1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "processor.h" 10 #include "ucall_common.h" 11 12 #include <assert.h> 13 #include <sched.h> 14 #include <sys/mman.h> 15 #include <sys/types.h> 16 #include <sys/stat.h> 17 #include <unistd.h> 18 #include <linux/kernel.h> 19 20 #define KVM_UTIL_MIN_PFN 2 21 22 uint32_t guest_random_seed; 23 struct guest_random_state guest_rng; 24 25 static int vcpu_mmap_sz(void); 26 27 int open_path_or_exit(const char *path, int flags) 28 { 29 int fd; 30 31 fd = open(path, flags); 32 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno)); 33 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path); 34 35 return fd; 36 } 37 38 /* 39 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 40 * 41 * Input Args: 42 * flags - The flags to pass when opening KVM_DEV_PATH. 43 * 44 * Return: 45 * The opened file descriptor of /dev/kvm. 46 */ 47 static int _open_kvm_dev_path_or_exit(int flags) 48 { 49 return open_path_or_exit(KVM_DEV_PATH, flags); 50 } 51 52 int open_kvm_dev_path_or_exit(void) 53 { 54 return _open_kvm_dev_path_or_exit(O_RDONLY); 55 } 56 57 static ssize_t get_module_param(const char *module_name, const char *param, 58 void *buffer, size_t buffer_size) 59 { 60 const int path_size = 128; 61 char path[path_size]; 62 ssize_t bytes_read; 63 int fd, r; 64 65 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 66 module_name, param); 67 TEST_ASSERT(r < path_size, 68 "Failed to construct sysfs path in %d bytes.", path_size); 69 70 fd = open_path_or_exit(path, O_RDONLY); 71 72 bytes_read = read(fd, buffer, buffer_size); 73 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes", 74 path, bytes_read, buffer_size); 75 76 r = close(fd); 77 TEST_ASSERT(!r, "close(%s) failed", path); 78 return bytes_read; 79 } 80 81 static int get_module_param_integer(const char *module_name, const char *param) 82 { 83 /* 84 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the 85 * NUL char, and 1 byte because the kernel sucks and inserts a newline 86 * at the end. 87 */ 88 char value[16 + 1 + 1]; 89 ssize_t r; 90 91 memset(value, '\0', sizeof(value)); 92 93 r = get_module_param(module_name, param, value, sizeof(value)); 94 TEST_ASSERT(value[r - 1] == '\n', 95 "Expected trailing newline, got char '%c'", value[r - 1]); 96 97 /* 98 * Squash the newline, otherwise atoi_paranoid() will complain about 99 * trailing non-NUL characters in the string. 100 */ 101 value[r - 1] = '\0'; 102 return atoi_paranoid(value); 103 } 104 105 static bool get_module_param_bool(const char *module_name, const char *param) 106 { 107 char value; 108 ssize_t r; 109 110 r = get_module_param(module_name, param, &value, sizeof(value)); 111 TEST_ASSERT_EQ(r, 1); 112 113 if (value == 'Y') 114 return true; 115 else if (value == 'N') 116 return false; 117 118 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 119 } 120 121 bool get_kvm_param_bool(const char *param) 122 { 123 return get_module_param_bool("kvm", param); 124 } 125 126 bool get_kvm_intel_param_bool(const char *param) 127 { 128 return get_module_param_bool("kvm_intel", param); 129 } 130 131 bool get_kvm_amd_param_bool(const char *param) 132 { 133 return get_module_param_bool("kvm_amd", param); 134 } 135 136 int get_kvm_param_integer(const char *param) 137 { 138 return get_module_param_integer("kvm", param); 139 } 140 141 int get_kvm_intel_param_integer(const char *param) 142 { 143 return get_module_param_integer("kvm_intel", param); 144 } 145 146 int get_kvm_amd_param_integer(const char *param) 147 { 148 return get_module_param_integer("kvm_amd", param); 149 } 150 151 /* 152 * Capability 153 * 154 * Input Args: 155 * cap - Capability 156 * 157 * Output Args: None 158 * 159 * Return: 160 * On success, the Value corresponding to the capability (KVM_CAP_*) 161 * specified by the value of cap. On failure a TEST_ASSERT failure 162 * is produced. 163 * 164 * Looks up and returns the value corresponding to the capability 165 * (KVM_CAP_*) given by cap. 166 */ 167 unsigned int kvm_check_cap(long cap) 168 { 169 int ret; 170 int kvm_fd; 171 172 kvm_fd = open_kvm_dev_path_or_exit(); 173 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 174 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 175 176 close(kvm_fd); 177 178 return (unsigned int)ret; 179 } 180 181 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 182 { 183 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 184 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 185 else 186 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 187 vm->dirty_ring_size = ring_size; 188 } 189 190 static void vm_open(struct kvm_vm *vm) 191 { 192 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 193 194 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 195 196 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 197 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 198 } 199 200 const char *vm_guest_mode_string(uint32_t i) 201 { 202 static const char * const strings[] = { 203 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 204 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 205 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 206 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 207 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 208 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 209 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 210 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 211 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 212 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 213 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 214 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 215 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 216 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 217 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 218 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 219 }; 220 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 221 "Missing new mode strings?"); 222 223 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 224 225 return strings[i]; 226 } 227 228 const struct vm_guest_mode_params vm_guest_mode_params[] = { 229 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 230 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 231 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 232 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 233 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 234 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 235 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 236 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 237 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 238 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 239 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 240 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 241 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 242 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 243 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 244 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 245 }; 246 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 247 "Missing new mode params?"); 248 249 /* 250 * Initializes vm->vpages_valid to match the canonical VA space of the 251 * architecture. 252 * 253 * The default implementation is valid for architectures which split the 254 * range addressed by a single page table into a low and high region 255 * based on the MSB of the VA. On architectures with this behavior 256 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 257 */ 258 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 259 { 260 sparsebit_set_num(vm->vpages_valid, 261 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 262 sparsebit_set_num(vm->vpages_valid, 263 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 264 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 265 } 266 267 struct kvm_vm *____vm_create(struct vm_shape shape) 268 { 269 struct kvm_vm *vm; 270 271 vm = calloc(1, sizeof(*vm)); 272 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 273 274 INIT_LIST_HEAD(&vm->vcpus); 275 vm->regions.gpa_tree = RB_ROOT; 276 vm->regions.hva_tree = RB_ROOT; 277 hash_init(vm->regions.slot_hash); 278 279 vm->mode = shape.mode; 280 vm->type = shape.type; 281 282 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 283 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 284 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 285 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 286 287 /* Setup mode specific traits. */ 288 switch (vm->mode) { 289 case VM_MODE_P52V48_4K: 290 vm->pgtable_levels = 4; 291 break; 292 case VM_MODE_P52V48_64K: 293 vm->pgtable_levels = 3; 294 break; 295 case VM_MODE_P48V48_4K: 296 vm->pgtable_levels = 4; 297 break; 298 case VM_MODE_P48V48_64K: 299 vm->pgtable_levels = 3; 300 break; 301 case VM_MODE_P40V48_4K: 302 case VM_MODE_P36V48_4K: 303 vm->pgtable_levels = 4; 304 break; 305 case VM_MODE_P40V48_64K: 306 case VM_MODE_P36V48_64K: 307 vm->pgtable_levels = 3; 308 break; 309 case VM_MODE_P52V48_16K: 310 case VM_MODE_P48V48_16K: 311 case VM_MODE_P40V48_16K: 312 case VM_MODE_P36V48_16K: 313 vm->pgtable_levels = 4; 314 break; 315 case VM_MODE_P36V47_16K: 316 vm->pgtable_levels = 3; 317 break; 318 case VM_MODE_PXXV48_4K: 319 #ifdef __x86_64__ 320 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 321 kvm_init_vm_address_properties(vm); 322 /* 323 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 324 * it doesn't take effect unless a CR4.LA57 is set, which it 325 * isn't for this mode (48-bit virtual address space). 326 */ 327 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 328 "Linear address width (%d bits) not supported", 329 vm->va_bits); 330 pr_debug("Guest physical address width detected: %d\n", 331 vm->pa_bits); 332 vm->pgtable_levels = 4; 333 vm->va_bits = 48; 334 #else 335 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 336 #endif 337 break; 338 case VM_MODE_P47V64_4K: 339 vm->pgtable_levels = 5; 340 break; 341 case VM_MODE_P44V64_4K: 342 vm->pgtable_levels = 5; 343 break; 344 default: 345 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 346 } 347 348 #ifdef __aarch64__ 349 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 350 if (vm->pa_bits != 40) 351 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 352 #endif 353 354 vm_open(vm); 355 356 /* Limit to VA-bit canonical virtual addresses. */ 357 vm->vpages_valid = sparsebit_alloc(); 358 vm_vaddr_populate_bitmap(vm); 359 360 /* Limit physical addresses to PA-bits. */ 361 vm->max_gfn = vm_compute_max_gfn(vm); 362 363 /* Allocate and setup memory for guest. */ 364 vm->vpages_mapped = sparsebit_alloc(); 365 366 return vm; 367 } 368 369 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 370 uint32_t nr_runnable_vcpus, 371 uint64_t extra_mem_pages) 372 { 373 uint64_t page_size = vm_guest_mode_params[mode].page_size; 374 uint64_t nr_pages; 375 376 TEST_ASSERT(nr_runnable_vcpus, 377 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 378 379 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 380 "nr_vcpus = %d too large for host, max-vcpus = %d", 381 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 382 383 /* 384 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 385 * test code and other per-VM assets that will be loaded into memslot0. 386 */ 387 nr_pages = 512; 388 389 /* Account for the per-vCPU stacks on behalf of the test. */ 390 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 391 392 /* 393 * Account for the number of pages needed for the page tables. The 394 * maximum page table size for a memory region will be when the 395 * smallest page size is used. Considering each page contains x page 396 * table descriptors, the total extra size for page tables (for extra 397 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 398 * than N/x*2. 399 */ 400 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 401 402 /* Account for the number of pages needed by ucall. */ 403 nr_pages += ucall_nr_pages_required(page_size); 404 405 return vm_adjust_num_guest_pages(mode, nr_pages); 406 } 407 408 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 409 uint64_t nr_extra_pages) 410 { 411 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 412 nr_extra_pages); 413 struct userspace_mem_region *slot0; 414 struct kvm_vm *vm; 415 int i; 416 417 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 418 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 419 420 vm = ____vm_create(shape); 421 422 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0); 423 for (i = 0; i < NR_MEM_REGIONS; i++) 424 vm->memslots[i] = 0; 425 426 kvm_vm_elf_load(vm, program_invocation_name); 427 428 /* 429 * TODO: Add proper defines to protect the library's memslots, and then 430 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 431 * read-only memslots as MMIO, and creating a read-only memslot for the 432 * MMIO region would prevent silently clobbering the MMIO region. 433 */ 434 slot0 = memslot2region(vm, 0); 435 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 436 437 pr_info("Random seed: 0x%x\n", guest_random_seed); 438 guest_rng = new_guest_random_state(guest_random_seed); 439 sync_global_to_guest(vm, guest_rng); 440 441 kvm_arch_vm_post_create(vm); 442 443 return vm; 444 } 445 446 /* 447 * VM Create with customized parameters 448 * 449 * Input Args: 450 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 451 * nr_vcpus - VCPU count 452 * extra_mem_pages - Non-slot0 physical memory total size 453 * guest_code - Guest entry point 454 * vcpuids - VCPU IDs 455 * 456 * Output Args: None 457 * 458 * Return: 459 * Pointer to opaque structure that describes the created VM. 460 * 461 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 462 * extra_mem_pages is only used to calculate the maximum page table size, 463 * no real memory allocation for non-slot0 memory in this function. 464 */ 465 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 466 uint64_t extra_mem_pages, 467 void *guest_code, struct kvm_vcpu *vcpus[]) 468 { 469 struct kvm_vm *vm; 470 int i; 471 472 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 473 474 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 475 476 for (i = 0; i < nr_vcpus; ++i) 477 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 478 479 return vm; 480 } 481 482 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 483 struct kvm_vcpu **vcpu, 484 uint64_t extra_mem_pages, 485 void *guest_code) 486 { 487 struct kvm_vcpu *vcpus[1]; 488 struct kvm_vm *vm; 489 490 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 491 492 *vcpu = vcpus[0]; 493 return vm; 494 } 495 496 /* 497 * VM Restart 498 * 499 * Input Args: 500 * vm - VM that has been released before 501 * 502 * Output Args: None 503 * 504 * Reopens the file descriptors associated to the VM and reinstates the 505 * global state, such as the irqchip and the memory regions that are mapped 506 * into the guest. 507 */ 508 void kvm_vm_restart(struct kvm_vm *vmp) 509 { 510 int ctr; 511 struct userspace_mem_region *region; 512 513 vm_open(vmp); 514 if (vmp->has_irqchip) 515 vm_create_irqchip(vmp); 516 517 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 518 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 519 520 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 521 " rc: %i errno: %i\n" 522 " slot: %u flags: 0x%x\n" 523 " guest_phys_addr: 0x%llx size: 0x%llx", 524 ret, errno, region->region.slot, 525 region->region.flags, 526 region->region.guest_phys_addr, 527 region->region.memory_size); 528 } 529 } 530 531 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 532 uint32_t vcpu_id) 533 { 534 return __vm_vcpu_add(vm, vcpu_id); 535 } 536 537 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 538 { 539 kvm_vm_restart(vm); 540 541 return vm_vcpu_recreate(vm, 0); 542 } 543 544 void kvm_pin_this_task_to_pcpu(uint32_t pcpu) 545 { 546 cpu_set_t mask; 547 int r; 548 549 CPU_ZERO(&mask); 550 CPU_SET(pcpu, &mask); 551 r = sched_setaffinity(0, sizeof(mask), &mask); 552 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu); 553 } 554 555 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 556 { 557 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 558 559 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 560 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 561 return pcpu; 562 } 563 564 void kvm_print_vcpu_pinning_help(void) 565 { 566 const char *name = program_invocation_name; 567 568 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 569 " values (target pCPU), one for each vCPU, plus an optional\n" 570 " entry for the main application task (specified via entry\n" 571 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 572 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 573 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 574 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 575 " %s -v 3 -c 22,23,24,50\n\n" 576 " To leave the application task unpinned, drop the final entry:\n\n" 577 " %s -v 3 -c 22,23,24\n\n" 578 " (default: no pinning)\n", name, name); 579 } 580 581 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 582 int nr_vcpus) 583 { 584 cpu_set_t allowed_mask; 585 char *cpu, *cpu_list; 586 char delim[2] = ","; 587 int i, r; 588 589 cpu_list = strdup(pcpus_string); 590 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 591 592 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 593 TEST_ASSERT(!r, "sched_getaffinity() failed"); 594 595 cpu = strtok(cpu_list, delim); 596 597 /* 1. Get all pcpus for vcpus. */ 598 for (i = 0; i < nr_vcpus; i++) { 599 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 600 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 601 cpu = strtok(NULL, delim); 602 } 603 604 /* 2. Check if the main worker needs to be pinned. */ 605 if (cpu) { 606 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); 607 cpu = strtok(NULL, delim); 608 } 609 610 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 611 free(cpu_list); 612 } 613 614 /* 615 * Userspace Memory Region Find 616 * 617 * Input Args: 618 * vm - Virtual Machine 619 * start - Starting VM physical address 620 * end - Ending VM physical address, inclusive. 621 * 622 * Output Args: None 623 * 624 * Return: 625 * Pointer to overlapping region, NULL if no such region. 626 * 627 * Searches for a region with any physical memory that overlaps with 628 * any portion of the guest physical addresses from start to end 629 * inclusive. If multiple overlapping regions exist, a pointer to any 630 * of the regions is returned. Null is returned only when no overlapping 631 * region exists. 632 */ 633 static struct userspace_mem_region * 634 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 635 { 636 struct rb_node *node; 637 638 for (node = vm->regions.gpa_tree.rb_node; node; ) { 639 struct userspace_mem_region *region = 640 container_of(node, struct userspace_mem_region, gpa_node); 641 uint64_t existing_start = region->region.guest_phys_addr; 642 uint64_t existing_end = region->region.guest_phys_addr 643 + region->region.memory_size - 1; 644 if (start <= existing_end && end >= existing_start) 645 return region; 646 647 if (start < existing_start) 648 node = node->rb_left; 649 else 650 node = node->rb_right; 651 } 652 653 return NULL; 654 } 655 656 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 657 { 658 659 } 660 661 /* 662 * VM VCPU Remove 663 * 664 * Input Args: 665 * vcpu - VCPU to remove 666 * 667 * Output Args: None 668 * 669 * Return: None, TEST_ASSERT failures for all error conditions 670 * 671 * Removes a vCPU from a VM and frees its resources. 672 */ 673 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 674 { 675 int ret; 676 677 if (vcpu->dirty_gfns) { 678 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 679 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 680 vcpu->dirty_gfns = NULL; 681 } 682 683 ret = munmap(vcpu->run, vcpu_mmap_sz()); 684 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 685 686 ret = close(vcpu->fd); 687 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 688 689 list_del(&vcpu->list); 690 691 vcpu_arch_free(vcpu); 692 free(vcpu); 693 } 694 695 void kvm_vm_release(struct kvm_vm *vmp) 696 { 697 struct kvm_vcpu *vcpu, *tmp; 698 int ret; 699 700 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 701 vm_vcpu_rm(vmp, vcpu); 702 703 ret = close(vmp->fd); 704 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 705 706 ret = close(vmp->kvm_fd); 707 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 708 } 709 710 static void __vm_mem_region_delete(struct kvm_vm *vm, 711 struct userspace_mem_region *region, 712 bool unlink) 713 { 714 int ret; 715 716 if (unlink) { 717 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 718 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 719 hash_del(®ion->slot_node); 720 } 721 722 region->region.memory_size = 0; 723 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 724 725 sparsebit_free(®ion->unused_phy_pages); 726 sparsebit_free(®ion->protected_phy_pages); 727 ret = munmap(region->mmap_start, region->mmap_size); 728 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 729 if (region->fd >= 0) { 730 /* There's an extra map when using shared memory. */ 731 ret = munmap(region->mmap_alias, region->mmap_size); 732 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 733 close(region->fd); 734 } 735 if (region->region.guest_memfd >= 0) 736 close(region->region.guest_memfd); 737 738 free(region); 739 } 740 741 /* 742 * Destroys and frees the VM pointed to by vmp. 743 */ 744 void kvm_vm_free(struct kvm_vm *vmp) 745 { 746 int ctr; 747 struct hlist_node *node; 748 struct userspace_mem_region *region; 749 750 if (vmp == NULL) 751 return; 752 753 /* Free cached stats metadata and close FD */ 754 if (vmp->stats_fd) { 755 free(vmp->stats_desc); 756 close(vmp->stats_fd); 757 } 758 759 /* Free userspace_mem_regions. */ 760 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 761 __vm_mem_region_delete(vmp, region, false); 762 763 /* Free sparsebit arrays. */ 764 sparsebit_free(&vmp->vpages_valid); 765 sparsebit_free(&vmp->vpages_mapped); 766 767 kvm_vm_release(vmp); 768 769 /* Free the structure describing the VM. */ 770 free(vmp); 771 } 772 773 int kvm_memfd_alloc(size_t size, bool hugepages) 774 { 775 int memfd_flags = MFD_CLOEXEC; 776 int fd, r; 777 778 if (hugepages) 779 memfd_flags |= MFD_HUGETLB; 780 781 fd = memfd_create("kvm_selftest", memfd_flags); 782 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 783 784 r = ftruncate(fd, size); 785 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 786 787 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 788 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 789 790 return fd; 791 } 792 793 /* 794 * Memory Compare, host virtual to guest virtual 795 * 796 * Input Args: 797 * hva - Starting host virtual address 798 * vm - Virtual Machine 799 * gva - Starting guest virtual address 800 * len - number of bytes to compare 801 * 802 * Output Args: None 803 * 804 * Input/Output Args: None 805 * 806 * Return: 807 * Returns 0 if the bytes starting at hva for a length of len 808 * are equal the guest virtual bytes starting at gva. Returns 809 * a value < 0, if bytes at hva are less than those at gva. 810 * Otherwise a value > 0 is returned. 811 * 812 * Compares the bytes starting at the host virtual address hva, for 813 * a length of len, to the guest bytes starting at the guest virtual 814 * address given by gva. 815 */ 816 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 817 { 818 size_t amt; 819 820 /* 821 * Compare a batch of bytes until either a match is found 822 * or all the bytes have been compared. 823 */ 824 for (uintptr_t offset = 0; offset < len; offset += amt) { 825 uintptr_t ptr1 = (uintptr_t)hva + offset; 826 827 /* 828 * Determine host address for guest virtual address 829 * at offset. 830 */ 831 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 832 833 /* 834 * Determine amount to compare on this pass. 835 * Don't allow the comparsion to cross a page boundary. 836 */ 837 amt = len - offset; 838 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 839 amt = vm->page_size - (ptr1 % vm->page_size); 840 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 841 amt = vm->page_size - (ptr2 % vm->page_size); 842 843 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 844 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 845 846 /* 847 * Perform the comparison. If there is a difference 848 * return that result to the caller, otherwise need 849 * to continue on looking for a mismatch. 850 */ 851 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 852 if (ret != 0) 853 return ret; 854 } 855 856 /* 857 * No mismatch found. Let the caller know the two memory 858 * areas are equal. 859 */ 860 return 0; 861 } 862 863 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 864 struct userspace_mem_region *region) 865 { 866 struct rb_node **cur, *parent; 867 868 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 869 struct userspace_mem_region *cregion; 870 871 cregion = container_of(*cur, typeof(*cregion), gpa_node); 872 parent = *cur; 873 if (region->region.guest_phys_addr < 874 cregion->region.guest_phys_addr) 875 cur = &(*cur)->rb_left; 876 else { 877 TEST_ASSERT(region->region.guest_phys_addr != 878 cregion->region.guest_phys_addr, 879 "Duplicate GPA in region tree"); 880 881 cur = &(*cur)->rb_right; 882 } 883 } 884 885 rb_link_node(®ion->gpa_node, parent, cur); 886 rb_insert_color(®ion->gpa_node, gpa_tree); 887 } 888 889 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 890 struct userspace_mem_region *region) 891 { 892 struct rb_node **cur, *parent; 893 894 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 895 struct userspace_mem_region *cregion; 896 897 cregion = container_of(*cur, typeof(*cregion), hva_node); 898 parent = *cur; 899 if (region->host_mem < cregion->host_mem) 900 cur = &(*cur)->rb_left; 901 else { 902 TEST_ASSERT(region->host_mem != 903 cregion->host_mem, 904 "Duplicate HVA in region tree"); 905 906 cur = &(*cur)->rb_right; 907 } 908 } 909 910 rb_link_node(®ion->hva_node, parent, cur); 911 rb_insert_color(®ion->hva_node, hva_tree); 912 } 913 914 915 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 916 uint64_t gpa, uint64_t size, void *hva) 917 { 918 struct kvm_userspace_memory_region region = { 919 .slot = slot, 920 .flags = flags, 921 .guest_phys_addr = gpa, 922 .memory_size = size, 923 .userspace_addr = (uintptr_t)hva, 924 }; 925 926 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 927 } 928 929 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 930 uint64_t gpa, uint64_t size, void *hva) 931 { 932 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 933 934 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 935 errno, strerror(errno)); 936 } 937 938 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \ 939 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \ 940 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)") 941 942 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 943 uint64_t gpa, uint64_t size, void *hva, 944 uint32_t guest_memfd, uint64_t guest_memfd_offset) 945 { 946 struct kvm_userspace_memory_region2 region = { 947 .slot = slot, 948 .flags = flags, 949 .guest_phys_addr = gpa, 950 .memory_size = size, 951 .userspace_addr = (uintptr_t)hva, 952 .guest_memfd = guest_memfd, 953 .guest_memfd_offset = guest_memfd_offset, 954 }; 955 956 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 957 958 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 959 } 960 961 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 962 uint64_t gpa, uint64_t size, void *hva, 963 uint32_t guest_memfd, uint64_t guest_memfd_offset) 964 { 965 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 966 guest_memfd, guest_memfd_offset); 967 968 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 969 errno, strerror(errno)); 970 } 971 972 973 /* FIXME: This thing needs to be ripped apart and rewritten. */ 974 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 975 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 976 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 977 { 978 int ret; 979 struct userspace_mem_region *region; 980 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 981 size_t mem_size = npages * vm->page_size; 982 size_t alignment; 983 984 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 985 986 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 987 "Number of guest pages is not compatible with the host. " 988 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 989 990 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 991 "address not on a page boundary.\n" 992 " guest_paddr: 0x%lx vm->page_size: 0x%x", 993 guest_paddr, vm->page_size); 994 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 995 <= vm->max_gfn, "Physical range beyond maximum " 996 "supported physical address,\n" 997 " guest_paddr: 0x%lx npages: 0x%lx\n" 998 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 999 guest_paddr, npages, vm->max_gfn, vm->page_size); 1000 1001 /* 1002 * Confirm a mem region with an overlapping address doesn't 1003 * already exist. 1004 */ 1005 region = (struct userspace_mem_region *) userspace_mem_region_find( 1006 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 1007 if (region != NULL) 1008 TEST_FAIL("overlapping userspace_mem_region already " 1009 "exists\n" 1010 " requested guest_paddr: 0x%lx npages: 0x%lx " 1011 "page_size: 0x%x\n" 1012 " existing guest_paddr: 0x%lx size: 0x%lx", 1013 guest_paddr, npages, vm->page_size, 1014 (uint64_t) region->region.guest_phys_addr, 1015 (uint64_t) region->region.memory_size); 1016 1017 /* Confirm no region with the requested slot already exists. */ 1018 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1019 slot) { 1020 if (region->region.slot != slot) 1021 continue; 1022 1023 TEST_FAIL("A mem region with the requested slot " 1024 "already exists.\n" 1025 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 1026 " existing slot: %u paddr: 0x%lx size: 0x%lx", 1027 slot, guest_paddr, npages, 1028 region->region.slot, 1029 (uint64_t) region->region.guest_phys_addr, 1030 (uint64_t) region->region.memory_size); 1031 } 1032 1033 /* Allocate and initialize new mem region structure. */ 1034 region = calloc(1, sizeof(*region)); 1035 TEST_ASSERT(region != NULL, "Insufficient Memory"); 1036 region->mmap_size = mem_size; 1037 1038 #ifdef __s390x__ 1039 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 1040 alignment = 0x100000; 1041 #else 1042 alignment = 1; 1043 #endif 1044 1045 /* 1046 * When using THP mmap is not guaranteed to returned a hugepage aligned 1047 * address so we have to pad the mmap. Padding is not needed for HugeTLB 1048 * because mmap will always return an address aligned to the HugeTLB 1049 * page size. 1050 */ 1051 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 1052 alignment = max(backing_src_pagesz, alignment); 1053 1054 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 1055 1056 /* Add enough memory to align up if necessary */ 1057 if (alignment > 1) 1058 region->mmap_size += alignment; 1059 1060 region->fd = -1; 1061 if (backing_src_is_shared(src_type)) 1062 region->fd = kvm_memfd_alloc(region->mmap_size, 1063 src_type == VM_MEM_SRC_SHARED_HUGETLB); 1064 1065 region->mmap_start = mmap(NULL, region->mmap_size, 1066 PROT_READ | PROT_WRITE, 1067 vm_mem_backing_src_alias(src_type)->flag, 1068 region->fd, 0); 1069 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1070 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1071 1072 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1073 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1074 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1075 region->mmap_start, backing_src_pagesz); 1076 1077 /* Align host address */ 1078 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1079 1080 /* As needed perform madvise */ 1081 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1082 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1083 ret = madvise(region->host_mem, mem_size, 1084 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1085 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1086 region->host_mem, mem_size, 1087 vm_mem_backing_src_alias(src_type)->name); 1088 } 1089 1090 region->backing_src_type = src_type; 1091 1092 if (flags & KVM_MEM_GUEST_MEMFD) { 1093 if (guest_memfd < 0) { 1094 uint32_t guest_memfd_flags = 0; 1095 TEST_ASSERT(!guest_memfd_offset, 1096 "Offset must be zero when creating new guest_memfd"); 1097 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1098 } else { 1099 /* 1100 * Install a unique fd for each memslot so that the fd 1101 * can be closed when the region is deleted without 1102 * needing to track if the fd is owned by the framework 1103 * or by the caller. 1104 */ 1105 guest_memfd = dup(guest_memfd); 1106 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1107 } 1108 1109 region->region.guest_memfd = guest_memfd; 1110 region->region.guest_memfd_offset = guest_memfd_offset; 1111 } else { 1112 region->region.guest_memfd = -1; 1113 } 1114 1115 region->unused_phy_pages = sparsebit_alloc(); 1116 if (vm_arch_has_protected_memory(vm)) 1117 region->protected_phy_pages = sparsebit_alloc(); 1118 sparsebit_set_num(region->unused_phy_pages, 1119 guest_paddr >> vm->page_shift, npages); 1120 region->region.slot = slot; 1121 region->region.flags = flags; 1122 region->region.guest_phys_addr = guest_paddr; 1123 region->region.memory_size = npages * vm->page_size; 1124 region->region.userspace_addr = (uintptr_t) region->host_mem; 1125 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1126 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1127 " rc: %i errno: %i\n" 1128 " slot: %u flags: 0x%x\n" 1129 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1130 ret, errno, slot, flags, 1131 guest_paddr, (uint64_t) region->region.memory_size, 1132 region->region.guest_memfd); 1133 1134 /* Add to quick lookup data structures */ 1135 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1136 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1137 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1138 1139 /* If shared memory, create an alias. */ 1140 if (region->fd >= 0) { 1141 region->mmap_alias = mmap(NULL, region->mmap_size, 1142 PROT_READ | PROT_WRITE, 1143 vm_mem_backing_src_alias(src_type)->flag, 1144 region->fd, 0); 1145 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1146 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1147 1148 /* Align host alias address */ 1149 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1150 } 1151 } 1152 1153 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1154 enum vm_mem_backing_src_type src_type, 1155 uint64_t guest_paddr, uint32_t slot, 1156 uint64_t npages, uint32_t flags) 1157 { 1158 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1159 } 1160 1161 /* 1162 * Memslot to region 1163 * 1164 * Input Args: 1165 * vm - Virtual Machine 1166 * memslot - KVM memory slot ID 1167 * 1168 * Output Args: None 1169 * 1170 * Return: 1171 * Pointer to memory region structure that describe memory region 1172 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1173 * on error (e.g. currently no memory region using memslot as a KVM 1174 * memory slot ID). 1175 */ 1176 struct userspace_mem_region * 1177 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1178 { 1179 struct userspace_mem_region *region; 1180 1181 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1182 memslot) 1183 if (region->region.slot == memslot) 1184 return region; 1185 1186 fprintf(stderr, "No mem region with the requested slot found,\n" 1187 " requested slot: %u\n", memslot); 1188 fputs("---- vm dump ----\n", stderr); 1189 vm_dump(stderr, vm, 2); 1190 TEST_FAIL("Mem region not found"); 1191 return NULL; 1192 } 1193 1194 /* 1195 * VM Memory Region Flags Set 1196 * 1197 * Input Args: 1198 * vm - Virtual Machine 1199 * flags - Starting guest physical address 1200 * 1201 * Output Args: None 1202 * 1203 * Return: None 1204 * 1205 * Sets the flags of the memory region specified by the value of slot, 1206 * to the values given by flags. 1207 */ 1208 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1209 { 1210 int ret; 1211 struct userspace_mem_region *region; 1212 1213 region = memslot2region(vm, slot); 1214 1215 region->region.flags = flags; 1216 1217 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1218 1219 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1220 " rc: %i errno: %i slot: %u flags: 0x%x", 1221 ret, errno, slot, flags); 1222 } 1223 1224 /* 1225 * VM Memory Region Move 1226 * 1227 * Input Args: 1228 * vm - Virtual Machine 1229 * slot - Slot of the memory region to move 1230 * new_gpa - Starting guest physical address 1231 * 1232 * Output Args: None 1233 * 1234 * Return: None 1235 * 1236 * Change the gpa of a memory region. 1237 */ 1238 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1239 { 1240 struct userspace_mem_region *region; 1241 int ret; 1242 1243 region = memslot2region(vm, slot); 1244 1245 region->region.guest_phys_addr = new_gpa; 1246 1247 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1248 1249 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1250 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1251 ret, errno, slot, new_gpa); 1252 } 1253 1254 /* 1255 * VM Memory Region Delete 1256 * 1257 * Input Args: 1258 * vm - Virtual Machine 1259 * slot - Slot of the memory region to delete 1260 * 1261 * Output Args: None 1262 * 1263 * Return: None 1264 * 1265 * Delete a memory region. 1266 */ 1267 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1268 { 1269 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1270 } 1271 1272 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1273 bool punch_hole) 1274 { 1275 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1276 struct userspace_mem_region *region; 1277 uint64_t end = base + size; 1278 uint64_t gpa, len; 1279 off_t fd_offset; 1280 int ret; 1281 1282 for (gpa = base; gpa < end; gpa += len) { 1283 uint64_t offset; 1284 1285 region = userspace_mem_region_find(vm, gpa, gpa); 1286 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1287 "Private memory region not found for GPA 0x%lx", gpa); 1288 1289 offset = gpa - region->region.guest_phys_addr; 1290 fd_offset = region->region.guest_memfd_offset + offset; 1291 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1292 1293 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1294 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1295 punch_hole ? "punch hole" : "allocate", gpa, len, 1296 region->region.guest_memfd, mode, fd_offset); 1297 } 1298 } 1299 1300 /* Returns the size of a vCPU's kvm_run structure. */ 1301 static int vcpu_mmap_sz(void) 1302 { 1303 int dev_fd, ret; 1304 1305 dev_fd = open_kvm_dev_path_or_exit(); 1306 1307 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1308 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1309 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1310 1311 close(dev_fd); 1312 1313 return ret; 1314 } 1315 1316 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1317 { 1318 struct kvm_vcpu *vcpu; 1319 1320 list_for_each_entry(vcpu, &vm->vcpus, list) { 1321 if (vcpu->id == vcpu_id) 1322 return true; 1323 } 1324 1325 return false; 1326 } 1327 1328 /* 1329 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1330 * No additional vCPU setup is done. Returns the vCPU. 1331 */ 1332 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1333 { 1334 struct kvm_vcpu *vcpu; 1335 1336 /* Confirm a vcpu with the specified id doesn't already exist. */ 1337 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1338 1339 /* Allocate and initialize new vcpu structure. */ 1340 vcpu = calloc(1, sizeof(*vcpu)); 1341 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1342 1343 vcpu->vm = vm; 1344 vcpu->id = vcpu_id; 1345 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1346 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1347 1348 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1349 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1350 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1351 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1352 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1353 TEST_ASSERT(vcpu->run != MAP_FAILED, 1354 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1355 1356 /* Add to linked-list of VCPUs. */ 1357 list_add(&vcpu->list, &vm->vcpus); 1358 1359 return vcpu; 1360 } 1361 1362 /* 1363 * VM Virtual Address Unused Gap 1364 * 1365 * Input Args: 1366 * vm - Virtual Machine 1367 * sz - Size (bytes) 1368 * vaddr_min - Minimum Virtual Address 1369 * 1370 * Output Args: None 1371 * 1372 * Return: 1373 * Lowest virtual address at or below vaddr_min, with at least 1374 * sz unused bytes. TEST_ASSERT failure if no area of at least 1375 * size sz is available. 1376 * 1377 * Within the VM specified by vm, locates the lowest starting virtual 1378 * address >= vaddr_min, that has at least sz unallocated bytes. A 1379 * TEST_ASSERT failure occurs for invalid input or no area of at least 1380 * sz unallocated bytes >= vaddr_min is available. 1381 */ 1382 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1383 vm_vaddr_t vaddr_min) 1384 { 1385 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1386 1387 /* Determine lowest permitted virtual page index. */ 1388 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1389 if ((pgidx_start * vm->page_size) < vaddr_min) 1390 goto no_va_found; 1391 1392 /* Loop over section with enough valid virtual page indexes. */ 1393 if (!sparsebit_is_set_num(vm->vpages_valid, 1394 pgidx_start, pages)) 1395 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1396 pgidx_start, pages); 1397 do { 1398 /* 1399 * Are there enough unused virtual pages available at 1400 * the currently proposed starting virtual page index. 1401 * If not, adjust proposed starting index to next 1402 * possible. 1403 */ 1404 if (sparsebit_is_clear_num(vm->vpages_mapped, 1405 pgidx_start, pages)) 1406 goto va_found; 1407 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1408 pgidx_start, pages); 1409 if (pgidx_start == 0) 1410 goto no_va_found; 1411 1412 /* 1413 * If needed, adjust proposed starting virtual address, 1414 * to next range of valid virtual addresses. 1415 */ 1416 if (!sparsebit_is_set_num(vm->vpages_valid, 1417 pgidx_start, pages)) { 1418 pgidx_start = sparsebit_next_set_num( 1419 vm->vpages_valid, pgidx_start, pages); 1420 if (pgidx_start == 0) 1421 goto no_va_found; 1422 } 1423 } while (pgidx_start != 0); 1424 1425 no_va_found: 1426 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1427 1428 /* NOT REACHED */ 1429 return -1; 1430 1431 va_found: 1432 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1433 pgidx_start, pages), 1434 "Unexpected, invalid virtual page index range,\n" 1435 " pgidx_start: 0x%lx\n" 1436 " pages: 0x%lx", 1437 pgidx_start, pages); 1438 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1439 pgidx_start, pages), 1440 "Unexpected, pages already mapped,\n" 1441 " pgidx_start: 0x%lx\n" 1442 " pages: 0x%lx", 1443 pgidx_start, pages); 1444 1445 return pgidx_start * vm->page_size; 1446 } 1447 1448 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1449 vm_vaddr_t vaddr_min, 1450 enum kvm_mem_region_type type, 1451 bool protected) 1452 { 1453 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1454 1455 virt_pgd_alloc(vm); 1456 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1457 KVM_UTIL_MIN_PFN * vm->page_size, 1458 vm->memslots[type], protected); 1459 1460 /* 1461 * Find an unused range of virtual page addresses of at least 1462 * pages in length. 1463 */ 1464 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1465 1466 /* Map the virtual pages. */ 1467 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1468 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1469 1470 virt_pg_map(vm, vaddr, paddr); 1471 1472 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1473 } 1474 1475 return vaddr_start; 1476 } 1477 1478 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1479 enum kvm_mem_region_type type) 1480 { 1481 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1482 vm_arch_has_protected_memory(vm)); 1483 } 1484 1485 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1486 vm_vaddr_t vaddr_min, 1487 enum kvm_mem_region_type type) 1488 { 1489 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1490 } 1491 1492 /* 1493 * VM Virtual Address Allocate 1494 * 1495 * Input Args: 1496 * vm - Virtual Machine 1497 * sz - Size in bytes 1498 * vaddr_min - Minimum starting virtual address 1499 * 1500 * Output Args: None 1501 * 1502 * Return: 1503 * Starting guest virtual address 1504 * 1505 * Allocates at least sz bytes within the virtual address space of the vm 1506 * given by vm. The allocated bytes are mapped to a virtual address >= 1507 * the address given by vaddr_min. Note that each allocation uses a 1508 * a unique set of pages, with the minimum real allocation being at least 1509 * a page. The allocated physical space comes from the TEST_DATA memory region. 1510 */ 1511 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1512 { 1513 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1514 } 1515 1516 /* 1517 * VM Virtual Address Allocate Pages 1518 * 1519 * Input Args: 1520 * vm - Virtual Machine 1521 * 1522 * Output Args: None 1523 * 1524 * Return: 1525 * Starting guest virtual address 1526 * 1527 * Allocates at least N system pages worth of bytes within the virtual address 1528 * space of the vm. 1529 */ 1530 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1531 { 1532 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1533 } 1534 1535 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1536 { 1537 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1538 } 1539 1540 /* 1541 * VM Virtual Address Allocate Page 1542 * 1543 * Input Args: 1544 * vm - Virtual Machine 1545 * 1546 * Output Args: None 1547 * 1548 * Return: 1549 * Starting guest virtual address 1550 * 1551 * Allocates at least one system page worth of bytes within the virtual address 1552 * space of the vm. 1553 */ 1554 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1555 { 1556 return vm_vaddr_alloc_pages(vm, 1); 1557 } 1558 1559 /* 1560 * Map a range of VM virtual address to the VM's physical address 1561 * 1562 * Input Args: 1563 * vm - Virtual Machine 1564 * vaddr - Virtuall address to map 1565 * paddr - VM Physical Address 1566 * npages - The number of pages to map 1567 * 1568 * Output Args: None 1569 * 1570 * Return: None 1571 * 1572 * Within the VM given by @vm, creates a virtual translation for 1573 * @npages starting at @vaddr to the page range starting at @paddr. 1574 */ 1575 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1576 unsigned int npages) 1577 { 1578 size_t page_size = vm->page_size; 1579 size_t size = npages * page_size; 1580 1581 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1582 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1583 1584 while (npages--) { 1585 virt_pg_map(vm, vaddr, paddr); 1586 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1587 1588 vaddr += page_size; 1589 paddr += page_size; 1590 } 1591 } 1592 1593 /* 1594 * Address VM Physical to Host Virtual 1595 * 1596 * Input Args: 1597 * vm - Virtual Machine 1598 * gpa - VM physical address 1599 * 1600 * Output Args: None 1601 * 1602 * Return: 1603 * Equivalent host virtual address 1604 * 1605 * Locates the memory region containing the VM physical address given 1606 * by gpa, within the VM given by vm. When found, the host virtual 1607 * address providing the memory to the vm physical address is returned. 1608 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1609 */ 1610 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1611 { 1612 struct userspace_mem_region *region; 1613 1614 gpa = vm_untag_gpa(vm, gpa); 1615 1616 region = userspace_mem_region_find(vm, gpa, gpa); 1617 if (!region) { 1618 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1619 return NULL; 1620 } 1621 1622 return (void *)((uintptr_t)region->host_mem 1623 + (gpa - region->region.guest_phys_addr)); 1624 } 1625 1626 /* 1627 * Address Host Virtual to VM Physical 1628 * 1629 * Input Args: 1630 * vm - Virtual Machine 1631 * hva - Host virtual address 1632 * 1633 * Output Args: None 1634 * 1635 * Return: 1636 * Equivalent VM physical address 1637 * 1638 * Locates the memory region containing the host virtual address given 1639 * by hva, within the VM given by vm. When found, the equivalent 1640 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1641 * region containing hva exists. 1642 */ 1643 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1644 { 1645 struct rb_node *node; 1646 1647 for (node = vm->regions.hva_tree.rb_node; node; ) { 1648 struct userspace_mem_region *region = 1649 container_of(node, struct userspace_mem_region, hva_node); 1650 1651 if (hva >= region->host_mem) { 1652 if (hva <= (region->host_mem 1653 + region->region.memory_size - 1)) 1654 return (vm_paddr_t)((uintptr_t) 1655 region->region.guest_phys_addr 1656 + (hva - (uintptr_t)region->host_mem)); 1657 1658 node = node->rb_right; 1659 } else 1660 node = node->rb_left; 1661 } 1662 1663 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1664 return -1; 1665 } 1666 1667 /* 1668 * Address VM physical to Host Virtual *alias*. 1669 * 1670 * Input Args: 1671 * vm - Virtual Machine 1672 * gpa - VM physical address 1673 * 1674 * Output Args: None 1675 * 1676 * Return: 1677 * Equivalent address within the host virtual *alias* area, or NULL 1678 * (without failing the test) if the guest memory is not shared (so 1679 * no alias exists). 1680 * 1681 * Create a writable, shared virtual=>physical alias for the specific GPA. 1682 * The primary use case is to allow the host selftest to manipulate guest 1683 * memory without mapping said memory in the guest's address space. And, for 1684 * userfaultfd-based demand paging, to do so without triggering userfaults. 1685 */ 1686 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1687 { 1688 struct userspace_mem_region *region; 1689 uintptr_t offset; 1690 1691 region = userspace_mem_region_find(vm, gpa, gpa); 1692 if (!region) 1693 return NULL; 1694 1695 if (!region->host_alias) 1696 return NULL; 1697 1698 offset = gpa - region->region.guest_phys_addr; 1699 return (void *) ((uintptr_t) region->host_alias + offset); 1700 } 1701 1702 /* Create an interrupt controller chip for the specified VM. */ 1703 void vm_create_irqchip(struct kvm_vm *vm) 1704 { 1705 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1706 1707 vm->has_irqchip = true; 1708 } 1709 1710 int _vcpu_run(struct kvm_vcpu *vcpu) 1711 { 1712 int rc; 1713 1714 do { 1715 rc = __vcpu_run(vcpu); 1716 } while (rc == -1 && errno == EINTR); 1717 1718 assert_on_unhandled_exception(vcpu); 1719 1720 return rc; 1721 } 1722 1723 /* 1724 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1725 * Assert if the KVM returns an error (other than -EINTR). 1726 */ 1727 void vcpu_run(struct kvm_vcpu *vcpu) 1728 { 1729 int ret = _vcpu_run(vcpu); 1730 1731 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1732 } 1733 1734 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1735 { 1736 int ret; 1737 1738 vcpu->run->immediate_exit = 1; 1739 ret = __vcpu_run(vcpu); 1740 vcpu->run->immediate_exit = 0; 1741 1742 TEST_ASSERT(ret == -1 && errno == EINTR, 1743 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1744 ret, errno); 1745 } 1746 1747 /* 1748 * Get the list of guest registers which are supported for 1749 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1750 * it is the caller's responsibility to free the list. 1751 */ 1752 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1753 { 1754 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1755 int ret; 1756 1757 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1758 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1759 1760 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1761 reg_list->n = reg_list_n.n; 1762 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1763 return reg_list; 1764 } 1765 1766 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1767 { 1768 uint32_t page_size = getpagesize(); 1769 uint32_t size = vcpu->vm->dirty_ring_size; 1770 1771 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1772 1773 if (!vcpu->dirty_gfns) { 1774 void *addr; 1775 1776 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1777 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1778 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1779 1780 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1781 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1782 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1783 1784 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1785 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1786 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1787 1788 vcpu->dirty_gfns = addr; 1789 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1790 } 1791 1792 return vcpu->dirty_gfns; 1793 } 1794 1795 /* 1796 * Device Ioctl 1797 */ 1798 1799 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1800 { 1801 struct kvm_device_attr attribute = { 1802 .group = group, 1803 .attr = attr, 1804 .flags = 0, 1805 }; 1806 1807 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1808 } 1809 1810 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1811 { 1812 struct kvm_create_device create_dev = { 1813 .type = type, 1814 .flags = KVM_CREATE_DEVICE_TEST, 1815 }; 1816 1817 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1818 } 1819 1820 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1821 { 1822 struct kvm_create_device create_dev = { 1823 .type = type, 1824 .fd = -1, 1825 .flags = 0, 1826 }; 1827 int err; 1828 1829 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1830 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1831 return err ? : create_dev.fd; 1832 } 1833 1834 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1835 { 1836 struct kvm_device_attr kvmattr = { 1837 .group = group, 1838 .attr = attr, 1839 .flags = 0, 1840 .addr = (uintptr_t)val, 1841 }; 1842 1843 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1844 } 1845 1846 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1847 { 1848 struct kvm_device_attr kvmattr = { 1849 .group = group, 1850 .attr = attr, 1851 .flags = 0, 1852 .addr = (uintptr_t)val, 1853 }; 1854 1855 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1856 } 1857 1858 /* 1859 * IRQ related functions. 1860 */ 1861 1862 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1863 { 1864 struct kvm_irq_level irq_level = { 1865 .irq = irq, 1866 .level = level, 1867 }; 1868 1869 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1870 } 1871 1872 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1873 { 1874 int ret = _kvm_irq_line(vm, irq, level); 1875 1876 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1877 } 1878 1879 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1880 { 1881 struct kvm_irq_routing *routing; 1882 size_t size; 1883 1884 size = sizeof(struct kvm_irq_routing); 1885 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1886 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1887 routing = calloc(1, size); 1888 assert(routing); 1889 1890 return routing; 1891 } 1892 1893 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1894 uint32_t gsi, uint32_t pin) 1895 { 1896 int i; 1897 1898 assert(routing); 1899 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1900 1901 i = routing->nr; 1902 routing->entries[i].gsi = gsi; 1903 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1904 routing->entries[i].flags = 0; 1905 routing->entries[i].u.irqchip.irqchip = 0; 1906 routing->entries[i].u.irqchip.pin = pin; 1907 routing->nr++; 1908 } 1909 1910 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1911 { 1912 int ret; 1913 1914 assert(routing); 1915 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1916 free(routing); 1917 1918 return ret; 1919 } 1920 1921 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1922 { 1923 int ret; 1924 1925 ret = _kvm_gsi_routing_write(vm, routing); 1926 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1927 } 1928 1929 /* 1930 * VM Dump 1931 * 1932 * Input Args: 1933 * vm - Virtual Machine 1934 * indent - Left margin indent amount 1935 * 1936 * Output Args: 1937 * stream - Output FILE stream 1938 * 1939 * Return: None 1940 * 1941 * Dumps the current state of the VM given by vm, to the FILE stream 1942 * given by stream. 1943 */ 1944 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1945 { 1946 int ctr; 1947 struct userspace_mem_region *region; 1948 struct kvm_vcpu *vcpu; 1949 1950 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1951 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1952 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1953 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1954 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1955 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1956 "host_virt: %p\n", indent + 2, "", 1957 (uint64_t) region->region.guest_phys_addr, 1958 (uint64_t) region->region.memory_size, 1959 region->host_mem); 1960 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1961 sparsebit_dump(stream, region->unused_phy_pages, 0); 1962 if (region->protected_phy_pages) { 1963 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1964 sparsebit_dump(stream, region->protected_phy_pages, 0); 1965 } 1966 } 1967 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1968 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1969 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1970 vm->pgd_created); 1971 if (vm->pgd_created) { 1972 fprintf(stream, "%*sVirtual Translation Tables:\n", 1973 indent + 2, ""); 1974 virt_dump(stream, vm, indent + 4); 1975 } 1976 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1977 1978 list_for_each_entry(vcpu, &vm->vcpus, list) 1979 vcpu_dump(stream, vcpu, indent + 2); 1980 } 1981 1982 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1983 1984 /* Known KVM exit reasons */ 1985 static struct exit_reason { 1986 unsigned int reason; 1987 const char *name; 1988 } exit_reasons_known[] = { 1989 KVM_EXIT_STRING(UNKNOWN), 1990 KVM_EXIT_STRING(EXCEPTION), 1991 KVM_EXIT_STRING(IO), 1992 KVM_EXIT_STRING(HYPERCALL), 1993 KVM_EXIT_STRING(DEBUG), 1994 KVM_EXIT_STRING(HLT), 1995 KVM_EXIT_STRING(MMIO), 1996 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 1997 KVM_EXIT_STRING(SHUTDOWN), 1998 KVM_EXIT_STRING(FAIL_ENTRY), 1999 KVM_EXIT_STRING(INTR), 2000 KVM_EXIT_STRING(SET_TPR), 2001 KVM_EXIT_STRING(TPR_ACCESS), 2002 KVM_EXIT_STRING(S390_SIEIC), 2003 KVM_EXIT_STRING(S390_RESET), 2004 KVM_EXIT_STRING(DCR), 2005 KVM_EXIT_STRING(NMI), 2006 KVM_EXIT_STRING(INTERNAL_ERROR), 2007 KVM_EXIT_STRING(OSI), 2008 KVM_EXIT_STRING(PAPR_HCALL), 2009 KVM_EXIT_STRING(S390_UCONTROL), 2010 KVM_EXIT_STRING(WATCHDOG), 2011 KVM_EXIT_STRING(S390_TSCH), 2012 KVM_EXIT_STRING(EPR), 2013 KVM_EXIT_STRING(SYSTEM_EVENT), 2014 KVM_EXIT_STRING(S390_STSI), 2015 KVM_EXIT_STRING(IOAPIC_EOI), 2016 KVM_EXIT_STRING(HYPERV), 2017 KVM_EXIT_STRING(ARM_NISV), 2018 KVM_EXIT_STRING(X86_RDMSR), 2019 KVM_EXIT_STRING(X86_WRMSR), 2020 KVM_EXIT_STRING(DIRTY_RING_FULL), 2021 KVM_EXIT_STRING(AP_RESET_HOLD), 2022 KVM_EXIT_STRING(X86_BUS_LOCK), 2023 KVM_EXIT_STRING(XEN), 2024 KVM_EXIT_STRING(RISCV_SBI), 2025 KVM_EXIT_STRING(RISCV_CSR), 2026 KVM_EXIT_STRING(NOTIFY), 2027 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2028 KVM_EXIT_STRING(MEMORY_NOT_PRESENT), 2029 #endif 2030 }; 2031 2032 /* 2033 * Exit Reason String 2034 * 2035 * Input Args: 2036 * exit_reason - Exit reason 2037 * 2038 * Output Args: None 2039 * 2040 * Return: 2041 * Constant string pointer describing the exit reason. 2042 * 2043 * Locates and returns a constant string that describes the KVM exit 2044 * reason given by exit_reason. If no such string is found, a constant 2045 * string of "Unknown" is returned. 2046 */ 2047 const char *exit_reason_str(unsigned int exit_reason) 2048 { 2049 unsigned int n1; 2050 2051 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2052 if (exit_reason == exit_reasons_known[n1].reason) 2053 return exit_reasons_known[n1].name; 2054 } 2055 2056 return "Unknown"; 2057 } 2058 2059 /* 2060 * Physical Contiguous Page Allocator 2061 * 2062 * Input Args: 2063 * vm - Virtual Machine 2064 * num - number of pages 2065 * paddr_min - Physical address minimum 2066 * memslot - Memory region to allocate page from 2067 * protected - True if the pages will be used as protected/private memory 2068 * 2069 * Output Args: None 2070 * 2071 * Return: 2072 * Starting physical address 2073 * 2074 * Within the VM specified by vm, locates a range of available physical 2075 * pages at or above paddr_min. If found, the pages are marked as in use 2076 * and their base address is returned. A TEST_ASSERT failure occurs if 2077 * not enough pages are available at or above paddr_min. 2078 */ 2079 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2080 vm_paddr_t paddr_min, uint32_t memslot, 2081 bool protected) 2082 { 2083 struct userspace_mem_region *region; 2084 sparsebit_idx_t pg, base; 2085 2086 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2087 2088 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2089 "not divisible by page size.\n" 2090 " paddr_min: 0x%lx page_size: 0x%x", 2091 paddr_min, vm->page_size); 2092 2093 region = memslot2region(vm, memslot); 2094 TEST_ASSERT(!protected || region->protected_phy_pages, 2095 "Region doesn't support protected memory"); 2096 2097 base = pg = paddr_min >> vm->page_shift; 2098 do { 2099 for (; pg < base + num; ++pg) { 2100 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2101 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2102 break; 2103 } 2104 } 2105 } while (pg && pg != base + num); 2106 2107 if (pg == 0) { 2108 fprintf(stderr, "No guest physical page available, " 2109 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2110 paddr_min, vm->page_size, memslot); 2111 fputs("---- vm dump ----\n", stderr); 2112 vm_dump(stderr, vm, 2); 2113 abort(); 2114 } 2115 2116 for (pg = base; pg < base + num; ++pg) { 2117 sparsebit_clear(region->unused_phy_pages, pg); 2118 if (protected) 2119 sparsebit_set(region->protected_phy_pages, pg); 2120 } 2121 2122 return base * vm->page_size; 2123 } 2124 2125 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2126 uint32_t memslot) 2127 { 2128 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2129 } 2130 2131 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2132 { 2133 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2134 vm->memslots[MEM_REGION_PT]); 2135 } 2136 2137 /* 2138 * Address Guest Virtual to Host Virtual 2139 * 2140 * Input Args: 2141 * vm - Virtual Machine 2142 * gva - VM virtual address 2143 * 2144 * Output Args: None 2145 * 2146 * Return: 2147 * Equivalent host virtual address 2148 */ 2149 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2150 { 2151 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2152 } 2153 2154 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2155 { 2156 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2157 } 2158 2159 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2160 unsigned int page_shift, 2161 unsigned int new_page_shift, 2162 bool ceil) 2163 { 2164 unsigned int n = 1 << (new_page_shift - page_shift); 2165 2166 if (page_shift >= new_page_shift) 2167 return num_pages * (1 << (page_shift - new_page_shift)); 2168 2169 return num_pages / n + !!(ceil && num_pages % n); 2170 } 2171 2172 static inline int getpageshift(void) 2173 { 2174 return __builtin_ffs(getpagesize()) - 1; 2175 } 2176 2177 unsigned int 2178 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2179 { 2180 return vm_calc_num_pages(num_guest_pages, 2181 vm_guest_mode_params[mode].page_shift, 2182 getpageshift(), true); 2183 } 2184 2185 unsigned int 2186 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2187 { 2188 return vm_calc_num_pages(num_host_pages, getpageshift(), 2189 vm_guest_mode_params[mode].page_shift, false); 2190 } 2191 2192 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2193 { 2194 unsigned int n; 2195 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2196 return vm_adjust_num_guest_pages(mode, n); 2197 } 2198 2199 /* 2200 * Read binary stats descriptors 2201 * 2202 * Input Args: 2203 * stats_fd - the file descriptor for the binary stats file from which to read 2204 * header - the binary stats metadata header corresponding to the given FD 2205 * 2206 * Output Args: None 2207 * 2208 * Return: 2209 * A pointer to a newly allocated series of stat descriptors. 2210 * Caller is responsible for freeing the returned kvm_stats_desc. 2211 * 2212 * Read the stats descriptors from the binary stats interface. 2213 */ 2214 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2215 struct kvm_stats_header *header) 2216 { 2217 struct kvm_stats_desc *stats_desc; 2218 ssize_t desc_size, total_size, ret; 2219 2220 desc_size = get_stats_descriptor_size(header); 2221 total_size = header->num_desc * desc_size; 2222 2223 stats_desc = calloc(header->num_desc, desc_size); 2224 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2225 2226 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2227 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2228 2229 return stats_desc; 2230 } 2231 2232 /* 2233 * Read stat data for a particular stat 2234 * 2235 * Input Args: 2236 * stats_fd - the file descriptor for the binary stats file from which to read 2237 * header - the binary stats metadata header corresponding to the given FD 2238 * desc - the binary stat metadata for the particular stat to be read 2239 * max_elements - the maximum number of 8-byte values to read into data 2240 * 2241 * Output Args: 2242 * data - the buffer into which stat data should be read 2243 * 2244 * Read the data values of a specified stat from the binary stats interface. 2245 */ 2246 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2247 struct kvm_stats_desc *desc, uint64_t *data, 2248 size_t max_elements) 2249 { 2250 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2251 size_t size = nr_elements * sizeof(*data); 2252 ssize_t ret; 2253 2254 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2255 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2256 2257 ret = pread(stats_fd, data, size, 2258 header->data_offset + desc->offset); 2259 2260 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2261 desc->name, errno, strerror(errno)); 2262 TEST_ASSERT(ret == size, 2263 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2264 desc->name, size, ret); 2265 } 2266 2267 /* 2268 * Read the data of the named stat 2269 * 2270 * Input Args: 2271 * vm - the VM for which the stat should be read 2272 * stat_name - the name of the stat to read 2273 * max_elements - the maximum number of 8-byte values to read into data 2274 * 2275 * Output Args: 2276 * data - the buffer into which stat data should be read 2277 * 2278 * Read the data values of a specified stat from the binary stats interface. 2279 */ 2280 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 2281 size_t max_elements) 2282 { 2283 struct kvm_stats_desc *desc; 2284 size_t size_desc; 2285 int i; 2286 2287 if (!vm->stats_fd) { 2288 vm->stats_fd = vm_get_stats_fd(vm); 2289 read_stats_header(vm->stats_fd, &vm->stats_header); 2290 vm->stats_desc = read_stats_descriptors(vm->stats_fd, 2291 &vm->stats_header); 2292 } 2293 2294 size_desc = get_stats_descriptor_size(&vm->stats_header); 2295 2296 for (i = 0; i < vm->stats_header.num_desc; ++i) { 2297 desc = (void *)vm->stats_desc + (i * size_desc); 2298 2299 if (strcmp(desc->name, stat_name)) 2300 continue; 2301 2302 read_stat_data(vm->stats_fd, &vm->stats_header, desc, 2303 data, max_elements); 2304 2305 break; 2306 } 2307 } 2308 2309 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2310 { 2311 } 2312 2313 __weak void kvm_selftest_arch_init(void) 2314 { 2315 } 2316 2317 void __attribute((constructor)) kvm_selftest_init(void) 2318 { 2319 /* Tell stdout not to buffer its content. */ 2320 setbuf(stdout, NULL); 2321 2322 guest_random_seed = random(); 2323 2324 kvm_selftest_arch_init(); 2325 } 2326 2327 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2328 { 2329 sparsebit_idx_t pg = 0; 2330 struct userspace_mem_region *region; 2331 2332 if (!vm_arch_has_protected_memory(vm)) 2333 return false; 2334 2335 region = userspace_mem_region_find(vm, paddr, paddr); 2336 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2337 2338 pg = paddr >> vm->page_shift; 2339 return sparsebit_is_set(region->protected_phy_pages, pg); 2340 } 2341