mem_region *region;
677 
678 	if (vmp == NULL)
679 		return;
680 
681 	/* Free cached stats metadata and close FD */
682 	if (vmp->stats_fd) {
683 		free(vmp->stats_desc);
684 		close(vmp->stats_fd);
685 	}
686 
687 	/* Free userspace_mem_regions. */
688 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
689 		__vm_mem_region_delete(vmp, region, false);
690 
691 	/* Free sparsebit arrays. */
692 	sparsebit_free(&vmp->vpages_valid);
693 	sparsebit_free(&vmp->vpages_mapped);
694 
695 	kvm_vm_release(vmp);
696 
697 	/* Free the structure describing the VM. */
698 	free(vmp);
699 }
700 
701 int kvm_memfd_alloc(size_t size, bool hugepages)
702 {
703 	int memfd_flags = MFD_CLOEXEC;
704 	int fd, r;
705 
706 	if (hugepages)
707 		memfd_flags |= MFD_HUGETLB;
708 
709 	fd = memfd_create("kvm_selftest", memfd_flags);
710 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
711 
712 	r = ftruncate(fd, size);
713 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
714 
715 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
716 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
717 
718 	return fd;
719 }
720 
721 /*
722  * Memory Compare, host virtual to guest virtual
723  *
724  * Input Args:
725  *   hva - Starting host virtual address
726  *   vm - Virtual Machine
727  *   gva - Starting guest virtual address
728  *   len - number of bytes to compare
729  *
730  * Output Args: None
731  *
732  * Input/Output Args: None
733  *
734  * Return:
735  *   Returns 0 if the bytes starting at hva for a length of len
736  *   are equal the guest virtual bytes starting at gva.  Returns
737  *   a value < 0, if bytes at hva are less than those at gva.
738  *   Otherwise a value > 0 is returned.
739  *
740  * Compares the bytes starting at the host virtual address hva, for
741  * a length of len, to the guest bytes starting at the guest virtual
742  * address given by gva.
743  */
744 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
745 {
746 	size_t amt;
747 
748 	/*
749 	 * Compare a batch of bytes until either a match is found
750 	 * or all the bytes have been compared.
751 	 */
752 	for (uintptr_t offset = 0; offset < len; offset += amt) {
753 		uintptr_t ptr1 = (uintptr_t)hva + offset;
754 
755 		/*
756 		 * Determine host address for guest virtual address
757 		 * at offset.
758 		 */
759 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
760 
761 		/*
762 		 * Determine amount to compare on this pass.
763 		 * Don't allow the comparsion to cross a page boundary.
764 		 */
765 		amt = len - offset;
766 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
767 			amt = vm->page_size - (ptr1 % vm->page_size);
768 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
769 			amt = vm->page_size - (ptr2 % vm->page_size);
770 
771 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
772 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
773 
774 		/*
775 		 * Perform the comparison.  If there is a difference
776 		 * return that result to the caller, otherwise need
777 		 * to continue on looking for a mismatch.
778 		 */
779 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
780 		if (ret != 0)
781 			return ret;
782 	}
783 
784 	/*
785 	 * No mismatch found.  Let the caller know the two memory
786 	 * areas are equal.
787 	 */
788 	return 0;
789 }
790 
791 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
792 					       struct userspace_mem_region *region)
793 {
794 	struct rb_node **cur, *parent;
795 
796 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
797 		struct userspace_mem_region *cregion;
798 
799 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
800 		parent = *cur;
801 		if (region->region.guest_phys_addr <
802 		    cregion->region.guest_phys_addr)
803 			cur = &(*cur)->rb_left;
804 		else {
805 			TEST_ASSERT(region->region.guest_phys_addr !=
806 				    cregion->region.guest_phys_addr,
807 				    "Duplicate GPA in region tree");
808 
809 			cur = &(*cur)->rb_right;
810 		}
811 	}
812 
813 	rb_link_node(&region->gpa_node, parent, cur);
814 	rb_insert_color(&region->gpa_node, gpa_tree);
815 }
816 
817 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
818 					       struct userspace_mem_region *region)
819 {
820 	struct rb_node **cur, *parent;
821 
822 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
823 		struct userspace_mem_region *cregion;
824 
825 		cregion = container_of(*cur, typeof(*cregion), hva_node);
826 		parent = *cur;
827 		if (region->host_mem < cregion->host_mem)
828 			cur = &(*cur)->rb_left;
829 		else {
830 			TEST_ASSERT(region->host_mem !=
831 				    cregion->host_mem,
832 				    "Duplicate HVA in region tree");
833 
834 			cur = &(*cur)->rb_right;
835 		}
836 	}
837 
838 	rb_link_node(&region->hva_node, parent, cur);
839 	rb_insert_color(&region->hva_node, hva_tree);
840 }
841 
842 
843 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
844 				uint64_t gpa, uint64_t size, void *hva)
845 {
846 	struct kvm_userspace_memory_region region = {
847 		.slot = slot,
848 		.flags = flags,
849 		.guest_phys_addr = gpa,
850 		.memory_size = size,
851 		.userspace_addr = (uintptr_t)hva,
852 	};
853 
854 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
855 }
856 
857 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
858 			       uint64_t gpa, uint64_t size, void *hva)
859 {
860 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
861 
862 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
863 		    errno, strerror(errno));
864 }
865 
866 /*
867  * VM Userspace Memory Region Add
868  *
869  * Input Args:
870  *   vm - Virtual Machine
871  *   src_type - Storage source for this region.
872  *              NULL to use anonymous memory.
873  *   guest_paddr - Starting guest physical address
874  *   slot - KVM region slot
875  *   npages - Number of physical pages
876  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
877  *
878  * Output Args: None
879  *
880  * Return: None
881  *
882  * Allocates a memory area of the number of pages specified by npages
883  * and maps it to the VM specified by vm, at a starting physical address
884  * given by guest_paddr.  The region is created with a KVM region slot
885  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
886  * region is created with the flags given by flags.
887  */
888 void vm_userspace_mem_region_add(struct kvm_vm *vm,
889 	enum vm_mem_backing_src_type src_type,
890 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
891 	uint32_t flags)
892 {
893 	int ret;
894 	struct userspace_mem_region *region;
895 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
896 	size_t alignment;
897 
898 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
899 		"Number of guest pages is not compatible with the host. "
900 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
901 
902 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
903 		"address not on a page boundary.\n"
904 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
905 		guest_paddr, vm->page_size);
906 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
907 		<= vm->max_gfn, "Physical range beyond maximum "
908 		"supported physical address,\n"
909 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
910 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
911 		guest_paddr, npages, vm->max_gfn, vm->page_size);
912 
913 	/*
914 	 * Confirm a mem region with an overlapping address doesn't
915 	 * already exist.
916 	 */
917 	region = (struct userspace_mem_region *) userspace_mem_region_find(
918 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
919 	if (region != NULL)
920 		TEST_FAIL("overlapping userspace_mem_region already "
921 			"exists\n"
922 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
923 			"page_size: 0x%x\n"
924 			"  existing guest_paddr: 0x%lx size: 0x%lx",
925 			guest_paddr, npages, vm->page_size,
926 			(uint64_t) region->region.guest_phys_addr,
927 			(uint64_t) region->region.memory_size);
928 
929 	/* Confirm no region with the requested slot already exists. */
930 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
931 			       slot) {
932 		if (region->region.slot != slot)
933 			continue;
934 
935 		TEST_FAIL("A mem region with the requested slot "
936 			"already exists.\n"
937 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
938 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
939 			slot, guest_paddr, npages,
940 			region->region.slot,
941 			(uint64_t) region->region.guest_phys_addr,
942 			(uint64_t) region->region.memory_size);
943 	}
944 
945 	/* Allocate and initialize new mem region structure. */
946 	region = calloc(1, sizeof(*region));
947 	TEST_ASSERT(region != NULL, "Insufficient Memory");
948 	region->mmap_size = npages * vm->page_size;
949 
950 #ifdef __s390x__
951 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
952 	alignment = 0x100000;
953 #else
954 	alignment = 1;
955 #endif
956 
957 	/*
958 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
959 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
960 	 * because mmap will always return an address aligned to the HugeTLB
961 	 * page size.
962 	 */
963 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
964 		alignment = max(backing_src_pagesz, alignment);
965 
966 	ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
967 
968 	/* Add enough memory to align up if necessary */
969 	if (alignment > 1)
970 		region->mmap_size += alignment;
971 
972 	region->fd = -1;
973 	if (backing_src_is_shared(src_type))
974 		region->fd = kvm_memfd_alloc(region->mmap_size,
975 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
976 
977 	region->mmap_start = mmap(NULL, region->mmap_size,
978 				  PROT_READ | PROT_WRITE,
979 				  vm_mem_backing_src_alias(src_type)->flag,
980 				  region->fd, 0);
981 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
982 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
983 
984 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
985 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
986 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
987 		    region->mmap_start, backing_src_pagesz);
988 
989 	/* Align host address */
990 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
991 
992 	/* As needed perform madvise */
993 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
994 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
995 		ret = madvise(region->host_mem, npages * vm->page_size,
996 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
997 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
998 			    region->host_mem, npages * vm->page_size,
999 			    vm_mem_backing_src_alias(src_type)->name);
1000 	}
1001 
1002 	region->backing_src_type = src_type;
1003 	region->unused_phy_pages = sparsebit_alloc();
1004 	sparsebit_set_num(region->unused_phy_pages,
1005 		guest_paddr >> vm->page_shift, npages);
1006 	region->region.slot = slot;
1007 	region->region.flags = flags;
1008 	region->region.guest_phys_addr = guest_paddr;
1009 	region->region.memory_size = npages * vm->page_size;
1010 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1011 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1012 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1013 		"  rc: %i errno: %i\n"
1014 		"  slot: %u flags: 0x%x\n"
1015 		"  guest_phys_addr: 0x%lx size: 0x%lx",
1016 		ret, errno, slot, flags,
1017 		guest_paddr, (uint64_t) region->region.memory_size);
1018 
1019 	/* Add to quick lookup data structures */
1020 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1021 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1022 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1023 
1024 	/* If shared memory, create an alias. */
1025 	if (region->fd >= 0) {
1026 		region->mmap_alias = mmap(NULL, region->mmap_size,
1027 					  PROT_READ | PROT_WRITE,
1028 					  vm_mem_backing_src_alias(src_type)->flag,
1029 					  region->fd, 0);
1030 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1031 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1032 
1033 		/* Align host alias address */
1034 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1035 	}
1036 }
1037 
1038 /*
1039  * Memslot to region
1040  *
1041  * Input Args:
1042  *   vm - Virtual Machine
1043  *   memslot - KVM memory slot ID
1044  *
1045  * Output Args: None
1046  *
1047  * Return:
1048  *   Pointer to memory region structure that describe memory region
1049  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1050  *   on error (e.g. currently no memory region using memslot as a KVM
1051  *   memory slot ID).
1052  */
1053 struct userspace_mem_region *
1054 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1055 {
1056 	struct userspace_mem_region *region;
1057 
1058 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1059 			       memslot)
1060 		if (region->region.slot == memslot)
1061 			return region;
1062 
1063 	fprintf(stderr, "No mem region with the requested slot found,\n"
1064 		"  requested slot: %u\n", memslot);
1065 	fputs("---- vm dump ----\n", stderr);
1066 	vm_dump(stderr, vm, 2);
1067 	TEST_FAIL("Mem region not found");
1068 	return NULL;
1069 }
1070 
1071 /*
1072  * VM Memory Region Flags Set
1073  *
1074  * Input Args:
1075  *   vm - Virtual Machine
1076  *   flags - Starting guest physical address
1077  *
1078  * Output Args: None
1079  *
1080  * Return: None
1081  *
1082  * Sets the flags of the memory region specified by the value of slot,
1083  * to the values given by flags.
1084  */
1085 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1086 {
1087 	int ret;
1088 	struct userspace_mem_region *region;
1089 
1090 	region = memslot2region(vm, slot);
1091 
1092 	region->region.flags = flags;
1093 
1094 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1095 
1096 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1097 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1098 		ret, errno, slot, flags);
1099 }
1100 
1101 /*
1102  * VM Memory Region Move
1103  *
1104  * Input Args:
1105  *   vm - Virtual Machine
1106  *   slot - Slot of the memory region to move
1107  *   new_gpa - Starting guest physical address
1108  *
1109  * Output Args: None
1110  *
1111  * Return: None
1112  *
1113  * Change the gpa of a memory region.
1114  */
1115 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1116 {
1117 	struct userspace_mem_region *region;
1118 	int ret;
1119 
1120 	region = memslot2region(vm, slot);
1121 
1122 	region->region.guest_phys_addr = new_gpa;
1123 
1124 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1125 
1126 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1127 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1128 		    ret, errno, slot, new_gpa);
1129 }
1130 
1131 /*
1132  * VM Memory Region Delete
1133  *
1134  * Input Args:
1135  *   vm - Virtual Machine
1136  *   slot - Slot of the memory region to delete
1137  *
1138  * Output Args: None
1139  *
1140  * Return: None
1141  *
1142  * Delete a memory region.
1143  */
1144 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1145 {
1146 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1147 }
1148 
1149 /* Returns the size of a vCPU's kvm_run structure. */
1150 static int vcpu_mmap_sz(void)
1151 {
1152 	int dev_fd, ret;
1153 
1154 	dev_fd = open_kvm_dev_path_or_exit();
1155 
1156 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1157 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1158 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1159 
1160 	close(dev_fd);
1161 
1162 	return ret;
1163 }
1164 
1165 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1166 {
1167 	struct kvm_vcpu *vcpu;
1168 
1169 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1170 		if (vcpu->id == vcpu_id)
1171 			return true;
1172 	}
1173 
1174 	return false;
1175 }
1176 
1177 /*
1178  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1179  * No additional vCPU setup is done.  Returns the vCPU.
1180  */
1181 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1182 {
1183 	struct kvm_vcpu *vcpu;
1184 
1185 	/* Confirm a vcpu with the specified id doesn't already exist. */
1186 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1187 
1188 	/* Allocate and initialize new vcpu structure. */
1189 	vcpu = calloc(1, sizeof(*vcpu));
1190 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1191 
1192 	vcpu->vm = vm;
1193 	vcpu->id = vcpu_id;
1194 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1195 	TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1196 
1197 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1198 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1199 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1200 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1201 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1202 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1203 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1204 
1205 	/* Add to linked-list of VCPUs. */
1206 	list_add(&vcpu->list, &vm->vcpus);
1207 
1208 	return vcpu;
1209 }
1210 
1211 /*
1212  * VM Virtual Address Unused Gap
1213  *
1214  * Input Args:
1215  *   vm - Virtual Machine
1216  *   sz - Size (bytes)
1217  *   vaddr_min - Minimum Virtual Address
1218  *
1219  * Output Args: None
1220  *
1221  * Return:
1222  *   Lowest virtual address at or below vaddr_min, with at least
1223  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1224  *   size sz is available.
1225  *
1226  * Within the VM specified by vm, locates the lowest starting virtual
1227  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1228  * TEST_ASSERT failure occurs for invalid input or no area of at least
1229  * sz unallocated bytes >= vaddr_min is available.
1230  */
1231 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1232 			       vm_vaddr_t vaddr_min)
1233 {
1234 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1235 
1236 	/* Determine lowest permitted virtual page index. */
1237 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1238 	if ((pgidx_start * vm->page_size) < vaddr_min)
1239 		goto no_va_found;
1240 
1241 	/* Loop over section with enough valid virtual page indexes. */
1242 	if (!sparsebit_is_set_num(vm->vpages_valid,
1243 		pgidx_start, pages))
1244 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1245 			pgidx_start, pages);
1246 	do {
1247 		/*
1248 		 * Are there enough unused virtual pages available at
1249 		 * the currently proposed starting virtual page index.
1250 		 * If not, adjust proposed starting index to next
1251 		 * possible.
1252 		 */
1253 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1254 			pgidx_start, pages))
1255 			goto va_found;
1256 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1257 			pgidx_start, pages);
1258 		if (pgidx_start == 0)
1259 			goto no_va_found;
1260 
1261 		/*
1262 		 * If needed, adjust proposed starting virtual address,
1263 		 * to next range of valid virtual addresses.
1264 		 */
1265 		if (!sparsebit_is_set_num(vm->vpages_valid,
1266 			pgidx_start, pages)) {
1267 			pgidx_start = sparsebit_next_set_num(
1268 				vm->vpages_valid, pgidx_start, pages);
1269 			if (pgidx_start == 0)
1270 				goto no_va_found;
1271 		}
1272 	} while (pgidx_start != 0);
1273 
1274 no_va_found:
1275 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1276 
1277 	/* NOT REACHED */
1278 	return -1;
1279 
1280 va_found:
1281 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1282 		pgidx_start, pages),
1283 		"Unexpected, invalid virtual page index range,\n"
1284 		"  pgidx_start: 0x%lx\n"
1285 		"  pages: 0x%lx",
1286 		pgidx_start, pages);
1287 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1288 		pgidx_start, pages),
1289 		"Unexpected, pages already mapped,\n"
1290 		"  pgidx_start: 0x%lx\n"
1291 		"  pages: 0x%lx",
1292 		pgidx_start, pages);
1293 
1294 	return pgidx_start * vm->page_size;
1295 }
1296 
1297 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1298 			    enum kvm_mem_region_type type)
1299 {
1300 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1301 
1302 	virt_pgd_alloc(vm);
1303 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1304 					      KVM_UTIL_MIN_PFN * vm->page_size,
1305 					      vm->memslots[type]);
1306 
1307 	/*
1308 	 * Find an unused range of virtual page addresses of at least
1309 	 * pages in length.
1310 	 */
1311 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1312 
1313 	/* Map the virtual pages. */
1314 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1315 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1316 
1317 		virt_pg_map(vm, vaddr, paddr);
1318 
1319 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1320 	}
1321 
1322 	return vaddr_start;
1323 }
1324 
1325 /*
1326  * VM Virtual Address Allocate
1327  *
1328  * Input Args:
1329  *   vm - Virtual Machine
1330  *   sz - Size in bytes
1331  *   vaddr_min - Minimum starting virtual address
1332  *
1333  * Output Args: None
1334  *
1335  * Return:
1336  *   Starting guest virtual address
1337  *
1338  * Allocates at least sz bytes within the virtual address space of the vm
1339  * given by vm.  The allocated bytes are mapped to a virtual address >=
1340  * the address given by vaddr_min.  Note that each allocation uses a
1341  * a unique set of pages, with the minimum real allocation being at least
1342  * a page. The allocated physical space comes from the TEST_DATA memory region.
1343  */
1344 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1345 {
1346 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1347 }
1348 
1349 /*
1350  * VM Virtual Address Allocate Pages
1351  *
1352  * Input Args:
1353  *   vm - Virtual Machine
1354  *
1355  * Output Args: None
1356  *
1357  * Return:
1358  *   Starting guest virtual address
1359  *
1360  * Allocates at least N system pages worth of bytes within the virtual address
1361  * space of the vm.
1362  */
1363 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1364 {
1365 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1366 }
1367 
1368 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1369 {
1370 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1371 }
1372 
1373 /*
1374  * VM Virtual Address Allocate Page
1375  *
1376  * Input Args:
1377  *   vm - Virtual Machine
1378  *
1379  * Output Args: None
1380  *
1381  * Return:
1382  *   Starting guest virtual address
1383  *
1384  * Allocates at least one system page worth of bytes within the virtual address
1385  * space of the vm.
1386  */
1387 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1388 {
1389 	return vm_vaddr_alloc_pages(vm, 1);
1390 }
1391 
1392 /*
1393  * Map a range of VM virtual address to the VM's physical address
1394  *
1395  * Input Args:
1396  *   vm - Virtual Machine
1397  *   vaddr - Virtuall address to map
1398  *   paddr - VM Physical Address
1399  *   npages - The number of pages to map
1400  *
1401  * Output Args: None
1402  *
1403  * Return: None
1404  *
1405  * Within the VM given by @vm, creates a virtual translation for
1406  * @npages starting at @vaddr to the page range starting at @paddr.
1407  */
1408 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1409 	      unsigned int npages)
1410 {
1411 	size_t page_size = vm->page_size;
1412 	size_t size = npages * page_size;
1413 
1414 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1415 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1416 
1417 	while (npages--) {
1418 		virt_pg_map(vm, vaddr, paddr);
1419 		vaddr += page_size;
1420 		paddr += page_size;
1421 
1422 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1423 	}
1424 }
1425 
1426 /*
1427  * Address VM Physical to Host Virtual
1428  *
1429  * Input Args:
1430  *   vm - Virtual Machine
1431  *   gpa - VM physical address
1432  *
1433  * Output Args: None
1434  *
1435  * Return:
1436  *   Equivalent host virtual address
1437  *
1438  * Locates the memory region containing the VM physical address given
1439  * by gpa, within the VM given by vm.  When found, the host virtual
1440  * address providing the memory to the vm physical address is returned.
1441  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1442  */
1443 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1444 {
1445 	struct userspace_mem_region *region;
1446 
1447 	region = userspace_mem_region_find(vm, gpa, gpa);
1448 	if (!region) {
1449 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1450 		return NULL;
1451 	}
1452 
1453 	return (void *)((uintptr_t)region->host_mem
1454 		+ (gpa - region->region.guest_phys_addr));
1455 }
1456 
1457 /*
1458  * Address Host Virtual to VM Physical
1459  *
1460  * Input Args:
1461  *   vm - Virtual Machine
1462  *   hva - Host virtual address
1463  *
1464  * Output Args: None
1465  *
1466  * Return:
1467  *   Equivalent VM physical address
1468  *
1469  * Locates the memory region containing the host virtual address given
1470  * by hva, within the VM given by vm.  When found, the equivalent
1471  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1472  * region containing hva exists.
1473  */
1474 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1475 {
1476 	struct rb_node *node;
1477 
1478 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1479 		struct userspace_mem_region *region =
1480 			container_of(node, struct userspace_mem_region, hva_node);
1481 
1482 		if (hva >= region->host_mem) {
1483 			if (hva <= (region->host_mem
1484 				+ region->region.memory_size - 1))
1485 				return (vm_paddr_t)((uintptr_t)
1486 					region->region.guest_phys_addr
1487 					+ (hva - (uintptr_t)region->host_mem));
1488 
1489 			node = node->rb_right;
1490 		} else
1491 			node = node->rb_left;
1492 	}
1493 
1494 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1495 	return -1;
1496 }
1497 
1498 /*
1499  * Address VM physical to Host Virtual *alias*.
1500  *
1501  * Input Args:
1502  *   vm - Virtual Machine
1503  *   gpa - VM physical address
1504  *
1505  * Output Args: None
1506  *
1507  * Return:
1508  *   Equivalent address within the host virtual *alias* area, or NULL
1509  *   (without failing the test) if the guest memory is not shared (so
1510  *   no alias exists).
1511  *
1512  * Create a writable, shared virtual=>physical alias for the specific GPA.
1513  * The primary use case is to allow the host selftest to manipulate guest
1514  * memory without mapping said memory in the guest's address space. And, for
1515  * userfaultfd-based demand paging, to do so without triggering userfaults.
1516  */
1517 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1518 {
1519 	struct userspace_mem_region *region;
1520 	uintptr_t offset;
1521 
1522 	region = userspace_mem_region_find(vm, gpa, gpa);
1523 	if (!region)
1524 		return NULL;
1525 
1526 	if (!region->host_alias)
1527 		return NULL;
1528 
1529 	offset = gpa - region->region.guest_phys_addr;
1530 	return (void *) ((uintptr_t) region->host_alias + offset);
1531 }
1532 
1533 /* Create an interrupt controller chip for the specified VM. */
1534 void vm_create_irqchip(struct kvm_vm *vm)
1535 {
1536 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1537 
1538 	vm->has_irqchip = true;
1539 }
1540 
1541 int _vcpu_run(struct kvm_vcpu *vcpu)
1542 {
1543 	int rc;
1544 
1545 	do {
1546 		rc = __vcpu_run(vcpu);
1547 	} while (rc == -1 && errno == EINTR);
1548 
1549 	assert_on_unhandled_exception(vcpu);
1550 
1551 	return rc;
1552 }
1553 
1554 /*
1555  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1556  * Assert if the KVM returns an error (other than -EINTR).
1557  */
1558 void vcpu_run(struct kvm_vcpu *vcpu)
1559 {
1560 	int ret = _vcpu_run(vcpu);
1561 
1562 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1563 }
1564 
1565 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1566 {
1567 	int ret;
1568 
1569 	vcpu->run->immediate_exit = 1;
1570 	ret = __vcpu_run(vcpu);
1571 	vcpu->run->immediate_exit = 0;
1572 
1573 	TEST_ASSERT(ret == -1 && errno == EINTR,
1574 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1575 		    ret, errno);
1576 }
1577 
1578 /*
1579  * Get the list of guest registers which are supported for
1580  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1581  * it is the caller's responsibility to free the list.
1582  */
1583 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1584 {
1585 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1586 	int ret;
1587 
1588 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1589 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1590 
1591 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1592 	reg_list->n = reg_list_n.n;
1593 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1594 	return reg_list;
1595 }
1596 
1597 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1598 {
1599 	uint32_t page_size = getpagesize();
1600 	uint32_t size = vcpu->vm->dirty_ring_size;
1601 
1602 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1603 
1604 	if (!vcpu->dirty_gfns) {
1605 		void *addr;
1606 
1607 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1608 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1609 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1610 
1611 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1612 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1613 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1614 
1615 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1616 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1617 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1618 
1619 		vcpu->dirty_gfns = addr;
1620 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1621 	}
1622 
1623 	return vcpu->dirty_gfns;
1624 }
1625 
1626 /*
1627  * Device Ioctl
1628  */
1629 
1630 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1631 {
1632 	struct kvm_device_attr attribute = {
1633 		.group = group,
1634 		.attr = attr,
1635 		.flags = 0,
1636 	};
1637 
1638 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1639 }
1640 
1641 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1642 {
1643 	struct kvm_create_device create_dev = {
1644 		.type = type,
1645 		.flags = KVM_CREATE_DEVICE_TEST,
1646 	};
1647 
1648 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1649 }
1650 
1651 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1652 {
1653 	struct kvm_create_device create_dev = {
1654 		.type = type,
1655 		.fd = -1,
1656 		.flags = 0,
1657 	};
1658 	int err;
1659 
1660 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1661 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1662 	return err ? : create_dev.fd;
1663 }
1664 
1665 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1666 {
1667 	struct kvm_device_attr kvmattr = {
1668 		.group = group,
1669 		.attr = attr,
1670 		.flags = 0,
1671 		.addr = (uintptr_t)val,
1672 	};
1673 
1674 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1675 }
1676 
1677 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1678 {
1679 	struct kvm_device_attr kvmattr = {
1680 		.group = group,
1681 		.attr = attr,
1682 		.flags = 0,
1683 		.addr = (uintptr_t)val,
1684 	};
1685 
1686 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1687 }
1688 
1689 /*
1690  * IRQ related functions.
1691  */
1692 
1693 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1694 {
1695 	struct kvm_irq_level irq_level = {
1696 		.irq    = irq,
1697 		.level  = level,
1698 	};
1699 
1700 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1701 }
1702 
1703 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1704 {
1705 	int ret = _kvm_irq_line(vm, irq, level);
1706 
1707 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1708 }
1709 
1710 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1711 {
1712 	struct kvm_irq_routing *routing;
1713 	size_t size;
1714 
1715 	size = sizeof(struct kvm_irq_routing);
1716 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1717 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1718 	routing = calloc(1, size);
1719 	assert(routing);
1720 
1721 	return routing;
1722 }
1723 
1724 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1725 		uint32_t gsi, uint32_t pin)
1726 {
1727 	int i;
1728 
1729 	assert(routing);
1730 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1731 
1732 	i = routing->nr;
1733 	routing->entries[i].gsi = gsi;
1734 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1735 	routing->entries[i].flags = 0;
1736 	routing->entries[i].u.irqchip.irqchip = 0;
1737 	routing->entries[i].u.irqchip.pin = pin;
1738 	routing->nr++;
1739 }
1740 
1741 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1742 {
1743 	int ret;
1744 
1745 	assert(routing);
1746 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1747 	free(routing);
1748 
1749 	return ret;
1750 }
1751 
1752 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1753 {
1754 	int ret;
1755 
1756 	ret = _kvm_gsi_routing_write(vm, routing);
1757 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1758 }
1759 
1760 /*
1761  * VM Dump
1762  *
1763  * Input Args:
1764  *   vm - Virtual Machine
1765  *   indent - Left margin indent amount
1766  *
1767  * Output Args:
1768  *   stream - Output FILE stream
1769  *
1770  * Return: None
1771  *
1772  * Dumps the current state of the VM given by vm, to the FILE stream
1773  * given by stream.
1774  */
1775 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1776 {
1777 	int ctr;
1778 	struct userspace_mem_region *region;
1779 	struct kvm_vcpu *vcpu;
1780 
1781 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1782 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1783 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1784 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1785 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1786 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1787 			"host_virt: %p\n", indent + 2, "",
1788 			(uint64_t) region->region.guest_phys_addr,
1789 			(uint64_t) region->region.memory_size,
1790 			region->host_mem);
1791 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1792 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1793 	}
1794 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1795 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1796 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1797 		vm->pgd_created);
1798 	if (vm->pgd_created) {
1799 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1800 			indent + 2, "");
1801 		virt_dump(stream, vm, indent + 4);
1802 	}
1803 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1804 
1805 	list_for_each_entry(vcpu, &vm->vcpus, list)
1806 		vcpu_dump(stream, vcpu, indent + 2);
1807 }
1808 
1809 /* Known KVM exit reasons */
1810 static struct exit_reason {
1811 	unsigned int reason;
1812 	const char *name;
1813 } exit_reasons_known[] = {
1814 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1815 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1816 	{KVM_EXIT_IO, "IO"},
1817 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1818 	{KVM_EXIT_DEBUG, "DEBUG"},
1819 	{KVM_EXIT_HLT, "HLT"},
1820 	{KVM_EXIT_MMIO, "MMIO"},
1821 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1822 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1823 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1824 	{KVM_EXIT_INTR, "INTR"},
1825 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1826 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1827 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1828 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1829 	{KVM_EXIT_DCR, "DCR"},
1830 	{KVM_EXIT_NMI, "NMI"},
1831 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1832 	{KVM_EXIT_OSI, "OSI"},
1833 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1834 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1835 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
1836 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
1837 	{KVM_EXIT_XEN, "XEN"},
1838 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1839 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1840 #endif
1841 };
1842 
1843 /*
1844  * Exit Reason String
1845  *
1846  * Input Args:
1847  *   exit_reason - Exit reason
1848  *
1849  * Output Args: None
1850  *
1851  * Return:
1852  *   Constant string pointer describing the exit reason.
1853  *
1854  * Locates and returns a constant string that describes the KVM exit
1855  * reason given by exit_reason.  If no such string is found, a constant
1856  * string of "Unknown" is returned.
1857  */
1858 const char *exit_reason_str(unsigned int exit_reason)
1859 {
1860 	unsigned int n1;
1861 
1862 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1863 		if (exit_reason == exit_reasons_known[n1].reason)
1864 			return exit_reasons_known[n1].name;
1865 	}
1866 
1867 	return "Unknown";
1868 }
1869 
1870 /*
1871  * Physical Contiguous Page Allocator
1872  *
1873  * Input Args:
1874  *   vm - Virtual Machine
1875  *   num - number of pages
1876  *   paddr_min - Physical address minimum
1877  *   memslot - Memory region to allocate page from
1878  *
1879  * Output Args: None
1880  *
1881  * Return:
1882  *   Starting physical address
1883  *
1884  * Within the VM specified by vm, locates a range of available physical
1885  * pages at or above paddr_min. If found, the pages are marked as in use
1886  * and their base address is returned. A TEST_ASSERT failure occurs if
1887  * not enough pages are available at or above paddr_min.
1888  */
1889 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1890 			      vm_paddr_t paddr_min, uint32_t memslot)
1891 {
1892 	struct userspace_mem_region *region;
1893 	sparsebit_idx_t pg, base;
1894 
1895 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1896 
1897 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1898 		"not divisible by page size.\n"
1899 		"  paddr_min: 0x%lx page_size: 0x%x",
1900 		paddr_min, vm->page_size);
1901 
1902 	region = memslot2region(vm, memslot);
1903 	base = pg = paddr_min >> vm->page_shift;
1904 
1905 	do {
1906 		for (; pg < base + num; ++pg) {
1907 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1908 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1909 				break;
1910 			}
1911 		}
1912 	} while (pg && pg != base + num);
1913 
1914 	if (pg == 0) {
1915 		fprintf(stderr, "No guest physical page available, "
1916 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1917 			paddr_min, vm->page_size, memslot);
1918 		fputs("---- vm dump ----\n", stderr);
1919 		vm_dump(stderr, vm, 2);
1920 		abort();
1921 	}
1922 
1923 	for (pg = base; pg < base + num; ++pg)
1924 		sparsebit_clear(region->unused_phy_pages, pg);
1925 
1926 	return base * vm->page_size;
1927 }
1928 
1929 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1930 			     uint32_t memslot)
1931 {
1932 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1933 }
1934 
1935 /* Arbitrary minimum physical address used for virtual translation tables. */
1936 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
1937 
1938 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1939 {
1940 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
1941 				 vm->memslots[MEM_REGION_PT]);
1942 }
1943 
1944 /*
1945  * Address Guest Virtual to Host Virtual
1946  *
1947  * Input Args:
1948  *   vm - Virtual Machine
1949  *   gva - VM virtual address
1950  *
1951  * Output Args: None
1952  *
1953  * Return:
1954  *   Equivalent host virtual address
1955  */
1956 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1957 {
1958 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1959 }
1960 
1961 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1962 {
1963 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1964 }
1965 
1966 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1967 				      unsigned int page_shift,
1968 				      unsigned int new_page_shift,
1969 				      bool ceil)
1970 {
1971 	unsigned int n = 1 << (new_page_shift - page_shift);
1972 
1973 	if (page_shift >= new_page_shift)
1974 		return num_pages * (1 << (page_shift - new_page_shift));
1975 
1976 	return num_pages / n + !!(ceil && num_pages % n);
1977 }
1978 
1979 static inline int getpageshift(void)
1980 {
1981 	return __builtin_ffs(getpagesize()) - 1;
1982 }
1983 
1984 unsigned int
1985 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1986 {
1987 	return vm_calc_num_pages(num_guest_pages,
1988 				 vm_guest_mode_params[mode].page_shift,
1989 				 getpageshift(), true);
1990 }
1991 
1992 unsigned int
1993 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
1994 {
1995 	return vm_calc_num_pages(num_host_pages, getpageshift(),
1996 				 vm_guest_mode_params[mode].page_shift, false);
1997 }
1998 
1999 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2000 {
2001 	unsigned int n;
2002 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2003 	return vm_adjust_num_guest_pages(mode, n);
2004 }
2005 
2006 /*
2007  * Read binary stats descriptors
2008  *
2009  * Input Args:
2010  *   stats_fd - the file descriptor for the binary stats file from which to read
2011  *   header - the binary stats metadata header corresponding to the given FD
2012  *
2013  * Output Args: None
2014  *
2015  * Return:
2016  *   A pointer to a newly allocated series of stat descriptors.
2017  *   Caller is responsible for freeing the returned kvm_stats_desc.
2018  *
2019  * Read the stats descriptors from the binary stats interface.
2020  */
2021 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2022 					      struct kvm_stats_header *header)
2023 {
2024 	struct kvm_stats_desc *stats_desc;
2025 	ssize_t desc_size, total_size, ret;
2026 
2027 	desc_size = get_stats_descriptor_size(header);
2028 	total_size = header->num_desc * desc_size;
2029 
2030 	stats_desc = calloc(header->num_desc, desc_size);
2031 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2032 
2033 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2034 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2035 
2036 	return stats_desc;
2037 }
2038 
2039 /*
2040  * Read stat data for a particular stat
2041  *
2042  * Input Args:
2043  *   stats_fd - the file descriptor for the binary stats file from which to read
2044  *   header - the binary stats metadata header corresponding to the given FD
2045  *   desc - the binary stat metadata for the particular stat to be read
2046  *   max_elements - the maximum number of 8-byte values to read into data
2047  *
2048  * Output Args:
2049  *   data - the buffer into which stat data should be read
2050  *
2051  * Read the data values of a specified stat from the binary stats interface.
2052  */
2053 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2054 		    struct kvm_stats_desc *desc, uint64_t *data,
2055 		    size_t max_elements)
2056 {
2057 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2058 	size_t size = nr_elements * sizeof(*data);
2059 	ssize_t ret;
2060 
2061 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2062 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2063 
2064 	ret = pread(stats_fd, data, size,
2065 		    header->data_offset + desc->offset);
2066 
2067 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2068 		    desc->name, errno, strerror(errno));
2069 	TEST_ASSERT(ret == size,
2070 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2071 		    desc->name, size, ret);
2072 }
2073 
2074 /*
2075  * Read the data of the named stat
2076  *
2077  * Input Args:
2078  *   vm - the VM for which the stat should be read
2079  *   stat_name - the name of the stat to read
2080  *   max_elements - the maximum number of 8-byte values to read into data
2081  *
2082  * Output Args:
2083  *   data - the buffer into which stat data should be read
2084  *
2085  * Read the data values of a specified stat from the binary stats interface.
2086  */
2087 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2088 		   size_t max_elements)
2089 {
2090 	struct kvm_stats_desc *desc;
2091 	size_t size_desc;
2092 	int i;
2093 
2094 	if (!vm->stats_fd) {
2095 		vm->stats_fd = vm_get_stats_fd(vm);
2096 		read_stats_header(vm->stats_fd, &vm->stats_header);
2097 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2098 							&vm->stats_header);
2099 	}
2100 
2101 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2102 
2103 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2104 		desc = (void *)vm->stats_desc + (i * size_desc);
2105 
2106 		if (strcmp(desc->name, stat_name))
2107 			continue;
2108 
2109 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2110 			       data, max_elements);
2111 
2112 		break;
2113 	}
2114 }
2115 
2116 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2117 {
2118 }
2119 
2120 __weak void kvm_selftest_arch_init(void)
2121 {
2122 }
2123 
2124 void __attribute((constructor)) kvm_selftest_init(void)
2125 {
2126 	/* Tell stdout not to buffer its content. */
2127 	setbuf(stdout, NULL);
2128 
2129 	kvm_selftest_arch_init();
2130 }
2131