1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "processor.h" 12 13 #include <assert.h> 14 #include <sched.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 int open_path_or_exit(const char *path, int flags) 26 { 27 int fd; 28 29 fd = open(path, flags); 30 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno)); 31 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path); 32 33 return fd; 34 } 35 36 /* 37 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 38 * 39 * Input Args: 40 * flags - The flags to pass when opening KVM_DEV_PATH. 41 * 42 * Return: 43 * The opened file descriptor of /dev/kvm. 44 */ 45 static int _open_kvm_dev_path_or_exit(int flags) 46 { 47 return open_path_or_exit(KVM_DEV_PATH, flags); 48 } 49 50 int open_kvm_dev_path_or_exit(void) 51 { 52 return _open_kvm_dev_path_or_exit(O_RDONLY); 53 } 54 55 static bool get_module_param_bool(const char *module_name, const char *param) 56 { 57 const int path_size = 128; 58 char path[path_size]; 59 char value; 60 ssize_t r; 61 int fd; 62 63 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 64 module_name, param); 65 TEST_ASSERT(r < path_size, 66 "Failed to construct sysfs path in %d bytes.", path_size); 67 68 fd = open_path_or_exit(path, O_RDONLY); 69 70 r = read(fd, &value, 1); 71 TEST_ASSERT(r == 1, "read(%s) failed", path); 72 73 r = close(fd); 74 TEST_ASSERT(!r, "close(%s) failed", path); 75 76 if (value == 'Y') 77 return true; 78 else if (value == 'N') 79 return false; 80 81 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 82 } 83 84 bool get_kvm_param_bool(const char *param) 85 { 86 return get_module_param_bool("kvm", param); 87 } 88 89 bool get_kvm_intel_param_bool(const char *param) 90 { 91 return get_module_param_bool("kvm_intel", param); 92 } 93 94 bool get_kvm_amd_param_bool(const char *param) 95 { 96 return get_module_param_bool("kvm_amd", param); 97 } 98 99 /* 100 * Capability 101 * 102 * Input Args: 103 * cap - Capability 104 * 105 * Output Args: None 106 * 107 * Return: 108 * On success, the Value corresponding to the capability (KVM_CAP_*) 109 * specified by the value of cap. On failure a TEST_ASSERT failure 110 * is produced. 111 * 112 * Looks up and returns the value corresponding to the capability 113 * (KVM_CAP_*) given by cap. 114 */ 115 unsigned int kvm_check_cap(long cap) 116 { 117 int ret; 118 int kvm_fd; 119 120 kvm_fd = open_kvm_dev_path_or_exit(); 121 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 122 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 123 124 close(kvm_fd); 125 126 return (unsigned int)ret; 127 } 128 129 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 130 { 131 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 132 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 133 else 134 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 135 vm->dirty_ring_size = ring_size; 136 } 137 138 static void vm_open(struct kvm_vm *vm) 139 { 140 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 141 142 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 143 144 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 145 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 146 } 147 148 const char *vm_guest_mode_string(uint32_t i) 149 { 150 static const char * const strings[] = { 151 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 152 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 153 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 154 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 155 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 156 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 157 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 158 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 159 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 160 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 161 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 162 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 163 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 164 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 165 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 166 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 167 }; 168 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 169 "Missing new mode strings?"); 170 171 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 172 173 return strings[i]; 174 } 175 176 const struct vm_guest_mode_params vm_guest_mode_params[] = { 177 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 178 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 179 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 180 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 181 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 182 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 183 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 184 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 185 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 186 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 187 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 188 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 189 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 190 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 191 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 192 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 193 }; 194 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 195 "Missing new mode params?"); 196 197 /* 198 * Initializes vm->vpages_valid to match the canonical VA space of the 199 * architecture. 200 * 201 * The default implementation is valid for architectures which split the 202 * range addressed by a single page table into a low and high region 203 * based on the MSB of the VA. On architectures with this behavior 204 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 205 */ 206 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 207 { 208 sparsebit_set_num(vm->vpages_valid, 209 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 210 sparsebit_set_num(vm->vpages_valid, 211 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 212 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 213 } 214 215 struct kvm_vm *____vm_create(struct vm_shape shape) 216 { 217 struct kvm_vm *vm; 218 219 vm = calloc(1, sizeof(*vm)); 220 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 221 222 INIT_LIST_HEAD(&vm->vcpus); 223 vm->regions.gpa_tree = RB_ROOT; 224 vm->regions.hva_tree = RB_ROOT; 225 hash_init(vm->regions.slot_hash); 226 227 vm->mode = shape.mode; 228 vm->type = shape.type; 229 vm->subtype = shape.subtype; 230 231 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 232 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 233 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 234 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 235 236 /* Setup mode specific traits. */ 237 switch (vm->mode) { 238 case VM_MODE_P52V48_4K: 239 vm->pgtable_levels = 4; 240 break; 241 case VM_MODE_P52V48_64K: 242 vm->pgtable_levels = 3; 243 break; 244 case VM_MODE_P48V48_4K: 245 vm->pgtable_levels = 4; 246 break; 247 case VM_MODE_P48V48_64K: 248 vm->pgtable_levels = 3; 249 break; 250 case VM_MODE_P40V48_4K: 251 case VM_MODE_P36V48_4K: 252 vm->pgtable_levels = 4; 253 break; 254 case VM_MODE_P40V48_64K: 255 case VM_MODE_P36V48_64K: 256 vm->pgtable_levels = 3; 257 break; 258 case VM_MODE_P52V48_16K: 259 case VM_MODE_P48V48_16K: 260 case VM_MODE_P40V48_16K: 261 case VM_MODE_P36V48_16K: 262 vm->pgtable_levels = 4; 263 break; 264 case VM_MODE_P36V47_16K: 265 vm->pgtable_levels = 3; 266 break; 267 case VM_MODE_PXXV48_4K: 268 #ifdef __x86_64__ 269 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 270 kvm_init_vm_address_properties(vm); 271 /* 272 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 273 * it doesn't take effect unless a CR4.LA57 is set, which it 274 * isn't for this mode (48-bit virtual address space). 275 */ 276 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 277 "Linear address width (%d bits) not supported", 278 vm->va_bits); 279 pr_debug("Guest physical address width detected: %d\n", 280 vm->pa_bits); 281 vm->pgtable_levels = 4; 282 vm->va_bits = 48; 283 #else 284 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 285 #endif 286 break; 287 case VM_MODE_P47V64_4K: 288 vm->pgtable_levels = 5; 289 break; 290 case VM_MODE_P44V64_4K: 291 vm->pgtable_levels = 5; 292 break; 293 default: 294 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 295 } 296 297 #ifdef __aarch64__ 298 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 299 if (vm->pa_bits != 40) 300 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 301 #endif 302 303 vm_open(vm); 304 305 /* Limit to VA-bit canonical virtual addresses. */ 306 vm->vpages_valid = sparsebit_alloc(); 307 vm_vaddr_populate_bitmap(vm); 308 309 /* Limit physical addresses to PA-bits. */ 310 vm->max_gfn = vm_compute_max_gfn(vm); 311 312 /* Allocate and setup memory for guest. */ 313 vm->vpages_mapped = sparsebit_alloc(); 314 315 return vm; 316 } 317 318 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 319 uint32_t nr_runnable_vcpus, 320 uint64_t extra_mem_pages) 321 { 322 uint64_t page_size = vm_guest_mode_params[mode].page_size; 323 uint64_t nr_pages; 324 325 TEST_ASSERT(nr_runnable_vcpus, 326 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 327 328 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 329 "nr_vcpus = %d too large for host, max-vcpus = %d", 330 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 331 332 /* 333 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 334 * test code and other per-VM assets that will be loaded into memslot0. 335 */ 336 nr_pages = 512; 337 338 /* Account for the per-vCPU stacks on behalf of the test. */ 339 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 340 341 /* 342 * Account for the number of pages needed for the page tables. The 343 * maximum page table size for a memory region will be when the 344 * smallest page size is used. Considering each page contains x page 345 * table descriptors, the total extra size for page tables (for extra 346 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 347 * than N/x*2. 348 */ 349 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 350 351 /* Account for the number of pages needed by ucall. */ 352 nr_pages += ucall_nr_pages_required(page_size); 353 354 return vm_adjust_num_guest_pages(mode, nr_pages); 355 } 356 357 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 358 uint64_t nr_extra_pages) 359 { 360 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 361 nr_extra_pages); 362 struct userspace_mem_region *slot0; 363 struct kvm_vm *vm; 364 int i; 365 366 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 367 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 368 369 vm = ____vm_create(shape); 370 371 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0); 372 for (i = 0; i < NR_MEM_REGIONS; i++) 373 vm->memslots[i] = 0; 374 375 kvm_vm_elf_load(vm, program_invocation_name); 376 377 /* 378 * TODO: Add proper defines to protect the library's memslots, and then 379 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 380 * read-only memslots as MMIO, and creating a read-only memslot for the 381 * MMIO region would prevent silently clobbering the MMIO region. 382 */ 383 slot0 = memslot2region(vm, 0); 384 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 385 386 kvm_arch_vm_post_create(vm); 387 388 return vm; 389 } 390 391 /* 392 * VM Create with customized parameters 393 * 394 * Input Args: 395 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 396 * nr_vcpus - VCPU count 397 * extra_mem_pages - Non-slot0 physical memory total size 398 * guest_code - Guest entry point 399 * vcpuids - VCPU IDs 400 * 401 * Output Args: None 402 * 403 * Return: 404 * Pointer to opaque structure that describes the created VM. 405 * 406 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 407 * extra_mem_pages is only used to calculate the maximum page table size, 408 * no real memory allocation for non-slot0 memory in this function. 409 */ 410 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 411 uint64_t extra_mem_pages, 412 void *guest_code, struct kvm_vcpu *vcpus[]) 413 { 414 struct kvm_vm *vm; 415 int i; 416 417 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 418 419 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 420 421 for (i = 0; i < nr_vcpus; ++i) 422 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 423 424 return vm; 425 } 426 427 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 428 struct kvm_vcpu **vcpu, 429 uint64_t extra_mem_pages, 430 void *guest_code) 431 { 432 struct kvm_vcpu *vcpus[1]; 433 struct kvm_vm *vm; 434 435 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 436 437 *vcpu = vcpus[0]; 438 return vm; 439 } 440 441 /* 442 * VM Restart 443 * 444 * Input Args: 445 * vm - VM that has been released before 446 * 447 * Output Args: None 448 * 449 * Reopens the file descriptors associated to the VM and reinstates the 450 * global state, such as the irqchip and the memory regions that are mapped 451 * into the guest. 452 */ 453 void kvm_vm_restart(struct kvm_vm *vmp) 454 { 455 int ctr; 456 struct userspace_mem_region *region; 457 458 vm_open(vmp); 459 if (vmp->has_irqchip) 460 vm_create_irqchip(vmp); 461 462 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 463 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 464 465 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 466 " rc: %i errno: %i\n" 467 " slot: %u flags: 0x%x\n" 468 " guest_phys_addr: 0x%llx size: 0x%llx", 469 ret, errno, region->region.slot, 470 region->region.flags, 471 region->region.guest_phys_addr, 472 region->region.memory_size); 473 } 474 } 475 476 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 477 uint32_t vcpu_id) 478 { 479 return __vm_vcpu_add(vm, vcpu_id); 480 } 481 482 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 483 { 484 kvm_vm_restart(vm); 485 486 return vm_vcpu_recreate(vm, 0); 487 } 488 489 void kvm_pin_this_task_to_pcpu(uint32_t pcpu) 490 { 491 cpu_set_t mask; 492 int r; 493 494 CPU_ZERO(&mask); 495 CPU_SET(pcpu, &mask); 496 r = sched_setaffinity(0, sizeof(mask), &mask); 497 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu); 498 } 499 500 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 501 { 502 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 503 504 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 505 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 506 return pcpu; 507 } 508 509 void kvm_print_vcpu_pinning_help(void) 510 { 511 const char *name = program_invocation_name; 512 513 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 514 " values (target pCPU), one for each vCPU, plus an optional\n" 515 " entry for the main application task (specified via entry\n" 516 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 517 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 518 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 519 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 520 " %s -v 3 -c 22,23,24,50\n\n" 521 " To leave the application task unpinned, drop the final entry:\n\n" 522 " %s -v 3 -c 22,23,24\n\n" 523 " (default: no pinning)\n", name, name); 524 } 525 526 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 527 int nr_vcpus) 528 { 529 cpu_set_t allowed_mask; 530 char *cpu, *cpu_list; 531 char delim[2] = ","; 532 int i, r; 533 534 cpu_list = strdup(pcpus_string); 535 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 536 537 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 538 TEST_ASSERT(!r, "sched_getaffinity() failed"); 539 540 cpu = strtok(cpu_list, delim); 541 542 /* 1. Get all pcpus for vcpus. */ 543 for (i = 0; i < nr_vcpus; i++) { 544 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 545 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 546 cpu = strtok(NULL, delim); 547 } 548 549 /* 2. Check if the main worker needs to be pinned. */ 550 if (cpu) { 551 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); 552 cpu = strtok(NULL, delim); 553 } 554 555 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 556 free(cpu_list); 557 } 558 559 /* 560 * Userspace Memory Region Find 561 * 562 * Input Args: 563 * vm - Virtual Machine 564 * start - Starting VM physical address 565 * end - Ending VM physical address, inclusive. 566 * 567 * Output Args: None 568 * 569 * Return: 570 * Pointer to overlapping region, NULL if no such region. 571 * 572 * Searches for a region with any physical memory that overlaps with 573 * any portion of the guest physical addresses from start to end 574 * inclusive. If multiple overlapping regions exist, a pointer to any 575 * of the regions is returned. Null is returned only when no overlapping 576 * region exists. 577 */ 578 static struct userspace_mem_region * 579 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 580 { 581 struct rb_node *node; 582 583 for (node = vm->regions.gpa_tree.rb_node; node; ) { 584 struct userspace_mem_region *region = 585 container_of(node, struct userspace_mem_region, gpa_node); 586 uint64_t existing_start = region->region.guest_phys_addr; 587 uint64_t existing_end = region->region.guest_phys_addr 588 + region->region.memory_size - 1; 589 if (start <= existing_end && end >= existing_start) 590 return region; 591 592 if (start < existing_start) 593 node = node->rb_left; 594 else 595 node = node->rb_right; 596 } 597 598 return NULL; 599 } 600 601 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 602 { 603 604 } 605 606 /* 607 * VM VCPU Remove 608 * 609 * Input Args: 610 * vcpu - VCPU to remove 611 * 612 * Output Args: None 613 * 614 * Return: None, TEST_ASSERT failures for all error conditions 615 * 616 * Removes a vCPU from a VM and frees its resources. 617 */ 618 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 619 { 620 int ret; 621 622 if (vcpu->dirty_gfns) { 623 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 624 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 625 vcpu->dirty_gfns = NULL; 626 } 627 628 ret = munmap(vcpu->run, vcpu_mmap_sz()); 629 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 630 631 ret = close(vcpu->fd); 632 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 633 634 list_del(&vcpu->list); 635 636 vcpu_arch_free(vcpu); 637 free(vcpu); 638 } 639 640 void kvm_vm_release(struct kvm_vm *vmp) 641 { 642 struct kvm_vcpu *vcpu, *tmp; 643 int ret; 644 645 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 646 vm_vcpu_rm(vmp, vcpu); 647 648 ret = close(vmp->fd); 649 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 650 651 ret = close(vmp->kvm_fd); 652 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 653 } 654 655 static void __vm_mem_region_delete(struct kvm_vm *vm, 656 struct userspace_mem_region *region, 657 bool unlink) 658 { 659 int ret; 660 661 if (unlink) { 662 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 663 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 664 hash_del(®ion->slot_node); 665 } 666 667 region->region.memory_size = 0; 668 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 669 670 sparsebit_free(®ion->unused_phy_pages); 671 sparsebit_free(®ion->protected_phy_pages); 672 ret = munmap(region->mmap_start, region->mmap_size); 673 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 674 if (region->fd >= 0) { 675 /* There's an extra map when using shared memory. */ 676 ret = munmap(region->mmap_alias, region->mmap_size); 677 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 678 close(region->fd); 679 } 680 if (region->region.guest_memfd >= 0) 681 close(region->region.guest_memfd); 682 683 free(region); 684 } 685 686 /* 687 * Destroys and frees the VM pointed to by vmp. 688 */ 689 void kvm_vm_free(struct kvm_vm *vmp) 690 { 691 int ctr; 692 struct hlist_node *node; 693 struct userspace_mem_region *region; 694 695 if (vmp == NULL) 696 return; 697 698 /* Free cached stats metadata and close FD */ 699 if (vmp->stats_fd) { 700 free(vmp->stats_desc); 701 close(vmp->stats_fd); 702 } 703 704 /* Free userspace_mem_regions. */ 705 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 706 __vm_mem_region_delete(vmp, region, false); 707 708 /* Free sparsebit arrays. */ 709 sparsebit_free(&vmp->vpages_valid); 710 sparsebit_free(&vmp->vpages_mapped); 711 712 kvm_vm_release(vmp); 713 714 /* Free the structure describing the VM. */ 715 free(vmp); 716 } 717 718 int kvm_memfd_alloc(size_t size, bool hugepages) 719 { 720 int memfd_flags = MFD_CLOEXEC; 721 int fd, r; 722 723 if (hugepages) 724 memfd_flags |= MFD_HUGETLB; 725 726 fd = memfd_create("kvm_selftest", memfd_flags); 727 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 728 729 r = ftruncate(fd, size); 730 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 731 732 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 733 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 734 735 return fd; 736 } 737 738 /* 739 * Memory Compare, host virtual to guest virtual 740 * 741 * Input Args: 742 * hva - Starting host virtual address 743 * vm - Virtual Machine 744 * gva - Starting guest virtual address 745 * len - number of bytes to compare 746 * 747 * Output Args: None 748 * 749 * Input/Output Args: None 750 * 751 * Return: 752 * Returns 0 if the bytes starting at hva for a length of len 753 * are equal the guest virtual bytes starting at gva. Returns 754 * a value < 0, if bytes at hva are less than those at gva. 755 * Otherwise a value > 0 is returned. 756 * 757 * Compares the bytes starting at the host virtual address hva, for 758 * a length of len, to the guest bytes starting at the guest virtual 759 * address given by gva. 760 */ 761 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 762 { 763 size_t amt; 764 765 /* 766 * Compare a batch of bytes until either a match is found 767 * or all the bytes have been compared. 768 */ 769 for (uintptr_t offset = 0; offset < len; offset += amt) { 770 uintptr_t ptr1 = (uintptr_t)hva + offset; 771 772 /* 773 * Determine host address for guest virtual address 774 * at offset. 775 */ 776 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 777 778 /* 779 * Determine amount to compare on this pass. 780 * Don't allow the comparsion to cross a page boundary. 781 */ 782 amt = len - offset; 783 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 784 amt = vm->page_size - (ptr1 % vm->page_size); 785 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 786 amt = vm->page_size - (ptr2 % vm->page_size); 787 788 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 789 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 790 791 /* 792 * Perform the comparison. If there is a difference 793 * return that result to the caller, otherwise need 794 * to continue on looking for a mismatch. 795 */ 796 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 797 if (ret != 0) 798 return ret; 799 } 800 801 /* 802 * No mismatch found. Let the caller know the two memory 803 * areas are equal. 804 */ 805 return 0; 806 } 807 808 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 809 struct userspace_mem_region *region) 810 { 811 struct rb_node **cur, *parent; 812 813 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 814 struct userspace_mem_region *cregion; 815 816 cregion = container_of(*cur, typeof(*cregion), gpa_node); 817 parent = *cur; 818 if (region->region.guest_phys_addr < 819 cregion->region.guest_phys_addr) 820 cur = &(*cur)->rb_left; 821 else { 822 TEST_ASSERT(region->region.guest_phys_addr != 823 cregion->region.guest_phys_addr, 824 "Duplicate GPA in region tree"); 825 826 cur = &(*cur)->rb_right; 827 } 828 } 829 830 rb_link_node(®ion->gpa_node, parent, cur); 831 rb_insert_color(®ion->gpa_node, gpa_tree); 832 } 833 834 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 835 struct userspace_mem_region *region) 836 { 837 struct rb_node **cur, *parent; 838 839 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 840 struct userspace_mem_region *cregion; 841 842 cregion = container_of(*cur, typeof(*cregion), hva_node); 843 parent = *cur; 844 if (region->host_mem < cregion->host_mem) 845 cur = &(*cur)->rb_left; 846 else { 847 TEST_ASSERT(region->host_mem != 848 cregion->host_mem, 849 "Duplicate HVA in region tree"); 850 851 cur = &(*cur)->rb_right; 852 } 853 } 854 855 rb_link_node(®ion->hva_node, parent, cur); 856 rb_insert_color(®ion->hva_node, hva_tree); 857 } 858 859 860 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 861 uint64_t gpa, uint64_t size, void *hva) 862 { 863 struct kvm_userspace_memory_region region = { 864 .slot = slot, 865 .flags = flags, 866 .guest_phys_addr = gpa, 867 .memory_size = size, 868 .userspace_addr = (uintptr_t)hva, 869 }; 870 871 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 872 } 873 874 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 875 uint64_t gpa, uint64_t size, void *hva) 876 { 877 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 878 879 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 880 errno, strerror(errno)); 881 } 882 883 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 884 uint64_t gpa, uint64_t size, void *hva, 885 uint32_t guest_memfd, uint64_t guest_memfd_offset) 886 { 887 struct kvm_userspace_memory_region2 region = { 888 .slot = slot, 889 .flags = flags, 890 .guest_phys_addr = gpa, 891 .memory_size = size, 892 .userspace_addr = (uintptr_t)hva, 893 .guest_memfd = guest_memfd, 894 .guest_memfd_offset = guest_memfd_offset, 895 }; 896 897 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 898 } 899 900 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 901 uint64_t gpa, uint64_t size, void *hva, 902 uint32_t guest_memfd, uint64_t guest_memfd_offset) 903 { 904 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 905 guest_memfd, guest_memfd_offset); 906 907 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 908 errno, strerror(errno)); 909 } 910 911 912 /* FIXME: This thing needs to be ripped apart and rewritten. */ 913 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 914 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 915 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 916 { 917 int ret; 918 struct userspace_mem_region *region; 919 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 920 size_t mem_size = npages * vm->page_size; 921 size_t alignment; 922 923 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 924 "Number of guest pages is not compatible with the host. " 925 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 926 927 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 928 "address not on a page boundary.\n" 929 " guest_paddr: 0x%lx vm->page_size: 0x%x", 930 guest_paddr, vm->page_size); 931 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 932 <= vm->max_gfn, "Physical range beyond maximum " 933 "supported physical address,\n" 934 " guest_paddr: 0x%lx npages: 0x%lx\n" 935 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 936 guest_paddr, npages, vm->max_gfn, vm->page_size); 937 938 /* 939 * Confirm a mem region with an overlapping address doesn't 940 * already exist. 941 */ 942 region = (struct userspace_mem_region *) userspace_mem_region_find( 943 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 944 if (region != NULL) 945 TEST_FAIL("overlapping userspace_mem_region already " 946 "exists\n" 947 " requested guest_paddr: 0x%lx npages: 0x%lx " 948 "page_size: 0x%x\n" 949 " existing guest_paddr: 0x%lx size: 0x%lx", 950 guest_paddr, npages, vm->page_size, 951 (uint64_t) region->region.guest_phys_addr, 952 (uint64_t) region->region.memory_size); 953 954 /* Confirm no region with the requested slot already exists. */ 955 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 956 slot) { 957 if (region->region.slot != slot) 958 continue; 959 960 TEST_FAIL("A mem region with the requested slot " 961 "already exists.\n" 962 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 963 " existing slot: %u paddr: 0x%lx size: 0x%lx", 964 slot, guest_paddr, npages, 965 region->region.slot, 966 (uint64_t) region->region.guest_phys_addr, 967 (uint64_t) region->region.memory_size); 968 } 969 970 /* Allocate and initialize new mem region structure. */ 971 region = calloc(1, sizeof(*region)); 972 TEST_ASSERT(region != NULL, "Insufficient Memory"); 973 region->mmap_size = mem_size; 974 975 #ifdef __s390x__ 976 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 977 alignment = 0x100000; 978 #else 979 alignment = 1; 980 #endif 981 982 /* 983 * When using THP mmap is not guaranteed to returned a hugepage aligned 984 * address so we have to pad the mmap. Padding is not needed for HugeTLB 985 * because mmap will always return an address aligned to the HugeTLB 986 * page size. 987 */ 988 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 989 alignment = max(backing_src_pagesz, alignment); 990 991 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 992 993 /* Add enough memory to align up if necessary */ 994 if (alignment > 1) 995 region->mmap_size += alignment; 996 997 region->fd = -1; 998 if (backing_src_is_shared(src_type)) 999 region->fd = kvm_memfd_alloc(region->mmap_size, 1000 src_type == VM_MEM_SRC_SHARED_HUGETLB); 1001 1002 region->mmap_start = mmap(NULL, region->mmap_size, 1003 PROT_READ | PROT_WRITE, 1004 vm_mem_backing_src_alias(src_type)->flag, 1005 region->fd, 0); 1006 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1007 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1008 1009 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1010 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1011 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1012 region->mmap_start, backing_src_pagesz); 1013 1014 /* Align host address */ 1015 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1016 1017 /* As needed perform madvise */ 1018 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1019 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1020 ret = madvise(region->host_mem, mem_size, 1021 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1022 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1023 region->host_mem, mem_size, 1024 vm_mem_backing_src_alias(src_type)->name); 1025 } 1026 1027 region->backing_src_type = src_type; 1028 1029 if (flags & KVM_MEM_GUEST_MEMFD) { 1030 if (guest_memfd < 0) { 1031 uint32_t guest_memfd_flags = 0; 1032 TEST_ASSERT(!guest_memfd_offset, 1033 "Offset must be zero when creating new guest_memfd"); 1034 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1035 } else { 1036 /* 1037 * Install a unique fd for each memslot so that the fd 1038 * can be closed when the region is deleted without 1039 * needing to track if the fd is owned by the framework 1040 * or by the caller. 1041 */ 1042 guest_memfd = dup(guest_memfd); 1043 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1044 } 1045 1046 region->region.guest_memfd = guest_memfd; 1047 region->region.guest_memfd_offset = guest_memfd_offset; 1048 } else { 1049 region->region.guest_memfd = -1; 1050 } 1051 1052 region->unused_phy_pages = sparsebit_alloc(); 1053 if (vm_arch_has_protected_memory(vm)) 1054 region->protected_phy_pages = sparsebit_alloc(); 1055 sparsebit_set_num(region->unused_phy_pages, 1056 guest_paddr >> vm->page_shift, npages); 1057 region->region.slot = slot; 1058 region->region.flags = flags; 1059 region->region.guest_phys_addr = guest_paddr; 1060 region->region.memory_size = npages * vm->page_size; 1061 region->region.userspace_addr = (uintptr_t) region->host_mem; 1062 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1063 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1064 " rc: %i errno: %i\n" 1065 " slot: %u flags: 0x%x\n" 1066 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1067 ret, errno, slot, flags, 1068 guest_paddr, (uint64_t) region->region.memory_size, 1069 region->region.guest_memfd); 1070 1071 /* Add to quick lookup data structures */ 1072 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1073 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1074 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1075 1076 /* If shared memory, create an alias. */ 1077 if (region->fd >= 0) { 1078 region->mmap_alias = mmap(NULL, region->mmap_size, 1079 PROT_READ | PROT_WRITE, 1080 vm_mem_backing_src_alias(src_type)->flag, 1081 region->fd, 0); 1082 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1083 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1084 1085 /* Align host alias address */ 1086 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1087 } 1088 } 1089 1090 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1091 enum vm_mem_backing_src_type src_type, 1092 uint64_t guest_paddr, uint32_t slot, 1093 uint64_t npages, uint32_t flags) 1094 { 1095 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1096 } 1097 1098 /* 1099 * Memslot to region 1100 * 1101 * Input Args: 1102 * vm - Virtual Machine 1103 * memslot - KVM memory slot ID 1104 * 1105 * Output Args: None 1106 * 1107 * Return: 1108 * Pointer to memory region structure that describe memory region 1109 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1110 * on error (e.g. currently no memory region using memslot as a KVM 1111 * memory slot ID). 1112 */ 1113 struct userspace_mem_region * 1114 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1115 { 1116 struct userspace_mem_region *region; 1117 1118 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1119 memslot) 1120 if (region->region.slot == memslot) 1121 return region; 1122 1123 fprintf(stderr, "No mem region with the requested slot found,\n" 1124 " requested slot: %u\n", memslot); 1125 fputs("---- vm dump ----\n", stderr); 1126 vm_dump(stderr, vm, 2); 1127 TEST_FAIL("Mem region not found"); 1128 return NULL; 1129 } 1130 1131 /* 1132 * VM Memory Region Flags Set 1133 * 1134 * Input Args: 1135 * vm - Virtual Machine 1136 * flags - Starting guest physical address 1137 * 1138 * Output Args: None 1139 * 1140 * Return: None 1141 * 1142 * Sets the flags of the memory region specified by the value of slot, 1143 * to the values given by flags. 1144 */ 1145 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1146 { 1147 int ret; 1148 struct userspace_mem_region *region; 1149 1150 region = memslot2region(vm, slot); 1151 1152 region->region.flags = flags; 1153 1154 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1155 1156 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1157 " rc: %i errno: %i slot: %u flags: 0x%x", 1158 ret, errno, slot, flags); 1159 } 1160 1161 /* 1162 * VM Memory Region Move 1163 * 1164 * Input Args: 1165 * vm - Virtual Machine 1166 * slot - Slot of the memory region to move 1167 * new_gpa - Starting guest physical address 1168 * 1169 * Output Args: None 1170 * 1171 * Return: None 1172 * 1173 * Change the gpa of a memory region. 1174 */ 1175 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1176 { 1177 struct userspace_mem_region *region; 1178 int ret; 1179 1180 region = memslot2region(vm, slot); 1181 1182 region->region.guest_phys_addr = new_gpa; 1183 1184 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1185 1186 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1187 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1188 ret, errno, slot, new_gpa); 1189 } 1190 1191 /* 1192 * VM Memory Region Delete 1193 * 1194 * Input Args: 1195 * vm - Virtual Machine 1196 * slot - Slot of the memory region to delete 1197 * 1198 * Output Args: None 1199 * 1200 * Return: None 1201 * 1202 * Delete a memory region. 1203 */ 1204 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1205 { 1206 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1207 } 1208 1209 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1210 bool punch_hole) 1211 { 1212 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1213 struct userspace_mem_region *region; 1214 uint64_t end = base + size; 1215 uint64_t gpa, len; 1216 off_t fd_offset; 1217 int ret; 1218 1219 for (gpa = base; gpa < end; gpa += len) { 1220 uint64_t offset; 1221 1222 region = userspace_mem_region_find(vm, gpa, gpa); 1223 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1224 "Private memory region not found for GPA 0x%lx", gpa); 1225 1226 offset = gpa - region->region.guest_phys_addr; 1227 fd_offset = region->region.guest_memfd_offset + offset; 1228 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1229 1230 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1231 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1232 punch_hole ? "punch hole" : "allocate", gpa, len, 1233 region->region.guest_memfd, mode, fd_offset); 1234 } 1235 } 1236 1237 /* Returns the size of a vCPU's kvm_run structure. */ 1238 static int vcpu_mmap_sz(void) 1239 { 1240 int dev_fd, ret; 1241 1242 dev_fd = open_kvm_dev_path_or_exit(); 1243 1244 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1245 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1246 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1247 1248 close(dev_fd); 1249 1250 return ret; 1251 } 1252 1253 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1254 { 1255 struct kvm_vcpu *vcpu; 1256 1257 list_for_each_entry(vcpu, &vm->vcpus, list) { 1258 if (vcpu->id == vcpu_id) 1259 return true; 1260 } 1261 1262 return false; 1263 } 1264 1265 /* 1266 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1267 * No additional vCPU setup is done. Returns the vCPU. 1268 */ 1269 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1270 { 1271 struct kvm_vcpu *vcpu; 1272 1273 /* Confirm a vcpu with the specified id doesn't already exist. */ 1274 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1275 1276 /* Allocate and initialize new vcpu structure. */ 1277 vcpu = calloc(1, sizeof(*vcpu)); 1278 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1279 1280 vcpu->vm = vm; 1281 vcpu->id = vcpu_id; 1282 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1283 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1284 1285 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1286 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1287 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1288 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1289 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1290 TEST_ASSERT(vcpu->run != MAP_FAILED, 1291 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1292 1293 /* Add to linked-list of VCPUs. */ 1294 list_add(&vcpu->list, &vm->vcpus); 1295 1296 return vcpu; 1297 } 1298 1299 /* 1300 * VM Virtual Address Unused Gap 1301 * 1302 * Input Args: 1303 * vm - Virtual Machine 1304 * sz - Size (bytes) 1305 * vaddr_min - Minimum Virtual Address 1306 * 1307 * Output Args: None 1308 * 1309 * Return: 1310 * Lowest virtual address at or below vaddr_min, with at least 1311 * sz unused bytes. TEST_ASSERT failure if no area of at least 1312 * size sz is available. 1313 * 1314 * Within the VM specified by vm, locates the lowest starting virtual 1315 * address >= vaddr_min, that has at least sz unallocated bytes. A 1316 * TEST_ASSERT failure occurs for invalid input or no area of at least 1317 * sz unallocated bytes >= vaddr_min is available. 1318 */ 1319 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1320 vm_vaddr_t vaddr_min) 1321 { 1322 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1323 1324 /* Determine lowest permitted virtual page index. */ 1325 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1326 if ((pgidx_start * vm->page_size) < vaddr_min) 1327 goto no_va_found; 1328 1329 /* Loop over section with enough valid virtual page indexes. */ 1330 if (!sparsebit_is_set_num(vm->vpages_valid, 1331 pgidx_start, pages)) 1332 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1333 pgidx_start, pages); 1334 do { 1335 /* 1336 * Are there enough unused virtual pages available at 1337 * the currently proposed starting virtual page index. 1338 * If not, adjust proposed starting index to next 1339 * possible. 1340 */ 1341 if (sparsebit_is_clear_num(vm->vpages_mapped, 1342 pgidx_start, pages)) 1343 goto va_found; 1344 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1345 pgidx_start, pages); 1346 if (pgidx_start == 0) 1347 goto no_va_found; 1348 1349 /* 1350 * If needed, adjust proposed starting virtual address, 1351 * to next range of valid virtual addresses. 1352 */ 1353 if (!sparsebit_is_set_num(vm->vpages_valid, 1354 pgidx_start, pages)) { 1355 pgidx_start = sparsebit_next_set_num( 1356 vm->vpages_valid, pgidx_start, pages); 1357 if (pgidx_start == 0) 1358 goto no_va_found; 1359 } 1360 } while (pgidx_start != 0); 1361 1362 no_va_found: 1363 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1364 1365 /* NOT REACHED */ 1366 return -1; 1367 1368 va_found: 1369 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1370 pgidx_start, pages), 1371 "Unexpected, invalid virtual page index range,\n" 1372 " pgidx_start: 0x%lx\n" 1373 " pages: 0x%lx", 1374 pgidx_start, pages); 1375 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1376 pgidx_start, pages), 1377 "Unexpected, pages already mapped,\n" 1378 " pgidx_start: 0x%lx\n" 1379 " pages: 0x%lx", 1380 pgidx_start, pages); 1381 1382 return pgidx_start * vm->page_size; 1383 } 1384 1385 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1386 vm_vaddr_t vaddr_min, 1387 enum kvm_mem_region_type type, 1388 bool protected) 1389 { 1390 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1391 1392 virt_pgd_alloc(vm); 1393 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1394 KVM_UTIL_MIN_PFN * vm->page_size, 1395 vm->memslots[type], protected); 1396 1397 /* 1398 * Find an unused range of virtual page addresses of at least 1399 * pages in length. 1400 */ 1401 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1402 1403 /* Map the virtual pages. */ 1404 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1405 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1406 1407 virt_pg_map(vm, vaddr, paddr); 1408 1409 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1410 } 1411 1412 return vaddr_start; 1413 } 1414 1415 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1416 enum kvm_mem_region_type type) 1417 { 1418 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1419 vm_arch_has_protected_memory(vm)); 1420 } 1421 1422 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1423 vm_vaddr_t vaddr_min, 1424 enum kvm_mem_region_type type) 1425 { 1426 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1427 } 1428 1429 /* 1430 * VM Virtual Address Allocate 1431 * 1432 * Input Args: 1433 * vm - Virtual Machine 1434 * sz - Size in bytes 1435 * vaddr_min - Minimum starting virtual address 1436 * 1437 * Output Args: None 1438 * 1439 * Return: 1440 * Starting guest virtual address 1441 * 1442 * Allocates at least sz bytes within the virtual address space of the vm 1443 * given by vm. The allocated bytes are mapped to a virtual address >= 1444 * the address given by vaddr_min. Note that each allocation uses a 1445 * a unique set of pages, with the minimum real allocation being at least 1446 * a page. The allocated physical space comes from the TEST_DATA memory region. 1447 */ 1448 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1449 { 1450 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1451 } 1452 1453 /* 1454 * VM Virtual Address Allocate Pages 1455 * 1456 * Input Args: 1457 * vm - Virtual Machine 1458 * 1459 * Output Args: None 1460 * 1461 * Return: 1462 * Starting guest virtual address 1463 * 1464 * Allocates at least N system pages worth of bytes within the virtual address 1465 * space of the vm. 1466 */ 1467 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1468 { 1469 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1470 } 1471 1472 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1473 { 1474 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1475 } 1476 1477 /* 1478 * VM Virtual Address Allocate Page 1479 * 1480 * Input Args: 1481 * vm - Virtual Machine 1482 * 1483 * Output Args: None 1484 * 1485 * Return: 1486 * Starting guest virtual address 1487 * 1488 * Allocates at least one system page worth of bytes within the virtual address 1489 * space of the vm. 1490 */ 1491 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1492 { 1493 return vm_vaddr_alloc_pages(vm, 1); 1494 } 1495 1496 /* 1497 * Map a range of VM virtual address to the VM's physical address 1498 * 1499 * Input Args: 1500 * vm - Virtual Machine 1501 * vaddr - Virtuall address to map 1502 * paddr - VM Physical Address 1503 * npages - The number of pages to map 1504 * 1505 * Output Args: None 1506 * 1507 * Return: None 1508 * 1509 * Within the VM given by @vm, creates a virtual translation for 1510 * @npages starting at @vaddr to the page range starting at @paddr. 1511 */ 1512 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1513 unsigned int npages) 1514 { 1515 size_t page_size = vm->page_size; 1516 size_t size = npages * page_size; 1517 1518 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1519 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1520 1521 while (npages--) { 1522 virt_pg_map(vm, vaddr, paddr); 1523 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1524 1525 vaddr += page_size; 1526 paddr += page_size; 1527 } 1528 } 1529 1530 /* 1531 * Address VM Physical to Host Virtual 1532 * 1533 * Input Args: 1534 * vm - Virtual Machine 1535 * gpa - VM physical address 1536 * 1537 * Output Args: None 1538 * 1539 * Return: 1540 * Equivalent host virtual address 1541 * 1542 * Locates the memory region containing the VM physical address given 1543 * by gpa, within the VM given by vm. When found, the host virtual 1544 * address providing the memory to the vm physical address is returned. 1545 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1546 */ 1547 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1548 { 1549 struct userspace_mem_region *region; 1550 1551 gpa = vm_untag_gpa(vm, gpa); 1552 1553 region = userspace_mem_region_find(vm, gpa, gpa); 1554 if (!region) { 1555 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1556 return NULL; 1557 } 1558 1559 return (void *)((uintptr_t)region->host_mem 1560 + (gpa - region->region.guest_phys_addr)); 1561 } 1562 1563 /* 1564 * Address Host Virtual to VM Physical 1565 * 1566 * Input Args: 1567 * vm - Virtual Machine 1568 * hva - Host virtual address 1569 * 1570 * Output Args: None 1571 * 1572 * Return: 1573 * Equivalent VM physical address 1574 * 1575 * Locates the memory region containing the host virtual address given 1576 * by hva, within the VM given by vm. When found, the equivalent 1577 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1578 * region containing hva exists. 1579 */ 1580 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1581 { 1582 struct rb_node *node; 1583 1584 for (node = vm->regions.hva_tree.rb_node; node; ) { 1585 struct userspace_mem_region *region = 1586 container_of(node, struct userspace_mem_region, hva_node); 1587 1588 if (hva >= region->host_mem) { 1589 if (hva <= (region->host_mem 1590 + region->region.memory_size - 1)) 1591 return (vm_paddr_t)((uintptr_t) 1592 region->region.guest_phys_addr 1593 + (hva - (uintptr_t)region->host_mem)); 1594 1595 node = node->rb_right; 1596 } else 1597 node = node->rb_left; 1598 } 1599 1600 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1601 return -1; 1602 } 1603 1604 /* 1605 * Address VM physical to Host Virtual *alias*. 1606 * 1607 * Input Args: 1608 * vm - Virtual Machine 1609 * gpa - VM physical address 1610 * 1611 * Output Args: None 1612 * 1613 * Return: 1614 * Equivalent address within the host virtual *alias* area, or NULL 1615 * (without failing the test) if the guest memory is not shared (so 1616 * no alias exists). 1617 * 1618 * Create a writable, shared virtual=>physical alias for the specific GPA. 1619 * The primary use case is to allow the host selftest to manipulate guest 1620 * memory without mapping said memory in the guest's address space. And, for 1621 * userfaultfd-based demand paging, to do so without triggering userfaults. 1622 */ 1623 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1624 { 1625 struct userspace_mem_region *region; 1626 uintptr_t offset; 1627 1628 region = userspace_mem_region_find(vm, gpa, gpa); 1629 if (!region) 1630 return NULL; 1631 1632 if (!region->host_alias) 1633 return NULL; 1634 1635 offset = gpa - region->region.guest_phys_addr; 1636 return (void *) ((uintptr_t) region->host_alias + offset); 1637 } 1638 1639 /* Create an interrupt controller chip for the specified VM. */ 1640 void vm_create_irqchip(struct kvm_vm *vm) 1641 { 1642 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1643 1644 vm->has_irqchip = true; 1645 } 1646 1647 int _vcpu_run(struct kvm_vcpu *vcpu) 1648 { 1649 int rc; 1650 1651 do { 1652 rc = __vcpu_run(vcpu); 1653 } while (rc == -1 && errno == EINTR); 1654 1655 assert_on_unhandled_exception(vcpu); 1656 1657 return rc; 1658 } 1659 1660 /* 1661 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1662 * Assert if the KVM returns an error (other than -EINTR). 1663 */ 1664 void vcpu_run(struct kvm_vcpu *vcpu) 1665 { 1666 int ret = _vcpu_run(vcpu); 1667 1668 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1669 } 1670 1671 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1672 { 1673 int ret; 1674 1675 vcpu->run->immediate_exit = 1; 1676 ret = __vcpu_run(vcpu); 1677 vcpu->run->immediate_exit = 0; 1678 1679 TEST_ASSERT(ret == -1 && errno == EINTR, 1680 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1681 ret, errno); 1682 } 1683 1684 /* 1685 * Get the list of guest registers which are supported for 1686 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1687 * it is the caller's responsibility to free the list. 1688 */ 1689 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1690 { 1691 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1692 int ret; 1693 1694 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1695 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1696 1697 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1698 reg_list->n = reg_list_n.n; 1699 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1700 return reg_list; 1701 } 1702 1703 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1704 { 1705 uint32_t page_size = getpagesize(); 1706 uint32_t size = vcpu->vm->dirty_ring_size; 1707 1708 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1709 1710 if (!vcpu->dirty_gfns) { 1711 void *addr; 1712 1713 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1714 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1715 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1716 1717 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1718 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1719 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1720 1721 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1722 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1723 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1724 1725 vcpu->dirty_gfns = addr; 1726 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1727 } 1728 1729 return vcpu->dirty_gfns; 1730 } 1731 1732 /* 1733 * Device Ioctl 1734 */ 1735 1736 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1737 { 1738 struct kvm_device_attr attribute = { 1739 .group = group, 1740 .attr = attr, 1741 .flags = 0, 1742 }; 1743 1744 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1745 } 1746 1747 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1748 { 1749 struct kvm_create_device create_dev = { 1750 .type = type, 1751 .flags = KVM_CREATE_DEVICE_TEST, 1752 }; 1753 1754 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1755 } 1756 1757 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1758 { 1759 struct kvm_create_device create_dev = { 1760 .type = type, 1761 .fd = -1, 1762 .flags = 0, 1763 }; 1764 int err; 1765 1766 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1767 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1768 return err ? : create_dev.fd; 1769 } 1770 1771 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1772 { 1773 struct kvm_device_attr kvmattr = { 1774 .group = group, 1775 .attr = attr, 1776 .flags = 0, 1777 .addr = (uintptr_t)val, 1778 }; 1779 1780 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1781 } 1782 1783 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1784 { 1785 struct kvm_device_attr kvmattr = { 1786 .group = group, 1787 .attr = attr, 1788 .flags = 0, 1789 .addr = (uintptr_t)val, 1790 }; 1791 1792 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1793 } 1794 1795 /* 1796 * IRQ related functions. 1797 */ 1798 1799 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1800 { 1801 struct kvm_irq_level irq_level = { 1802 .irq = irq, 1803 .level = level, 1804 }; 1805 1806 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1807 } 1808 1809 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1810 { 1811 int ret = _kvm_irq_line(vm, irq, level); 1812 1813 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1814 } 1815 1816 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1817 { 1818 struct kvm_irq_routing *routing; 1819 size_t size; 1820 1821 size = sizeof(struct kvm_irq_routing); 1822 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1823 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1824 routing = calloc(1, size); 1825 assert(routing); 1826 1827 return routing; 1828 } 1829 1830 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1831 uint32_t gsi, uint32_t pin) 1832 { 1833 int i; 1834 1835 assert(routing); 1836 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1837 1838 i = routing->nr; 1839 routing->entries[i].gsi = gsi; 1840 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1841 routing->entries[i].flags = 0; 1842 routing->entries[i].u.irqchip.irqchip = 0; 1843 routing->entries[i].u.irqchip.pin = pin; 1844 routing->nr++; 1845 } 1846 1847 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1848 { 1849 int ret; 1850 1851 assert(routing); 1852 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1853 free(routing); 1854 1855 return ret; 1856 } 1857 1858 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1859 { 1860 int ret; 1861 1862 ret = _kvm_gsi_routing_write(vm, routing); 1863 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1864 } 1865 1866 /* 1867 * VM Dump 1868 * 1869 * Input Args: 1870 * vm - Virtual Machine 1871 * indent - Left margin indent amount 1872 * 1873 * Output Args: 1874 * stream - Output FILE stream 1875 * 1876 * Return: None 1877 * 1878 * Dumps the current state of the VM given by vm, to the FILE stream 1879 * given by stream. 1880 */ 1881 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1882 { 1883 int ctr; 1884 struct userspace_mem_region *region; 1885 struct kvm_vcpu *vcpu; 1886 1887 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1888 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1889 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1890 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1891 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1892 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1893 "host_virt: %p\n", indent + 2, "", 1894 (uint64_t) region->region.guest_phys_addr, 1895 (uint64_t) region->region.memory_size, 1896 region->host_mem); 1897 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1898 sparsebit_dump(stream, region->unused_phy_pages, 0); 1899 if (region->protected_phy_pages) { 1900 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1901 sparsebit_dump(stream, region->protected_phy_pages, 0); 1902 } 1903 } 1904 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1905 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1906 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1907 vm->pgd_created); 1908 if (vm->pgd_created) { 1909 fprintf(stream, "%*sVirtual Translation Tables:\n", 1910 indent + 2, ""); 1911 virt_dump(stream, vm, indent + 4); 1912 } 1913 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1914 1915 list_for_each_entry(vcpu, &vm->vcpus, list) 1916 vcpu_dump(stream, vcpu, indent + 2); 1917 } 1918 1919 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1920 1921 /* Known KVM exit reasons */ 1922 static struct exit_reason { 1923 unsigned int reason; 1924 const char *name; 1925 } exit_reasons_known[] = { 1926 KVM_EXIT_STRING(UNKNOWN), 1927 KVM_EXIT_STRING(EXCEPTION), 1928 KVM_EXIT_STRING(IO), 1929 KVM_EXIT_STRING(HYPERCALL), 1930 KVM_EXIT_STRING(DEBUG), 1931 KVM_EXIT_STRING(HLT), 1932 KVM_EXIT_STRING(MMIO), 1933 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 1934 KVM_EXIT_STRING(SHUTDOWN), 1935 KVM_EXIT_STRING(FAIL_ENTRY), 1936 KVM_EXIT_STRING(INTR), 1937 KVM_EXIT_STRING(SET_TPR), 1938 KVM_EXIT_STRING(TPR_ACCESS), 1939 KVM_EXIT_STRING(S390_SIEIC), 1940 KVM_EXIT_STRING(S390_RESET), 1941 KVM_EXIT_STRING(DCR), 1942 KVM_EXIT_STRING(NMI), 1943 KVM_EXIT_STRING(INTERNAL_ERROR), 1944 KVM_EXIT_STRING(OSI), 1945 KVM_EXIT_STRING(PAPR_HCALL), 1946 KVM_EXIT_STRING(S390_UCONTROL), 1947 KVM_EXIT_STRING(WATCHDOG), 1948 KVM_EXIT_STRING(S390_TSCH), 1949 KVM_EXIT_STRING(EPR), 1950 KVM_EXIT_STRING(SYSTEM_EVENT), 1951 KVM_EXIT_STRING(S390_STSI), 1952 KVM_EXIT_STRING(IOAPIC_EOI), 1953 KVM_EXIT_STRING(HYPERV), 1954 KVM_EXIT_STRING(ARM_NISV), 1955 KVM_EXIT_STRING(X86_RDMSR), 1956 KVM_EXIT_STRING(X86_WRMSR), 1957 KVM_EXIT_STRING(DIRTY_RING_FULL), 1958 KVM_EXIT_STRING(AP_RESET_HOLD), 1959 KVM_EXIT_STRING(X86_BUS_LOCK), 1960 KVM_EXIT_STRING(XEN), 1961 KVM_EXIT_STRING(RISCV_SBI), 1962 KVM_EXIT_STRING(RISCV_CSR), 1963 KVM_EXIT_STRING(NOTIFY), 1964 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 1965 KVM_EXIT_STRING(MEMORY_NOT_PRESENT), 1966 #endif 1967 }; 1968 1969 /* 1970 * Exit Reason String 1971 * 1972 * Input Args: 1973 * exit_reason - Exit reason 1974 * 1975 * Output Args: None 1976 * 1977 * Return: 1978 * Constant string pointer describing the exit reason. 1979 * 1980 * Locates and returns a constant string that describes the KVM exit 1981 * reason given by exit_reason. If no such string is found, a constant 1982 * string of "Unknown" is returned. 1983 */ 1984 const char *exit_reason_str(unsigned int exit_reason) 1985 { 1986 unsigned int n1; 1987 1988 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 1989 if (exit_reason == exit_reasons_known[n1].reason) 1990 return exit_reasons_known[n1].name; 1991 } 1992 1993 return "Unknown"; 1994 } 1995 1996 /* 1997 * Physical Contiguous Page Allocator 1998 * 1999 * Input Args: 2000 * vm - Virtual Machine 2001 * num - number of pages 2002 * paddr_min - Physical address minimum 2003 * memslot - Memory region to allocate page from 2004 * protected - True if the pages will be used as protected/private memory 2005 * 2006 * Output Args: None 2007 * 2008 * Return: 2009 * Starting physical address 2010 * 2011 * Within the VM specified by vm, locates a range of available physical 2012 * pages at or above paddr_min. If found, the pages are marked as in use 2013 * and their base address is returned. A TEST_ASSERT failure occurs if 2014 * not enough pages are available at or above paddr_min. 2015 */ 2016 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2017 vm_paddr_t paddr_min, uint32_t memslot, 2018 bool protected) 2019 { 2020 struct userspace_mem_region *region; 2021 sparsebit_idx_t pg, base; 2022 2023 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2024 2025 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2026 "not divisible by page size.\n" 2027 " paddr_min: 0x%lx page_size: 0x%x", 2028 paddr_min, vm->page_size); 2029 2030 region = memslot2region(vm, memslot); 2031 TEST_ASSERT(!protected || region->protected_phy_pages, 2032 "Region doesn't support protected memory"); 2033 2034 base = pg = paddr_min >> vm->page_shift; 2035 do { 2036 for (; pg < base + num; ++pg) { 2037 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2038 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2039 break; 2040 } 2041 } 2042 } while (pg && pg != base + num); 2043 2044 if (pg == 0) { 2045 fprintf(stderr, "No guest physical page available, " 2046 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2047 paddr_min, vm->page_size, memslot); 2048 fputs("---- vm dump ----\n", stderr); 2049 vm_dump(stderr, vm, 2); 2050 abort(); 2051 } 2052 2053 for (pg = base; pg < base + num; ++pg) { 2054 sparsebit_clear(region->unused_phy_pages, pg); 2055 if (protected) 2056 sparsebit_set(region->protected_phy_pages, pg); 2057 } 2058 2059 return base * vm->page_size; 2060 } 2061 2062 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2063 uint32_t memslot) 2064 { 2065 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2066 } 2067 2068 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2069 { 2070 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2071 vm->memslots[MEM_REGION_PT]); 2072 } 2073 2074 /* 2075 * Address Guest Virtual to Host Virtual 2076 * 2077 * Input Args: 2078 * vm - Virtual Machine 2079 * gva - VM virtual address 2080 * 2081 * Output Args: None 2082 * 2083 * Return: 2084 * Equivalent host virtual address 2085 */ 2086 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2087 { 2088 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2089 } 2090 2091 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2092 { 2093 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2094 } 2095 2096 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2097 unsigned int page_shift, 2098 unsigned int new_page_shift, 2099 bool ceil) 2100 { 2101 unsigned int n = 1 << (new_page_shift - page_shift); 2102 2103 if (page_shift >= new_page_shift) 2104 return num_pages * (1 << (page_shift - new_page_shift)); 2105 2106 return num_pages / n + !!(ceil && num_pages % n); 2107 } 2108 2109 static inline int getpageshift(void) 2110 { 2111 return __builtin_ffs(getpagesize()) - 1; 2112 } 2113 2114 unsigned int 2115 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2116 { 2117 return vm_calc_num_pages(num_guest_pages, 2118 vm_guest_mode_params[mode].page_shift, 2119 getpageshift(), true); 2120 } 2121 2122 unsigned int 2123 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2124 { 2125 return vm_calc_num_pages(num_host_pages, getpageshift(), 2126 vm_guest_mode_params[mode].page_shift, false); 2127 } 2128 2129 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2130 { 2131 unsigned int n; 2132 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2133 return vm_adjust_num_guest_pages(mode, n); 2134 } 2135 2136 /* 2137 * Read binary stats descriptors 2138 * 2139 * Input Args: 2140 * stats_fd - the file descriptor for the binary stats file from which to read 2141 * header - the binary stats metadata header corresponding to the given FD 2142 * 2143 * Output Args: None 2144 * 2145 * Return: 2146 * A pointer to a newly allocated series of stat descriptors. 2147 * Caller is responsible for freeing the returned kvm_stats_desc. 2148 * 2149 * Read the stats descriptors from the binary stats interface. 2150 */ 2151 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2152 struct kvm_stats_header *header) 2153 { 2154 struct kvm_stats_desc *stats_desc; 2155 ssize_t desc_size, total_size, ret; 2156 2157 desc_size = get_stats_descriptor_size(header); 2158 total_size = header->num_desc * desc_size; 2159 2160 stats_desc = calloc(header->num_desc, desc_size); 2161 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2162 2163 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2164 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2165 2166 return stats_desc; 2167 } 2168 2169 /* 2170 * Read stat data for a particular stat 2171 * 2172 * Input Args: 2173 * stats_fd - the file descriptor for the binary stats file from which to read 2174 * header - the binary stats metadata header corresponding to the given FD 2175 * desc - the binary stat metadata for the particular stat to be read 2176 * max_elements - the maximum number of 8-byte values to read into data 2177 * 2178 * Output Args: 2179 * data - the buffer into which stat data should be read 2180 * 2181 * Read the data values of a specified stat from the binary stats interface. 2182 */ 2183 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2184 struct kvm_stats_desc *desc, uint64_t *data, 2185 size_t max_elements) 2186 { 2187 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2188 size_t size = nr_elements * sizeof(*data); 2189 ssize_t ret; 2190 2191 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2192 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2193 2194 ret = pread(stats_fd, data, size, 2195 header->data_offset + desc->offset); 2196 2197 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2198 desc->name, errno, strerror(errno)); 2199 TEST_ASSERT(ret == size, 2200 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2201 desc->name, size, ret); 2202 } 2203 2204 /* 2205 * Read the data of the named stat 2206 * 2207 * Input Args: 2208 * vm - the VM for which the stat should be read 2209 * stat_name - the name of the stat to read 2210 * max_elements - the maximum number of 8-byte values to read into data 2211 * 2212 * Output Args: 2213 * data - the buffer into which stat data should be read 2214 * 2215 * Read the data values of a specified stat from the binary stats interface. 2216 */ 2217 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 2218 size_t max_elements) 2219 { 2220 struct kvm_stats_desc *desc; 2221 size_t size_desc; 2222 int i; 2223 2224 if (!vm->stats_fd) { 2225 vm->stats_fd = vm_get_stats_fd(vm); 2226 read_stats_header(vm->stats_fd, &vm->stats_header); 2227 vm->stats_desc = read_stats_descriptors(vm->stats_fd, 2228 &vm->stats_header); 2229 } 2230 2231 size_desc = get_stats_descriptor_size(&vm->stats_header); 2232 2233 for (i = 0; i < vm->stats_header.num_desc; ++i) { 2234 desc = (void *)vm->stats_desc + (i * size_desc); 2235 2236 if (strcmp(desc->name, stat_name)) 2237 continue; 2238 2239 read_stat_data(vm->stats_fd, &vm->stats_header, desc, 2240 data, max_elements); 2241 2242 break; 2243 } 2244 } 2245 2246 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2247 { 2248 } 2249 2250 __weak void kvm_selftest_arch_init(void) 2251 { 2252 } 2253 2254 void __attribute((constructor)) kvm_selftest_init(void) 2255 { 2256 /* Tell stdout not to buffer its content. */ 2257 setbuf(stdout, NULL); 2258 2259 kvm_selftest_arch_init(); 2260 } 2261 2262 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2263 { 2264 sparsebit_idx_t pg = 0; 2265 struct userspace_mem_region *region; 2266 2267 if (!vm_arch_has_protected_memory(vm)) 2268 return false; 2269 2270 region = userspace_mem_region_find(vm, paddr, paddr); 2271 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2272 2273 pg = paddr >> vm->page_shift; 2274 return sparsebit_is_set(region->protected_phy_pages, pg); 2275 } 2276