xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 4d4c02852abf01059e45a188f16f13f7ec78371c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sched.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
31 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
32 
33 	return fd;
34 }
35 
36 /*
37  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
38  *
39  * Input Args:
40  *   flags - The flags to pass when opening KVM_DEV_PATH.
41  *
42  * Return:
43  *   The opened file descriptor of /dev/kvm.
44  */
45 static int _open_kvm_dev_path_or_exit(int flags)
46 {
47 	return open_path_or_exit(KVM_DEV_PATH, flags);
48 }
49 
50 int open_kvm_dev_path_or_exit(void)
51 {
52 	return _open_kvm_dev_path_or_exit(O_RDONLY);
53 }
54 
55 static bool get_module_param_bool(const char *module_name, const char *param)
56 {
57 	const int path_size = 128;
58 	char path[path_size];
59 	char value;
60 	ssize_t r;
61 	int fd;
62 
63 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
64 		     module_name, param);
65 	TEST_ASSERT(r < path_size,
66 		    "Failed to construct sysfs path in %d bytes.", path_size);
67 
68 	fd = open_path_or_exit(path, O_RDONLY);
69 
70 	r = read(fd, &value, 1);
71 	TEST_ASSERT(r == 1, "read(%s) failed", path);
72 
73 	r = close(fd);
74 	TEST_ASSERT(!r, "close(%s) failed", path);
75 
76 	if (value == 'Y')
77 		return true;
78 	else if (value == 'N')
79 		return false;
80 
81 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
82 }
83 
84 bool get_kvm_param_bool(const char *param)
85 {
86 	return get_module_param_bool("kvm", param);
87 }
88 
89 bool get_kvm_intel_param_bool(const char *param)
90 {
91 	return get_module_param_bool("kvm_intel", param);
92 }
93 
94 bool get_kvm_amd_param_bool(const char *param)
95 {
96 	return get_module_param_bool("kvm_amd", param);
97 }
98 
99 /*
100  * Capability
101  *
102  * Input Args:
103  *   cap - Capability
104  *
105  * Output Args: None
106  *
107  * Return:
108  *   On success, the Value corresponding to the capability (KVM_CAP_*)
109  *   specified by the value of cap.  On failure a TEST_ASSERT failure
110  *   is produced.
111  *
112  * Looks up and returns the value corresponding to the capability
113  * (KVM_CAP_*) given by cap.
114  */
115 unsigned int kvm_check_cap(long cap)
116 {
117 	int ret;
118 	int kvm_fd;
119 
120 	kvm_fd = open_kvm_dev_path_or_exit();
121 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
122 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
123 
124 	close(kvm_fd);
125 
126 	return (unsigned int)ret;
127 }
128 
129 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
130 {
131 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
132 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
133 	else
134 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
135 	vm->dirty_ring_size = ring_size;
136 }
137 
138 static void vm_open(struct kvm_vm *vm)
139 {
140 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
141 
142 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
143 
144 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
145 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
146 }
147 
148 const char *vm_guest_mode_string(uint32_t i)
149 {
150 	static const char * const strings[] = {
151 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
152 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
153 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
154 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
155 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
156 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
157 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
158 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
159 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
160 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
161 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
162 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
163 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
164 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
165 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
166 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
167 	};
168 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
169 		       "Missing new mode strings?");
170 
171 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
172 
173 	return strings[i];
174 }
175 
176 const struct vm_guest_mode_params vm_guest_mode_params[] = {
177 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
178 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
179 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
180 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
181 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
182 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
183 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
184 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
185 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
186 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
187 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
188 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
189 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
190 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
191 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
192 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
193 };
194 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
195 	       "Missing new mode params?");
196 
197 /*
198  * Initializes vm->vpages_valid to match the canonical VA space of the
199  * architecture.
200  *
201  * The default implementation is valid for architectures which split the
202  * range addressed by a single page table into a low and high region
203  * based on the MSB of the VA. On architectures with this behavior
204  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
205  */
206 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
207 {
208 	sparsebit_set_num(vm->vpages_valid,
209 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
210 	sparsebit_set_num(vm->vpages_valid,
211 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
212 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
213 }
214 
215 struct kvm_vm *____vm_create(struct vm_shape shape)
216 {
217 	struct kvm_vm *vm;
218 
219 	vm = calloc(1, sizeof(*vm));
220 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
221 
222 	INIT_LIST_HEAD(&vm->vcpus);
223 	vm->regions.gpa_tree = RB_ROOT;
224 	vm->regions.hva_tree = RB_ROOT;
225 	hash_init(vm->regions.slot_hash);
226 
227 	vm->mode = shape.mode;
228 	vm->type = shape.type;
229 	vm->subtype = shape.subtype;
230 
231 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
232 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
233 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
234 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
235 
236 	/* Setup mode specific traits. */
237 	switch (vm->mode) {
238 	case VM_MODE_P52V48_4K:
239 		vm->pgtable_levels = 4;
240 		break;
241 	case VM_MODE_P52V48_64K:
242 		vm->pgtable_levels = 3;
243 		break;
244 	case VM_MODE_P48V48_4K:
245 		vm->pgtable_levels = 4;
246 		break;
247 	case VM_MODE_P48V48_64K:
248 		vm->pgtable_levels = 3;
249 		break;
250 	case VM_MODE_P40V48_4K:
251 	case VM_MODE_P36V48_4K:
252 		vm->pgtable_levels = 4;
253 		break;
254 	case VM_MODE_P40V48_64K:
255 	case VM_MODE_P36V48_64K:
256 		vm->pgtable_levels = 3;
257 		break;
258 	case VM_MODE_P52V48_16K:
259 	case VM_MODE_P48V48_16K:
260 	case VM_MODE_P40V48_16K:
261 	case VM_MODE_P36V48_16K:
262 		vm->pgtable_levels = 4;
263 		break;
264 	case VM_MODE_P36V47_16K:
265 		vm->pgtable_levels = 3;
266 		break;
267 	case VM_MODE_PXXV48_4K:
268 #ifdef __x86_64__
269 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
270 		kvm_init_vm_address_properties(vm);
271 		/*
272 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
273 		 * it doesn't take effect unless a CR4.LA57 is set, which it
274 		 * isn't for this mode (48-bit virtual address space).
275 		 */
276 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
277 			    "Linear address width (%d bits) not supported",
278 			    vm->va_bits);
279 		pr_debug("Guest physical address width detected: %d\n",
280 			 vm->pa_bits);
281 		vm->pgtable_levels = 4;
282 		vm->va_bits = 48;
283 #else
284 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
285 #endif
286 		break;
287 	case VM_MODE_P47V64_4K:
288 		vm->pgtable_levels = 5;
289 		break;
290 	case VM_MODE_P44V64_4K:
291 		vm->pgtable_levels = 5;
292 		break;
293 	default:
294 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
295 	}
296 
297 #ifdef __aarch64__
298 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
299 	if (vm->pa_bits != 40)
300 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
301 #endif
302 
303 	vm_open(vm);
304 
305 	/* Limit to VA-bit canonical virtual addresses. */
306 	vm->vpages_valid = sparsebit_alloc();
307 	vm_vaddr_populate_bitmap(vm);
308 
309 	/* Limit physical addresses to PA-bits. */
310 	vm->max_gfn = vm_compute_max_gfn(vm);
311 
312 	/* Allocate and setup memory for guest. */
313 	vm->vpages_mapped = sparsebit_alloc();
314 
315 	return vm;
316 }
317 
318 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
319 				     uint32_t nr_runnable_vcpus,
320 				     uint64_t extra_mem_pages)
321 {
322 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
323 	uint64_t nr_pages;
324 
325 	TEST_ASSERT(nr_runnable_vcpus,
326 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
327 
328 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
329 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
330 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
331 
332 	/*
333 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
334 	 * test code and other per-VM assets that will be loaded into memslot0.
335 	 */
336 	nr_pages = 512;
337 
338 	/* Account for the per-vCPU stacks on behalf of the test. */
339 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
340 
341 	/*
342 	 * Account for the number of pages needed for the page tables.  The
343 	 * maximum page table size for a memory region will be when the
344 	 * smallest page size is used. Considering each page contains x page
345 	 * table descriptors, the total extra size for page tables (for extra
346 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
347 	 * than N/x*2.
348 	 */
349 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
350 
351 	/* Account for the number of pages needed by ucall. */
352 	nr_pages += ucall_nr_pages_required(page_size);
353 
354 	return vm_adjust_num_guest_pages(mode, nr_pages);
355 }
356 
357 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
358 			   uint64_t nr_extra_pages)
359 {
360 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
361 						 nr_extra_pages);
362 	struct userspace_mem_region *slot0;
363 	struct kvm_vm *vm;
364 	int i;
365 
366 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
367 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
368 
369 	vm = ____vm_create(shape);
370 
371 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
372 	for (i = 0; i < NR_MEM_REGIONS; i++)
373 		vm->memslots[i] = 0;
374 
375 	kvm_vm_elf_load(vm, program_invocation_name);
376 
377 	/*
378 	 * TODO: Add proper defines to protect the library's memslots, and then
379 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
380 	 * read-only memslots as MMIO, and creating a read-only memslot for the
381 	 * MMIO region would prevent silently clobbering the MMIO region.
382 	 */
383 	slot0 = memslot2region(vm, 0);
384 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
385 
386 	kvm_arch_vm_post_create(vm);
387 
388 	return vm;
389 }
390 
391 /*
392  * VM Create with customized parameters
393  *
394  * Input Args:
395  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
396  *   nr_vcpus - VCPU count
397  *   extra_mem_pages - Non-slot0 physical memory total size
398  *   guest_code - Guest entry point
399  *   vcpuids - VCPU IDs
400  *
401  * Output Args: None
402  *
403  * Return:
404  *   Pointer to opaque structure that describes the created VM.
405  *
406  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
407  * extra_mem_pages is only used to calculate the maximum page table size,
408  * no real memory allocation for non-slot0 memory in this function.
409  */
410 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
411 				      uint64_t extra_mem_pages,
412 				      void *guest_code, struct kvm_vcpu *vcpus[])
413 {
414 	struct kvm_vm *vm;
415 	int i;
416 
417 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
418 
419 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
420 
421 	for (i = 0; i < nr_vcpus; ++i)
422 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
423 
424 	return vm;
425 }
426 
427 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
428 					       struct kvm_vcpu **vcpu,
429 					       uint64_t extra_mem_pages,
430 					       void *guest_code)
431 {
432 	struct kvm_vcpu *vcpus[1];
433 	struct kvm_vm *vm;
434 
435 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
436 
437 	*vcpu = vcpus[0];
438 	return vm;
439 }
440 
441 /*
442  * VM Restart
443  *
444  * Input Args:
445  *   vm - VM that has been released before
446  *
447  * Output Args: None
448  *
449  * Reopens the file descriptors associated to the VM and reinstates the
450  * global state, such as the irqchip and the memory regions that are mapped
451  * into the guest.
452  */
453 void kvm_vm_restart(struct kvm_vm *vmp)
454 {
455 	int ctr;
456 	struct userspace_mem_region *region;
457 
458 	vm_open(vmp);
459 	if (vmp->has_irqchip)
460 		vm_create_irqchip(vmp);
461 
462 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
463 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
464 
465 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
466 			    "  rc: %i errno: %i\n"
467 			    "  slot: %u flags: 0x%x\n"
468 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
469 			    ret, errno, region->region.slot,
470 			    region->region.flags,
471 			    region->region.guest_phys_addr,
472 			    region->region.memory_size);
473 	}
474 }
475 
476 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
477 					      uint32_t vcpu_id)
478 {
479 	return __vm_vcpu_add(vm, vcpu_id);
480 }
481 
482 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
483 {
484 	kvm_vm_restart(vm);
485 
486 	return vm_vcpu_recreate(vm, 0);
487 }
488 
489 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
490 {
491 	cpu_set_t mask;
492 	int r;
493 
494 	CPU_ZERO(&mask);
495 	CPU_SET(pcpu, &mask);
496 	r = sched_setaffinity(0, sizeof(mask), &mask);
497 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
498 }
499 
500 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
501 {
502 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
503 
504 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
505 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
506 	return pcpu;
507 }
508 
509 void kvm_print_vcpu_pinning_help(void)
510 {
511 	const char *name = program_invocation_name;
512 
513 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
514 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
515 	       "     entry for the main application task (specified via entry\n"
516 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
517 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
518 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
519 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
520 	       "         %s -v 3 -c 22,23,24,50\n\n"
521 	       "     To leave the application task unpinned, drop the final entry:\n\n"
522 	       "         %s -v 3 -c 22,23,24\n\n"
523 	       "     (default: no pinning)\n", name, name);
524 }
525 
526 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
527 			    int nr_vcpus)
528 {
529 	cpu_set_t allowed_mask;
530 	char *cpu, *cpu_list;
531 	char delim[2] = ",";
532 	int i, r;
533 
534 	cpu_list = strdup(pcpus_string);
535 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
536 
537 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
538 	TEST_ASSERT(!r, "sched_getaffinity() failed");
539 
540 	cpu = strtok(cpu_list, delim);
541 
542 	/* 1. Get all pcpus for vcpus. */
543 	for (i = 0; i < nr_vcpus; i++) {
544 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
545 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
546 		cpu = strtok(NULL, delim);
547 	}
548 
549 	/* 2. Check if the main worker needs to be pinned. */
550 	if (cpu) {
551 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
552 		cpu = strtok(NULL, delim);
553 	}
554 
555 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
556 	free(cpu_list);
557 }
558 
559 /*
560  * Userspace Memory Region Find
561  *
562  * Input Args:
563  *   vm - Virtual Machine
564  *   start - Starting VM physical address
565  *   end - Ending VM physical address, inclusive.
566  *
567  * Output Args: None
568  *
569  * Return:
570  *   Pointer to overlapping region, NULL if no such region.
571  *
572  * Searches for a region with any physical memory that overlaps with
573  * any portion of the guest physical addresses from start to end
574  * inclusive.  If multiple overlapping regions exist, a pointer to any
575  * of the regions is returned.  Null is returned only when no overlapping
576  * region exists.
577  */
578 static struct userspace_mem_region *
579 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
580 {
581 	struct rb_node *node;
582 
583 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
584 		struct userspace_mem_region *region =
585 			container_of(node, struct userspace_mem_region, gpa_node);
586 		uint64_t existing_start = region->region.guest_phys_addr;
587 		uint64_t existing_end = region->region.guest_phys_addr
588 			+ region->region.memory_size - 1;
589 		if (start <= existing_end && end >= existing_start)
590 			return region;
591 
592 		if (start < existing_start)
593 			node = node->rb_left;
594 		else
595 			node = node->rb_right;
596 	}
597 
598 	return NULL;
599 }
600 
601 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
602 {
603 
604 }
605 
606 /*
607  * VM VCPU Remove
608  *
609  * Input Args:
610  *   vcpu - VCPU to remove
611  *
612  * Output Args: None
613  *
614  * Return: None, TEST_ASSERT failures for all error conditions
615  *
616  * Removes a vCPU from a VM and frees its resources.
617  */
618 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
619 {
620 	int ret;
621 
622 	if (vcpu->dirty_gfns) {
623 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
624 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
625 		vcpu->dirty_gfns = NULL;
626 	}
627 
628 	ret = munmap(vcpu->run, vcpu_mmap_sz());
629 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
630 
631 	ret = close(vcpu->fd);
632 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
633 
634 	list_del(&vcpu->list);
635 
636 	vcpu_arch_free(vcpu);
637 	free(vcpu);
638 }
639 
640 void kvm_vm_release(struct kvm_vm *vmp)
641 {
642 	struct kvm_vcpu *vcpu, *tmp;
643 	int ret;
644 
645 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
646 		vm_vcpu_rm(vmp, vcpu);
647 
648 	ret = close(vmp->fd);
649 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
650 
651 	ret = close(vmp->kvm_fd);
652 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
653 }
654 
655 static void __vm_mem_region_delete(struct kvm_vm *vm,
656 				   struct userspace_mem_region *region,
657 				   bool unlink)
658 {
659 	int ret;
660 
661 	if (unlink) {
662 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
663 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
664 		hash_del(&region->slot_node);
665 	}
666 
667 	region->region.memory_size = 0;
668 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
669 
670 	sparsebit_free(&region->unused_phy_pages);
671 	sparsebit_free(&region->protected_phy_pages);
672 	ret = munmap(region->mmap_start, region->mmap_size);
673 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
674 	if (region->fd >= 0) {
675 		/* There's an extra map when using shared memory. */
676 		ret = munmap(region->mmap_alias, region->mmap_size);
677 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
678 		close(region->fd);
679 	}
680 	if (region->region.guest_memfd >= 0)
681 		close(region->region.guest_memfd);
682 
683 	free(region);
684 }
685 
686 /*
687  * Destroys and frees the VM pointed to by vmp.
688  */
689 void kvm_vm_free(struct kvm_vm *vmp)
690 {
691 	int ctr;
692 	struct hlist_node *node;
693 	struct userspace_mem_region *region;
694 
695 	if (vmp == NULL)
696 		return;
697 
698 	/* Free cached stats metadata and close FD */
699 	if (vmp->stats_fd) {
700 		free(vmp->stats_desc);
701 		close(vmp->stats_fd);
702 	}
703 
704 	/* Free userspace_mem_regions. */
705 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
706 		__vm_mem_region_delete(vmp, region, false);
707 
708 	/* Free sparsebit arrays. */
709 	sparsebit_free(&vmp->vpages_valid);
710 	sparsebit_free(&vmp->vpages_mapped);
711 
712 	kvm_vm_release(vmp);
713 
714 	/* Free the structure describing the VM. */
715 	free(vmp);
716 }
717 
718 int kvm_memfd_alloc(size_t size, bool hugepages)
719 {
720 	int memfd_flags = MFD_CLOEXEC;
721 	int fd, r;
722 
723 	if (hugepages)
724 		memfd_flags |= MFD_HUGETLB;
725 
726 	fd = memfd_create("kvm_selftest", memfd_flags);
727 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
728 
729 	r = ftruncate(fd, size);
730 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
731 
732 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
733 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
734 
735 	return fd;
736 }
737 
738 /*
739  * Memory Compare, host virtual to guest virtual
740  *
741  * Input Args:
742  *   hva - Starting host virtual address
743  *   vm - Virtual Machine
744  *   gva - Starting guest virtual address
745  *   len - number of bytes to compare
746  *
747  * Output Args: None
748  *
749  * Input/Output Args: None
750  *
751  * Return:
752  *   Returns 0 if the bytes starting at hva for a length of len
753  *   are equal the guest virtual bytes starting at gva.  Returns
754  *   a value < 0, if bytes at hva are less than those at gva.
755  *   Otherwise a value > 0 is returned.
756  *
757  * Compares the bytes starting at the host virtual address hva, for
758  * a length of len, to the guest bytes starting at the guest virtual
759  * address given by gva.
760  */
761 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
762 {
763 	size_t amt;
764 
765 	/*
766 	 * Compare a batch of bytes until either a match is found
767 	 * or all the bytes have been compared.
768 	 */
769 	for (uintptr_t offset = 0; offset < len; offset += amt) {
770 		uintptr_t ptr1 = (uintptr_t)hva + offset;
771 
772 		/*
773 		 * Determine host address for guest virtual address
774 		 * at offset.
775 		 */
776 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
777 
778 		/*
779 		 * Determine amount to compare on this pass.
780 		 * Don't allow the comparsion to cross a page boundary.
781 		 */
782 		amt = len - offset;
783 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
784 			amt = vm->page_size - (ptr1 % vm->page_size);
785 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
786 			amt = vm->page_size - (ptr2 % vm->page_size);
787 
788 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
789 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
790 
791 		/*
792 		 * Perform the comparison.  If there is a difference
793 		 * return that result to the caller, otherwise need
794 		 * to continue on looking for a mismatch.
795 		 */
796 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
797 		if (ret != 0)
798 			return ret;
799 	}
800 
801 	/*
802 	 * No mismatch found.  Let the caller know the two memory
803 	 * areas are equal.
804 	 */
805 	return 0;
806 }
807 
808 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
809 					       struct userspace_mem_region *region)
810 {
811 	struct rb_node **cur, *parent;
812 
813 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
814 		struct userspace_mem_region *cregion;
815 
816 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
817 		parent = *cur;
818 		if (region->region.guest_phys_addr <
819 		    cregion->region.guest_phys_addr)
820 			cur = &(*cur)->rb_left;
821 		else {
822 			TEST_ASSERT(region->region.guest_phys_addr !=
823 				    cregion->region.guest_phys_addr,
824 				    "Duplicate GPA in region tree");
825 
826 			cur = &(*cur)->rb_right;
827 		}
828 	}
829 
830 	rb_link_node(&region->gpa_node, parent, cur);
831 	rb_insert_color(&region->gpa_node, gpa_tree);
832 }
833 
834 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
835 					       struct userspace_mem_region *region)
836 {
837 	struct rb_node **cur, *parent;
838 
839 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
840 		struct userspace_mem_region *cregion;
841 
842 		cregion = container_of(*cur, typeof(*cregion), hva_node);
843 		parent = *cur;
844 		if (region->host_mem < cregion->host_mem)
845 			cur = &(*cur)->rb_left;
846 		else {
847 			TEST_ASSERT(region->host_mem !=
848 				    cregion->host_mem,
849 				    "Duplicate HVA in region tree");
850 
851 			cur = &(*cur)->rb_right;
852 		}
853 	}
854 
855 	rb_link_node(&region->hva_node, parent, cur);
856 	rb_insert_color(&region->hva_node, hva_tree);
857 }
858 
859 
860 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
861 				uint64_t gpa, uint64_t size, void *hva)
862 {
863 	struct kvm_userspace_memory_region region = {
864 		.slot = slot,
865 		.flags = flags,
866 		.guest_phys_addr = gpa,
867 		.memory_size = size,
868 		.userspace_addr = (uintptr_t)hva,
869 	};
870 
871 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
872 }
873 
874 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
875 			       uint64_t gpa, uint64_t size, void *hva)
876 {
877 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
878 
879 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
880 		    errno, strerror(errno));
881 }
882 
883 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
884 				 uint64_t gpa, uint64_t size, void *hva,
885 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
886 {
887 	struct kvm_userspace_memory_region2 region = {
888 		.slot = slot,
889 		.flags = flags,
890 		.guest_phys_addr = gpa,
891 		.memory_size = size,
892 		.userspace_addr = (uintptr_t)hva,
893 		.guest_memfd = guest_memfd,
894 		.guest_memfd_offset = guest_memfd_offset,
895 	};
896 
897 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
898 }
899 
900 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
901 				uint64_t gpa, uint64_t size, void *hva,
902 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
903 {
904 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
905 					       guest_memfd, guest_memfd_offset);
906 
907 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
908 		    errno, strerror(errno));
909 }
910 
911 
912 /* FIXME: This thing needs to be ripped apart and rewritten. */
913 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
914 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
915 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
916 {
917 	int ret;
918 	struct userspace_mem_region *region;
919 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
920 	size_t mem_size = npages * vm->page_size;
921 	size_t alignment;
922 
923 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
924 		"Number of guest pages is not compatible with the host. "
925 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
926 
927 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
928 		"address not on a page boundary.\n"
929 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
930 		guest_paddr, vm->page_size);
931 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
932 		<= vm->max_gfn, "Physical range beyond maximum "
933 		"supported physical address,\n"
934 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
935 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
936 		guest_paddr, npages, vm->max_gfn, vm->page_size);
937 
938 	/*
939 	 * Confirm a mem region with an overlapping address doesn't
940 	 * already exist.
941 	 */
942 	region = (struct userspace_mem_region *) userspace_mem_region_find(
943 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
944 	if (region != NULL)
945 		TEST_FAIL("overlapping userspace_mem_region already "
946 			"exists\n"
947 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
948 			"page_size: 0x%x\n"
949 			"  existing guest_paddr: 0x%lx size: 0x%lx",
950 			guest_paddr, npages, vm->page_size,
951 			(uint64_t) region->region.guest_phys_addr,
952 			(uint64_t) region->region.memory_size);
953 
954 	/* Confirm no region with the requested slot already exists. */
955 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
956 			       slot) {
957 		if (region->region.slot != slot)
958 			continue;
959 
960 		TEST_FAIL("A mem region with the requested slot "
961 			"already exists.\n"
962 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
963 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
964 			slot, guest_paddr, npages,
965 			region->region.slot,
966 			(uint64_t) region->region.guest_phys_addr,
967 			(uint64_t) region->region.memory_size);
968 	}
969 
970 	/* Allocate and initialize new mem region structure. */
971 	region = calloc(1, sizeof(*region));
972 	TEST_ASSERT(region != NULL, "Insufficient Memory");
973 	region->mmap_size = mem_size;
974 
975 #ifdef __s390x__
976 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
977 	alignment = 0x100000;
978 #else
979 	alignment = 1;
980 #endif
981 
982 	/*
983 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
984 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
985 	 * because mmap will always return an address aligned to the HugeTLB
986 	 * page size.
987 	 */
988 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
989 		alignment = max(backing_src_pagesz, alignment);
990 
991 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
992 
993 	/* Add enough memory to align up if necessary */
994 	if (alignment > 1)
995 		region->mmap_size += alignment;
996 
997 	region->fd = -1;
998 	if (backing_src_is_shared(src_type))
999 		region->fd = kvm_memfd_alloc(region->mmap_size,
1000 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1001 
1002 	region->mmap_start = mmap(NULL, region->mmap_size,
1003 				  PROT_READ | PROT_WRITE,
1004 				  vm_mem_backing_src_alias(src_type)->flag,
1005 				  region->fd, 0);
1006 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1007 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1008 
1009 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1010 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1011 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1012 		    region->mmap_start, backing_src_pagesz);
1013 
1014 	/* Align host address */
1015 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1016 
1017 	/* As needed perform madvise */
1018 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1019 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1020 		ret = madvise(region->host_mem, mem_size,
1021 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1022 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1023 			    region->host_mem, mem_size,
1024 			    vm_mem_backing_src_alias(src_type)->name);
1025 	}
1026 
1027 	region->backing_src_type = src_type;
1028 
1029 	if (flags & KVM_MEM_GUEST_MEMFD) {
1030 		if (guest_memfd < 0) {
1031 			uint32_t guest_memfd_flags = 0;
1032 			TEST_ASSERT(!guest_memfd_offset,
1033 				    "Offset must be zero when creating new guest_memfd");
1034 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1035 		} else {
1036 			/*
1037 			 * Install a unique fd for each memslot so that the fd
1038 			 * can be closed when the region is deleted without
1039 			 * needing to track if the fd is owned by the framework
1040 			 * or by the caller.
1041 			 */
1042 			guest_memfd = dup(guest_memfd);
1043 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1044 		}
1045 
1046 		region->region.guest_memfd = guest_memfd;
1047 		region->region.guest_memfd_offset = guest_memfd_offset;
1048 	} else {
1049 		region->region.guest_memfd = -1;
1050 	}
1051 
1052 	region->unused_phy_pages = sparsebit_alloc();
1053 	if (vm_arch_has_protected_memory(vm))
1054 		region->protected_phy_pages = sparsebit_alloc();
1055 	sparsebit_set_num(region->unused_phy_pages,
1056 		guest_paddr >> vm->page_shift, npages);
1057 	region->region.slot = slot;
1058 	region->region.flags = flags;
1059 	region->region.guest_phys_addr = guest_paddr;
1060 	region->region.memory_size = npages * vm->page_size;
1061 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1062 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1063 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1064 		"  rc: %i errno: %i\n"
1065 		"  slot: %u flags: 0x%x\n"
1066 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1067 		ret, errno, slot, flags,
1068 		guest_paddr, (uint64_t) region->region.memory_size,
1069 		region->region.guest_memfd);
1070 
1071 	/* Add to quick lookup data structures */
1072 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1073 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1074 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1075 
1076 	/* If shared memory, create an alias. */
1077 	if (region->fd >= 0) {
1078 		region->mmap_alias = mmap(NULL, region->mmap_size,
1079 					  PROT_READ | PROT_WRITE,
1080 					  vm_mem_backing_src_alias(src_type)->flag,
1081 					  region->fd, 0);
1082 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1083 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1084 
1085 		/* Align host alias address */
1086 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1087 	}
1088 }
1089 
1090 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1091 				 enum vm_mem_backing_src_type src_type,
1092 				 uint64_t guest_paddr, uint32_t slot,
1093 				 uint64_t npages, uint32_t flags)
1094 {
1095 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1096 }
1097 
1098 /*
1099  * Memslot to region
1100  *
1101  * Input Args:
1102  *   vm - Virtual Machine
1103  *   memslot - KVM memory slot ID
1104  *
1105  * Output Args: None
1106  *
1107  * Return:
1108  *   Pointer to memory region structure that describe memory region
1109  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1110  *   on error (e.g. currently no memory region using memslot as a KVM
1111  *   memory slot ID).
1112  */
1113 struct userspace_mem_region *
1114 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1115 {
1116 	struct userspace_mem_region *region;
1117 
1118 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1119 			       memslot)
1120 		if (region->region.slot == memslot)
1121 			return region;
1122 
1123 	fprintf(stderr, "No mem region with the requested slot found,\n"
1124 		"  requested slot: %u\n", memslot);
1125 	fputs("---- vm dump ----\n", stderr);
1126 	vm_dump(stderr, vm, 2);
1127 	TEST_FAIL("Mem region not found");
1128 	return NULL;
1129 }
1130 
1131 /*
1132  * VM Memory Region Flags Set
1133  *
1134  * Input Args:
1135  *   vm - Virtual Machine
1136  *   flags - Starting guest physical address
1137  *
1138  * Output Args: None
1139  *
1140  * Return: None
1141  *
1142  * Sets the flags of the memory region specified by the value of slot,
1143  * to the values given by flags.
1144  */
1145 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1146 {
1147 	int ret;
1148 	struct userspace_mem_region *region;
1149 
1150 	region = memslot2region(vm, slot);
1151 
1152 	region->region.flags = flags;
1153 
1154 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1155 
1156 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1157 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1158 		ret, errno, slot, flags);
1159 }
1160 
1161 /*
1162  * VM Memory Region Move
1163  *
1164  * Input Args:
1165  *   vm - Virtual Machine
1166  *   slot - Slot of the memory region to move
1167  *   new_gpa - Starting guest physical address
1168  *
1169  * Output Args: None
1170  *
1171  * Return: None
1172  *
1173  * Change the gpa of a memory region.
1174  */
1175 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1176 {
1177 	struct userspace_mem_region *region;
1178 	int ret;
1179 
1180 	region = memslot2region(vm, slot);
1181 
1182 	region->region.guest_phys_addr = new_gpa;
1183 
1184 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1185 
1186 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1187 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1188 		    ret, errno, slot, new_gpa);
1189 }
1190 
1191 /*
1192  * VM Memory Region Delete
1193  *
1194  * Input Args:
1195  *   vm - Virtual Machine
1196  *   slot - Slot of the memory region to delete
1197  *
1198  * Output Args: None
1199  *
1200  * Return: None
1201  *
1202  * Delete a memory region.
1203  */
1204 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1205 {
1206 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1207 }
1208 
1209 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1210 			    bool punch_hole)
1211 {
1212 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1213 	struct userspace_mem_region *region;
1214 	uint64_t end = base + size;
1215 	uint64_t gpa, len;
1216 	off_t fd_offset;
1217 	int ret;
1218 
1219 	for (gpa = base; gpa < end; gpa += len) {
1220 		uint64_t offset;
1221 
1222 		region = userspace_mem_region_find(vm, gpa, gpa);
1223 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1224 			    "Private memory region not found for GPA 0x%lx", gpa);
1225 
1226 		offset = gpa - region->region.guest_phys_addr;
1227 		fd_offset = region->region.guest_memfd_offset + offset;
1228 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1229 
1230 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1231 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1232 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1233 			    region->region.guest_memfd, mode, fd_offset);
1234 	}
1235 }
1236 
1237 /* Returns the size of a vCPU's kvm_run structure. */
1238 static int vcpu_mmap_sz(void)
1239 {
1240 	int dev_fd, ret;
1241 
1242 	dev_fd = open_kvm_dev_path_or_exit();
1243 
1244 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1245 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1246 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1247 
1248 	close(dev_fd);
1249 
1250 	return ret;
1251 }
1252 
1253 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1254 {
1255 	struct kvm_vcpu *vcpu;
1256 
1257 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1258 		if (vcpu->id == vcpu_id)
1259 			return true;
1260 	}
1261 
1262 	return false;
1263 }
1264 
1265 /*
1266  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1267  * No additional vCPU setup is done.  Returns the vCPU.
1268  */
1269 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1270 {
1271 	struct kvm_vcpu *vcpu;
1272 
1273 	/* Confirm a vcpu with the specified id doesn't already exist. */
1274 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1275 
1276 	/* Allocate and initialize new vcpu structure. */
1277 	vcpu = calloc(1, sizeof(*vcpu));
1278 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1279 
1280 	vcpu->vm = vm;
1281 	vcpu->id = vcpu_id;
1282 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1283 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1284 
1285 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1286 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1287 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1288 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1289 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1290 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1291 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1292 
1293 	/* Add to linked-list of VCPUs. */
1294 	list_add(&vcpu->list, &vm->vcpus);
1295 
1296 	return vcpu;
1297 }
1298 
1299 /*
1300  * VM Virtual Address Unused Gap
1301  *
1302  * Input Args:
1303  *   vm - Virtual Machine
1304  *   sz - Size (bytes)
1305  *   vaddr_min - Minimum Virtual Address
1306  *
1307  * Output Args: None
1308  *
1309  * Return:
1310  *   Lowest virtual address at or below vaddr_min, with at least
1311  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1312  *   size sz is available.
1313  *
1314  * Within the VM specified by vm, locates the lowest starting virtual
1315  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1316  * TEST_ASSERT failure occurs for invalid input or no area of at least
1317  * sz unallocated bytes >= vaddr_min is available.
1318  */
1319 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1320 			       vm_vaddr_t vaddr_min)
1321 {
1322 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1323 
1324 	/* Determine lowest permitted virtual page index. */
1325 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1326 	if ((pgidx_start * vm->page_size) < vaddr_min)
1327 		goto no_va_found;
1328 
1329 	/* Loop over section with enough valid virtual page indexes. */
1330 	if (!sparsebit_is_set_num(vm->vpages_valid,
1331 		pgidx_start, pages))
1332 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1333 			pgidx_start, pages);
1334 	do {
1335 		/*
1336 		 * Are there enough unused virtual pages available at
1337 		 * the currently proposed starting virtual page index.
1338 		 * If not, adjust proposed starting index to next
1339 		 * possible.
1340 		 */
1341 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1342 			pgidx_start, pages))
1343 			goto va_found;
1344 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1345 			pgidx_start, pages);
1346 		if (pgidx_start == 0)
1347 			goto no_va_found;
1348 
1349 		/*
1350 		 * If needed, adjust proposed starting virtual address,
1351 		 * to next range of valid virtual addresses.
1352 		 */
1353 		if (!sparsebit_is_set_num(vm->vpages_valid,
1354 			pgidx_start, pages)) {
1355 			pgidx_start = sparsebit_next_set_num(
1356 				vm->vpages_valid, pgidx_start, pages);
1357 			if (pgidx_start == 0)
1358 				goto no_va_found;
1359 		}
1360 	} while (pgidx_start != 0);
1361 
1362 no_va_found:
1363 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1364 
1365 	/* NOT REACHED */
1366 	return -1;
1367 
1368 va_found:
1369 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1370 		pgidx_start, pages),
1371 		"Unexpected, invalid virtual page index range,\n"
1372 		"  pgidx_start: 0x%lx\n"
1373 		"  pages: 0x%lx",
1374 		pgidx_start, pages);
1375 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1376 		pgidx_start, pages),
1377 		"Unexpected, pages already mapped,\n"
1378 		"  pgidx_start: 0x%lx\n"
1379 		"  pages: 0x%lx",
1380 		pgidx_start, pages);
1381 
1382 	return pgidx_start * vm->page_size;
1383 }
1384 
1385 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1386 				     vm_vaddr_t vaddr_min,
1387 				     enum kvm_mem_region_type type,
1388 				     bool protected)
1389 {
1390 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1391 
1392 	virt_pgd_alloc(vm);
1393 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1394 						KVM_UTIL_MIN_PFN * vm->page_size,
1395 						vm->memslots[type], protected);
1396 
1397 	/*
1398 	 * Find an unused range of virtual page addresses of at least
1399 	 * pages in length.
1400 	 */
1401 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1402 
1403 	/* Map the virtual pages. */
1404 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1405 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1406 
1407 		virt_pg_map(vm, vaddr, paddr);
1408 
1409 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1410 	}
1411 
1412 	return vaddr_start;
1413 }
1414 
1415 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1416 			    enum kvm_mem_region_type type)
1417 {
1418 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1419 				  vm_arch_has_protected_memory(vm));
1420 }
1421 
1422 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1423 				 vm_vaddr_t vaddr_min,
1424 				 enum kvm_mem_region_type type)
1425 {
1426 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1427 }
1428 
1429 /*
1430  * VM Virtual Address Allocate
1431  *
1432  * Input Args:
1433  *   vm - Virtual Machine
1434  *   sz - Size in bytes
1435  *   vaddr_min - Minimum starting virtual address
1436  *
1437  * Output Args: None
1438  *
1439  * Return:
1440  *   Starting guest virtual address
1441  *
1442  * Allocates at least sz bytes within the virtual address space of the vm
1443  * given by vm.  The allocated bytes are mapped to a virtual address >=
1444  * the address given by vaddr_min.  Note that each allocation uses a
1445  * a unique set of pages, with the minimum real allocation being at least
1446  * a page. The allocated physical space comes from the TEST_DATA memory region.
1447  */
1448 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1449 {
1450 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1451 }
1452 
1453 /*
1454  * VM Virtual Address Allocate Pages
1455  *
1456  * Input Args:
1457  *   vm - Virtual Machine
1458  *
1459  * Output Args: None
1460  *
1461  * Return:
1462  *   Starting guest virtual address
1463  *
1464  * Allocates at least N system pages worth of bytes within the virtual address
1465  * space of the vm.
1466  */
1467 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1468 {
1469 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1470 }
1471 
1472 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1473 {
1474 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1475 }
1476 
1477 /*
1478  * VM Virtual Address Allocate Page
1479  *
1480  * Input Args:
1481  *   vm - Virtual Machine
1482  *
1483  * Output Args: None
1484  *
1485  * Return:
1486  *   Starting guest virtual address
1487  *
1488  * Allocates at least one system page worth of bytes within the virtual address
1489  * space of the vm.
1490  */
1491 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1492 {
1493 	return vm_vaddr_alloc_pages(vm, 1);
1494 }
1495 
1496 /*
1497  * Map a range of VM virtual address to the VM's physical address
1498  *
1499  * Input Args:
1500  *   vm - Virtual Machine
1501  *   vaddr - Virtuall address to map
1502  *   paddr - VM Physical Address
1503  *   npages - The number of pages to map
1504  *
1505  * Output Args: None
1506  *
1507  * Return: None
1508  *
1509  * Within the VM given by @vm, creates a virtual translation for
1510  * @npages starting at @vaddr to the page range starting at @paddr.
1511  */
1512 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1513 	      unsigned int npages)
1514 {
1515 	size_t page_size = vm->page_size;
1516 	size_t size = npages * page_size;
1517 
1518 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1519 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1520 
1521 	while (npages--) {
1522 		virt_pg_map(vm, vaddr, paddr);
1523 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1524 
1525 		vaddr += page_size;
1526 		paddr += page_size;
1527 	}
1528 }
1529 
1530 /*
1531  * Address VM Physical to Host Virtual
1532  *
1533  * Input Args:
1534  *   vm - Virtual Machine
1535  *   gpa - VM physical address
1536  *
1537  * Output Args: None
1538  *
1539  * Return:
1540  *   Equivalent host virtual address
1541  *
1542  * Locates the memory region containing the VM physical address given
1543  * by gpa, within the VM given by vm.  When found, the host virtual
1544  * address providing the memory to the vm physical address is returned.
1545  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1546  */
1547 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1548 {
1549 	struct userspace_mem_region *region;
1550 
1551 	gpa = vm_untag_gpa(vm, gpa);
1552 
1553 	region = userspace_mem_region_find(vm, gpa, gpa);
1554 	if (!region) {
1555 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1556 		return NULL;
1557 	}
1558 
1559 	return (void *)((uintptr_t)region->host_mem
1560 		+ (gpa - region->region.guest_phys_addr));
1561 }
1562 
1563 /*
1564  * Address Host Virtual to VM Physical
1565  *
1566  * Input Args:
1567  *   vm - Virtual Machine
1568  *   hva - Host virtual address
1569  *
1570  * Output Args: None
1571  *
1572  * Return:
1573  *   Equivalent VM physical address
1574  *
1575  * Locates the memory region containing the host virtual address given
1576  * by hva, within the VM given by vm.  When found, the equivalent
1577  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1578  * region containing hva exists.
1579  */
1580 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1581 {
1582 	struct rb_node *node;
1583 
1584 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1585 		struct userspace_mem_region *region =
1586 			container_of(node, struct userspace_mem_region, hva_node);
1587 
1588 		if (hva >= region->host_mem) {
1589 			if (hva <= (region->host_mem
1590 				+ region->region.memory_size - 1))
1591 				return (vm_paddr_t)((uintptr_t)
1592 					region->region.guest_phys_addr
1593 					+ (hva - (uintptr_t)region->host_mem));
1594 
1595 			node = node->rb_right;
1596 		} else
1597 			node = node->rb_left;
1598 	}
1599 
1600 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1601 	return -1;
1602 }
1603 
1604 /*
1605  * Address VM physical to Host Virtual *alias*.
1606  *
1607  * Input Args:
1608  *   vm - Virtual Machine
1609  *   gpa - VM physical address
1610  *
1611  * Output Args: None
1612  *
1613  * Return:
1614  *   Equivalent address within the host virtual *alias* area, or NULL
1615  *   (without failing the test) if the guest memory is not shared (so
1616  *   no alias exists).
1617  *
1618  * Create a writable, shared virtual=>physical alias for the specific GPA.
1619  * The primary use case is to allow the host selftest to manipulate guest
1620  * memory without mapping said memory in the guest's address space. And, for
1621  * userfaultfd-based demand paging, to do so without triggering userfaults.
1622  */
1623 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1624 {
1625 	struct userspace_mem_region *region;
1626 	uintptr_t offset;
1627 
1628 	region = userspace_mem_region_find(vm, gpa, gpa);
1629 	if (!region)
1630 		return NULL;
1631 
1632 	if (!region->host_alias)
1633 		return NULL;
1634 
1635 	offset = gpa - region->region.guest_phys_addr;
1636 	return (void *) ((uintptr_t) region->host_alias + offset);
1637 }
1638 
1639 /* Create an interrupt controller chip for the specified VM. */
1640 void vm_create_irqchip(struct kvm_vm *vm)
1641 {
1642 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1643 
1644 	vm->has_irqchip = true;
1645 }
1646 
1647 int _vcpu_run(struct kvm_vcpu *vcpu)
1648 {
1649 	int rc;
1650 
1651 	do {
1652 		rc = __vcpu_run(vcpu);
1653 	} while (rc == -1 && errno == EINTR);
1654 
1655 	assert_on_unhandled_exception(vcpu);
1656 
1657 	return rc;
1658 }
1659 
1660 /*
1661  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1662  * Assert if the KVM returns an error (other than -EINTR).
1663  */
1664 void vcpu_run(struct kvm_vcpu *vcpu)
1665 {
1666 	int ret = _vcpu_run(vcpu);
1667 
1668 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1669 }
1670 
1671 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1672 {
1673 	int ret;
1674 
1675 	vcpu->run->immediate_exit = 1;
1676 	ret = __vcpu_run(vcpu);
1677 	vcpu->run->immediate_exit = 0;
1678 
1679 	TEST_ASSERT(ret == -1 && errno == EINTR,
1680 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1681 		    ret, errno);
1682 }
1683 
1684 /*
1685  * Get the list of guest registers which are supported for
1686  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1687  * it is the caller's responsibility to free the list.
1688  */
1689 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1690 {
1691 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1692 	int ret;
1693 
1694 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1695 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1696 
1697 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1698 	reg_list->n = reg_list_n.n;
1699 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1700 	return reg_list;
1701 }
1702 
1703 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1704 {
1705 	uint32_t page_size = getpagesize();
1706 	uint32_t size = vcpu->vm->dirty_ring_size;
1707 
1708 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1709 
1710 	if (!vcpu->dirty_gfns) {
1711 		void *addr;
1712 
1713 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1714 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1715 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1716 
1717 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1718 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1719 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1720 
1721 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1722 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1723 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1724 
1725 		vcpu->dirty_gfns = addr;
1726 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1727 	}
1728 
1729 	return vcpu->dirty_gfns;
1730 }
1731 
1732 /*
1733  * Device Ioctl
1734  */
1735 
1736 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1737 {
1738 	struct kvm_device_attr attribute = {
1739 		.group = group,
1740 		.attr = attr,
1741 		.flags = 0,
1742 	};
1743 
1744 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1745 }
1746 
1747 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1748 {
1749 	struct kvm_create_device create_dev = {
1750 		.type = type,
1751 		.flags = KVM_CREATE_DEVICE_TEST,
1752 	};
1753 
1754 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1755 }
1756 
1757 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1758 {
1759 	struct kvm_create_device create_dev = {
1760 		.type = type,
1761 		.fd = -1,
1762 		.flags = 0,
1763 	};
1764 	int err;
1765 
1766 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1767 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1768 	return err ? : create_dev.fd;
1769 }
1770 
1771 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1772 {
1773 	struct kvm_device_attr kvmattr = {
1774 		.group = group,
1775 		.attr = attr,
1776 		.flags = 0,
1777 		.addr = (uintptr_t)val,
1778 	};
1779 
1780 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1781 }
1782 
1783 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1784 {
1785 	struct kvm_device_attr kvmattr = {
1786 		.group = group,
1787 		.attr = attr,
1788 		.flags = 0,
1789 		.addr = (uintptr_t)val,
1790 	};
1791 
1792 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1793 }
1794 
1795 /*
1796  * IRQ related functions.
1797  */
1798 
1799 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1800 {
1801 	struct kvm_irq_level irq_level = {
1802 		.irq    = irq,
1803 		.level  = level,
1804 	};
1805 
1806 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1807 }
1808 
1809 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1810 {
1811 	int ret = _kvm_irq_line(vm, irq, level);
1812 
1813 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1814 }
1815 
1816 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1817 {
1818 	struct kvm_irq_routing *routing;
1819 	size_t size;
1820 
1821 	size = sizeof(struct kvm_irq_routing);
1822 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1823 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1824 	routing = calloc(1, size);
1825 	assert(routing);
1826 
1827 	return routing;
1828 }
1829 
1830 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1831 		uint32_t gsi, uint32_t pin)
1832 {
1833 	int i;
1834 
1835 	assert(routing);
1836 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1837 
1838 	i = routing->nr;
1839 	routing->entries[i].gsi = gsi;
1840 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1841 	routing->entries[i].flags = 0;
1842 	routing->entries[i].u.irqchip.irqchip = 0;
1843 	routing->entries[i].u.irqchip.pin = pin;
1844 	routing->nr++;
1845 }
1846 
1847 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1848 {
1849 	int ret;
1850 
1851 	assert(routing);
1852 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1853 	free(routing);
1854 
1855 	return ret;
1856 }
1857 
1858 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1859 {
1860 	int ret;
1861 
1862 	ret = _kvm_gsi_routing_write(vm, routing);
1863 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1864 }
1865 
1866 /*
1867  * VM Dump
1868  *
1869  * Input Args:
1870  *   vm - Virtual Machine
1871  *   indent - Left margin indent amount
1872  *
1873  * Output Args:
1874  *   stream - Output FILE stream
1875  *
1876  * Return: None
1877  *
1878  * Dumps the current state of the VM given by vm, to the FILE stream
1879  * given by stream.
1880  */
1881 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1882 {
1883 	int ctr;
1884 	struct userspace_mem_region *region;
1885 	struct kvm_vcpu *vcpu;
1886 
1887 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1888 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1889 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1890 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1891 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1892 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1893 			"host_virt: %p\n", indent + 2, "",
1894 			(uint64_t) region->region.guest_phys_addr,
1895 			(uint64_t) region->region.memory_size,
1896 			region->host_mem);
1897 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1898 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1899 		if (region->protected_phy_pages) {
1900 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1901 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1902 		}
1903 	}
1904 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1905 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1906 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1907 		vm->pgd_created);
1908 	if (vm->pgd_created) {
1909 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1910 			indent + 2, "");
1911 		virt_dump(stream, vm, indent + 4);
1912 	}
1913 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1914 
1915 	list_for_each_entry(vcpu, &vm->vcpus, list)
1916 		vcpu_dump(stream, vcpu, indent + 2);
1917 }
1918 
1919 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1920 
1921 /* Known KVM exit reasons */
1922 static struct exit_reason {
1923 	unsigned int reason;
1924 	const char *name;
1925 } exit_reasons_known[] = {
1926 	KVM_EXIT_STRING(UNKNOWN),
1927 	KVM_EXIT_STRING(EXCEPTION),
1928 	KVM_EXIT_STRING(IO),
1929 	KVM_EXIT_STRING(HYPERCALL),
1930 	KVM_EXIT_STRING(DEBUG),
1931 	KVM_EXIT_STRING(HLT),
1932 	KVM_EXIT_STRING(MMIO),
1933 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1934 	KVM_EXIT_STRING(SHUTDOWN),
1935 	KVM_EXIT_STRING(FAIL_ENTRY),
1936 	KVM_EXIT_STRING(INTR),
1937 	KVM_EXIT_STRING(SET_TPR),
1938 	KVM_EXIT_STRING(TPR_ACCESS),
1939 	KVM_EXIT_STRING(S390_SIEIC),
1940 	KVM_EXIT_STRING(S390_RESET),
1941 	KVM_EXIT_STRING(DCR),
1942 	KVM_EXIT_STRING(NMI),
1943 	KVM_EXIT_STRING(INTERNAL_ERROR),
1944 	KVM_EXIT_STRING(OSI),
1945 	KVM_EXIT_STRING(PAPR_HCALL),
1946 	KVM_EXIT_STRING(S390_UCONTROL),
1947 	KVM_EXIT_STRING(WATCHDOG),
1948 	KVM_EXIT_STRING(S390_TSCH),
1949 	KVM_EXIT_STRING(EPR),
1950 	KVM_EXIT_STRING(SYSTEM_EVENT),
1951 	KVM_EXIT_STRING(S390_STSI),
1952 	KVM_EXIT_STRING(IOAPIC_EOI),
1953 	KVM_EXIT_STRING(HYPERV),
1954 	KVM_EXIT_STRING(ARM_NISV),
1955 	KVM_EXIT_STRING(X86_RDMSR),
1956 	KVM_EXIT_STRING(X86_WRMSR),
1957 	KVM_EXIT_STRING(DIRTY_RING_FULL),
1958 	KVM_EXIT_STRING(AP_RESET_HOLD),
1959 	KVM_EXIT_STRING(X86_BUS_LOCK),
1960 	KVM_EXIT_STRING(XEN),
1961 	KVM_EXIT_STRING(RISCV_SBI),
1962 	KVM_EXIT_STRING(RISCV_CSR),
1963 	KVM_EXIT_STRING(NOTIFY),
1964 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1965 	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1966 #endif
1967 };
1968 
1969 /*
1970  * Exit Reason String
1971  *
1972  * Input Args:
1973  *   exit_reason - Exit reason
1974  *
1975  * Output Args: None
1976  *
1977  * Return:
1978  *   Constant string pointer describing the exit reason.
1979  *
1980  * Locates and returns a constant string that describes the KVM exit
1981  * reason given by exit_reason.  If no such string is found, a constant
1982  * string of "Unknown" is returned.
1983  */
1984 const char *exit_reason_str(unsigned int exit_reason)
1985 {
1986 	unsigned int n1;
1987 
1988 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1989 		if (exit_reason == exit_reasons_known[n1].reason)
1990 			return exit_reasons_known[n1].name;
1991 	}
1992 
1993 	return "Unknown";
1994 }
1995 
1996 /*
1997  * Physical Contiguous Page Allocator
1998  *
1999  * Input Args:
2000  *   vm - Virtual Machine
2001  *   num - number of pages
2002  *   paddr_min - Physical address minimum
2003  *   memslot - Memory region to allocate page from
2004  *   protected - True if the pages will be used as protected/private memory
2005  *
2006  * Output Args: None
2007  *
2008  * Return:
2009  *   Starting physical address
2010  *
2011  * Within the VM specified by vm, locates a range of available physical
2012  * pages at or above paddr_min. If found, the pages are marked as in use
2013  * and their base address is returned. A TEST_ASSERT failure occurs if
2014  * not enough pages are available at or above paddr_min.
2015  */
2016 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2017 				vm_paddr_t paddr_min, uint32_t memslot,
2018 				bool protected)
2019 {
2020 	struct userspace_mem_region *region;
2021 	sparsebit_idx_t pg, base;
2022 
2023 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2024 
2025 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2026 		"not divisible by page size.\n"
2027 		"  paddr_min: 0x%lx page_size: 0x%x",
2028 		paddr_min, vm->page_size);
2029 
2030 	region = memslot2region(vm, memslot);
2031 	TEST_ASSERT(!protected || region->protected_phy_pages,
2032 		    "Region doesn't support protected memory");
2033 
2034 	base = pg = paddr_min >> vm->page_shift;
2035 	do {
2036 		for (; pg < base + num; ++pg) {
2037 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2038 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2039 				break;
2040 			}
2041 		}
2042 	} while (pg && pg != base + num);
2043 
2044 	if (pg == 0) {
2045 		fprintf(stderr, "No guest physical page available, "
2046 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2047 			paddr_min, vm->page_size, memslot);
2048 		fputs("---- vm dump ----\n", stderr);
2049 		vm_dump(stderr, vm, 2);
2050 		abort();
2051 	}
2052 
2053 	for (pg = base; pg < base + num; ++pg) {
2054 		sparsebit_clear(region->unused_phy_pages, pg);
2055 		if (protected)
2056 			sparsebit_set(region->protected_phy_pages, pg);
2057 	}
2058 
2059 	return base * vm->page_size;
2060 }
2061 
2062 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2063 			     uint32_t memslot)
2064 {
2065 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2066 }
2067 
2068 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2069 {
2070 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2071 				 vm->memslots[MEM_REGION_PT]);
2072 }
2073 
2074 /*
2075  * Address Guest Virtual to Host Virtual
2076  *
2077  * Input Args:
2078  *   vm - Virtual Machine
2079  *   gva - VM virtual address
2080  *
2081  * Output Args: None
2082  *
2083  * Return:
2084  *   Equivalent host virtual address
2085  */
2086 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2087 {
2088 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2089 }
2090 
2091 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2092 {
2093 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2094 }
2095 
2096 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2097 				      unsigned int page_shift,
2098 				      unsigned int new_page_shift,
2099 				      bool ceil)
2100 {
2101 	unsigned int n = 1 << (new_page_shift - page_shift);
2102 
2103 	if (page_shift >= new_page_shift)
2104 		return num_pages * (1 << (page_shift - new_page_shift));
2105 
2106 	return num_pages / n + !!(ceil && num_pages % n);
2107 }
2108 
2109 static inline int getpageshift(void)
2110 {
2111 	return __builtin_ffs(getpagesize()) - 1;
2112 }
2113 
2114 unsigned int
2115 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2116 {
2117 	return vm_calc_num_pages(num_guest_pages,
2118 				 vm_guest_mode_params[mode].page_shift,
2119 				 getpageshift(), true);
2120 }
2121 
2122 unsigned int
2123 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2124 {
2125 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2126 				 vm_guest_mode_params[mode].page_shift, false);
2127 }
2128 
2129 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2130 {
2131 	unsigned int n;
2132 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2133 	return vm_adjust_num_guest_pages(mode, n);
2134 }
2135 
2136 /*
2137  * Read binary stats descriptors
2138  *
2139  * Input Args:
2140  *   stats_fd - the file descriptor for the binary stats file from which to read
2141  *   header - the binary stats metadata header corresponding to the given FD
2142  *
2143  * Output Args: None
2144  *
2145  * Return:
2146  *   A pointer to a newly allocated series of stat descriptors.
2147  *   Caller is responsible for freeing the returned kvm_stats_desc.
2148  *
2149  * Read the stats descriptors from the binary stats interface.
2150  */
2151 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2152 					      struct kvm_stats_header *header)
2153 {
2154 	struct kvm_stats_desc *stats_desc;
2155 	ssize_t desc_size, total_size, ret;
2156 
2157 	desc_size = get_stats_descriptor_size(header);
2158 	total_size = header->num_desc * desc_size;
2159 
2160 	stats_desc = calloc(header->num_desc, desc_size);
2161 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2162 
2163 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2164 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2165 
2166 	return stats_desc;
2167 }
2168 
2169 /*
2170  * Read stat data for a particular stat
2171  *
2172  * Input Args:
2173  *   stats_fd - the file descriptor for the binary stats file from which to read
2174  *   header - the binary stats metadata header corresponding to the given FD
2175  *   desc - the binary stat metadata for the particular stat to be read
2176  *   max_elements - the maximum number of 8-byte values to read into data
2177  *
2178  * Output Args:
2179  *   data - the buffer into which stat data should be read
2180  *
2181  * Read the data values of a specified stat from the binary stats interface.
2182  */
2183 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2184 		    struct kvm_stats_desc *desc, uint64_t *data,
2185 		    size_t max_elements)
2186 {
2187 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2188 	size_t size = nr_elements * sizeof(*data);
2189 	ssize_t ret;
2190 
2191 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2192 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2193 
2194 	ret = pread(stats_fd, data, size,
2195 		    header->data_offset + desc->offset);
2196 
2197 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2198 		    desc->name, errno, strerror(errno));
2199 	TEST_ASSERT(ret == size,
2200 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2201 		    desc->name, size, ret);
2202 }
2203 
2204 /*
2205  * Read the data of the named stat
2206  *
2207  * Input Args:
2208  *   vm - the VM for which the stat should be read
2209  *   stat_name - the name of the stat to read
2210  *   max_elements - the maximum number of 8-byte values to read into data
2211  *
2212  * Output Args:
2213  *   data - the buffer into which stat data should be read
2214  *
2215  * Read the data values of a specified stat from the binary stats interface.
2216  */
2217 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2218 		   size_t max_elements)
2219 {
2220 	struct kvm_stats_desc *desc;
2221 	size_t size_desc;
2222 	int i;
2223 
2224 	if (!vm->stats_fd) {
2225 		vm->stats_fd = vm_get_stats_fd(vm);
2226 		read_stats_header(vm->stats_fd, &vm->stats_header);
2227 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2228 							&vm->stats_header);
2229 	}
2230 
2231 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2232 
2233 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2234 		desc = (void *)vm->stats_desc + (i * size_desc);
2235 
2236 		if (strcmp(desc->name, stat_name))
2237 			continue;
2238 
2239 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2240 			       data, max_elements);
2241 
2242 		break;
2243 	}
2244 }
2245 
2246 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2247 {
2248 }
2249 
2250 __weak void kvm_selftest_arch_init(void)
2251 {
2252 }
2253 
2254 void __attribute((constructor)) kvm_selftest_init(void)
2255 {
2256 	/* Tell stdout not to buffer its content. */
2257 	setbuf(stdout, NULL);
2258 
2259 	kvm_selftest_arch_init();
2260 }
2261 
2262 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2263 {
2264 	sparsebit_idx_t pg = 0;
2265 	struct userspace_mem_region *region;
2266 
2267 	if (!vm_arch_has_protected_memory(vm))
2268 		return false;
2269 
2270 	region = userspace_mem_region_find(vm, paddr, paddr);
2271 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2272 
2273 	pg = paddr >> vm->page_shift;
2274 	return sparsebit_is_set(region->protected_phy_pages, pg);
2275 }
2276