1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 #include "test_util.h" 8 #include "kvm_util.h" 9 #include "processor.h" 10 #include "ucall_common.h" 11 12 #include <assert.h> 13 #include <sched.h> 14 #include <sys/mman.h> 15 #include <sys/resource.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 uint32_t guest_random_seed; 24 struct guest_random_state guest_rng; 25 static uint32_t last_guest_seed; 26 27 static int vcpu_mmap_sz(void); 28 29 int open_path_or_exit(const char *path, int flags) 30 { 31 int fd; 32 33 fd = open(path, flags); 34 __TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno)); 35 TEST_ASSERT(fd >= 0, "Failed to open '%s'", path); 36 37 return fd; 38 } 39 40 /* 41 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 42 * 43 * Input Args: 44 * flags - The flags to pass when opening KVM_DEV_PATH. 45 * 46 * Return: 47 * The opened file descriptor of /dev/kvm. 48 */ 49 static int _open_kvm_dev_path_or_exit(int flags) 50 { 51 return open_path_or_exit(KVM_DEV_PATH, flags); 52 } 53 54 int open_kvm_dev_path_or_exit(void) 55 { 56 return _open_kvm_dev_path_or_exit(O_RDONLY); 57 } 58 59 static ssize_t get_module_param(const char *module_name, const char *param, 60 void *buffer, size_t buffer_size) 61 { 62 const int path_size = 128; 63 char path[path_size]; 64 ssize_t bytes_read; 65 int fd, r; 66 67 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 68 module_name, param); 69 TEST_ASSERT(r < path_size, 70 "Failed to construct sysfs path in %d bytes.", path_size); 71 72 fd = open_path_or_exit(path, O_RDONLY); 73 74 bytes_read = read(fd, buffer, buffer_size); 75 TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes", 76 path, bytes_read, buffer_size); 77 78 r = close(fd); 79 TEST_ASSERT(!r, "close(%s) failed", path); 80 return bytes_read; 81 } 82 83 static int get_module_param_integer(const char *module_name, const char *param) 84 { 85 /* 86 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the 87 * NUL char, and 1 byte because the kernel sucks and inserts a newline 88 * at the end. 89 */ 90 char value[16 + 1 + 1]; 91 ssize_t r; 92 93 memset(value, '\0', sizeof(value)); 94 95 r = get_module_param(module_name, param, value, sizeof(value)); 96 TEST_ASSERT(value[r - 1] == '\n', 97 "Expected trailing newline, got char '%c'", value[r - 1]); 98 99 /* 100 * Squash the newline, otherwise atoi_paranoid() will complain about 101 * trailing non-NUL characters in the string. 102 */ 103 value[r - 1] = '\0'; 104 return atoi_paranoid(value); 105 } 106 107 static bool get_module_param_bool(const char *module_name, const char *param) 108 { 109 char value; 110 ssize_t r; 111 112 r = get_module_param(module_name, param, &value, sizeof(value)); 113 TEST_ASSERT_EQ(r, 1); 114 115 if (value == 'Y') 116 return true; 117 else if (value == 'N') 118 return false; 119 120 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 121 } 122 123 bool get_kvm_param_bool(const char *param) 124 { 125 return get_module_param_bool("kvm", param); 126 } 127 128 bool get_kvm_intel_param_bool(const char *param) 129 { 130 return get_module_param_bool("kvm_intel", param); 131 } 132 133 bool get_kvm_amd_param_bool(const char *param) 134 { 135 return get_module_param_bool("kvm_amd", param); 136 } 137 138 int get_kvm_param_integer(const char *param) 139 { 140 return get_module_param_integer("kvm", param); 141 } 142 143 int get_kvm_intel_param_integer(const char *param) 144 { 145 return get_module_param_integer("kvm_intel", param); 146 } 147 148 int get_kvm_amd_param_integer(const char *param) 149 { 150 return get_module_param_integer("kvm_amd", param); 151 } 152 153 /* 154 * Capability 155 * 156 * Input Args: 157 * cap - Capability 158 * 159 * Output Args: None 160 * 161 * Return: 162 * On success, the Value corresponding to the capability (KVM_CAP_*) 163 * specified by the value of cap. On failure a TEST_ASSERT failure 164 * is produced. 165 * 166 * Looks up and returns the value corresponding to the capability 167 * (KVM_CAP_*) given by cap. 168 */ 169 unsigned int kvm_check_cap(long cap) 170 { 171 int ret; 172 int kvm_fd; 173 174 kvm_fd = open_kvm_dev_path_or_exit(); 175 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 176 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 177 178 close(kvm_fd); 179 180 return (unsigned int)ret; 181 } 182 183 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 184 { 185 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 186 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 187 else 188 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 189 vm->dirty_ring_size = ring_size; 190 } 191 192 static void vm_open(struct kvm_vm *vm) 193 { 194 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 195 196 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 197 198 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 199 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 200 201 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 202 vm->stats.fd = vm_get_stats_fd(vm); 203 else 204 vm->stats.fd = -1; 205 } 206 207 const char *vm_guest_mode_string(uint32_t i) 208 { 209 static const char * const strings[] = { 210 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 211 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 212 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 213 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 214 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 215 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 216 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 217 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 218 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 219 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 220 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 221 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 222 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 223 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 224 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 225 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 226 }; 227 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 228 "Missing new mode strings?"); 229 230 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 231 232 return strings[i]; 233 } 234 235 const struct vm_guest_mode_params vm_guest_mode_params[] = { 236 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 237 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 238 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 239 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 240 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 241 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 242 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 243 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 244 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 245 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 246 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 247 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 248 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 249 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 250 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 251 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 252 }; 253 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 254 "Missing new mode params?"); 255 256 /* 257 * Initializes vm->vpages_valid to match the canonical VA space of the 258 * architecture. 259 * 260 * The default implementation is valid for architectures which split the 261 * range addressed by a single page table into a low and high region 262 * based on the MSB of the VA. On architectures with this behavior 263 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 264 */ 265 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 266 { 267 sparsebit_set_num(vm->vpages_valid, 268 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 269 sparsebit_set_num(vm->vpages_valid, 270 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 271 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 272 } 273 274 struct kvm_vm *____vm_create(struct vm_shape shape) 275 { 276 struct kvm_vm *vm; 277 278 vm = calloc(1, sizeof(*vm)); 279 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 280 281 INIT_LIST_HEAD(&vm->vcpus); 282 vm->regions.gpa_tree = RB_ROOT; 283 vm->regions.hva_tree = RB_ROOT; 284 hash_init(vm->regions.slot_hash); 285 286 vm->mode = shape.mode; 287 vm->type = shape.type; 288 289 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 290 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 291 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 292 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 293 294 /* Setup mode specific traits. */ 295 switch (vm->mode) { 296 case VM_MODE_P52V48_4K: 297 vm->pgtable_levels = 4; 298 break; 299 case VM_MODE_P52V48_64K: 300 vm->pgtable_levels = 3; 301 break; 302 case VM_MODE_P48V48_4K: 303 vm->pgtable_levels = 4; 304 break; 305 case VM_MODE_P48V48_64K: 306 vm->pgtable_levels = 3; 307 break; 308 case VM_MODE_P40V48_4K: 309 case VM_MODE_P36V48_4K: 310 vm->pgtable_levels = 4; 311 break; 312 case VM_MODE_P40V48_64K: 313 case VM_MODE_P36V48_64K: 314 vm->pgtable_levels = 3; 315 break; 316 case VM_MODE_P52V48_16K: 317 case VM_MODE_P48V48_16K: 318 case VM_MODE_P40V48_16K: 319 case VM_MODE_P36V48_16K: 320 vm->pgtable_levels = 4; 321 break; 322 case VM_MODE_P36V47_16K: 323 vm->pgtable_levels = 3; 324 break; 325 case VM_MODE_PXXV48_4K: 326 #ifdef __x86_64__ 327 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 328 kvm_init_vm_address_properties(vm); 329 /* 330 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 331 * it doesn't take effect unless a CR4.LA57 is set, which it 332 * isn't for this mode (48-bit virtual address space). 333 */ 334 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 335 "Linear address width (%d bits) not supported", 336 vm->va_bits); 337 pr_debug("Guest physical address width detected: %d\n", 338 vm->pa_bits); 339 vm->pgtable_levels = 4; 340 vm->va_bits = 48; 341 #else 342 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 343 #endif 344 break; 345 case VM_MODE_P47V64_4K: 346 vm->pgtable_levels = 5; 347 break; 348 case VM_MODE_P44V64_4K: 349 vm->pgtable_levels = 5; 350 break; 351 default: 352 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 353 } 354 355 #ifdef __aarch64__ 356 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 357 if (vm->pa_bits != 40) 358 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 359 #endif 360 361 vm_open(vm); 362 363 /* Limit to VA-bit canonical virtual addresses. */ 364 vm->vpages_valid = sparsebit_alloc(); 365 vm_vaddr_populate_bitmap(vm); 366 367 /* Limit physical addresses to PA-bits. */ 368 vm->max_gfn = vm_compute_max_gfn(vm); 369 370 /* Allocate and setup memory for guest. */ 371 vm->vpages_mapped = sparsebit_alloc(); 372 373 return vm; 374 } 375 376 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 377 uint32_t nr_runnable_vcpus, 378 uint64_t extra_mem_pages) 379 { 380 uint64_t page_size = vm_guest_mode_params[mode].page_size; 381 uint64_t nr_pages; 382 383 TEST_ASSERT(nr_runnable_vcpus, 384 "Use vm_create_barebones() for VMs that _never_ have vCPUs"); 385 386 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 387 "nr_vcpus = %d too large for host, max-vcpus = %d", 388 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 389 390 /* 391 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 392 * test code and other per-VM assets that will be loaded into memslot0. 393 */ 394 nr_pages = 512; 395 396 /* Account for the per-vCPU stacks on behalf of the test. */ 397 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 398 399 /* 400 * Account for the number of pages needed for the page tables. The 401 * maximum page table size for a memory region will be when the 402 * smallest page size is used. Considering each page contains x page 403 * table descriptors, the total extra size for page tables (for extra 404 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 405 * than N/x*2. 406 */ 407 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 408 409 /* Account for the number of pages needed by ucall. */ 410 nr_pages += ucall_nr_pages_required(page_size); 411 412 return vm_adjust_num_guest_pages(mode, nr_pages); 413 } 414 415 void kvm_set_files_rlimit(uint32_t nr_vcpus) 416 { 417 /* 418 * Each vCPU will open two file descriptors: the vCPU itself and the 419 * vCPU's binary stats file descriptor. Add an arbitrary amount of 420 * buffer for all other files a test may open. 421 */ 422 int nr_fds_wanted = nr_vcpus * 2 + 100; 423 struct rlimit rl; 424 425 /* 426 * Check that we're allowed to open nr_fds_wanted file descriptors and 427 * try raising the limits if needed. 428 */ 429 TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!"); 430 431 if (rl.rlim_cur < nr_fds_wanted) { 432 rl.rlim_cur = nr_fds_wanted; 433 if (rl.rlim_max < nr_fds_wanted) { 434 int old_rlim_max = rl.rlim_max; 435 436 rl.rlim_max = nr_fds_wanted; 437 __TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0, 438 "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)", 439 old_rlim_max, nr_fds_wanted); 440 } else { 441 TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!"); 442 } 443 } 444 445 } 446 447 static bool is_guest_memfd_required(struct vm_shape shape) 448 { 449 #ifdef __x86_64__ 450 return shape.type == KVM_X86_SNP_VM; 451 #else 452 return false; 453 #endif 454 } 455 456 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 457 uint64_t nr_extra_pages) 458 { 459 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 460 nr_extra_pages); 461 struct userspace_mem_region *slot0; 462 struct kvm_vm *vm; 463 int i, flags; 464 465 kvm_set_files_rlimit(nr_runnable_vcpus); 466 467 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 468 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 469 470 vm = ____vm_create(shape); 471 472 /* 473 * Force GUEST_MEMFD for the primary memory region if necessary, e.g. 474 * for CoCo VMs that require GUEST_MEMFD backed private memory. 475 */ 476 flags = 0; 477 if (is_guest_memfd_required(shape)) 478 flags |= KVM_MEM_GUEST_MEMFD; 479 480 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags); 481 for (i = 0; i < NR_MEM_REGIONS; i++) 482 vm->memslots[i] = 0; 483 484 kvm_vm_elf_load(vm, program_invocation_name); 485 486 /* 487 * TODO: Add proper defines to protect the library's memslots, and then 488 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 489 * read-only memslots as MMIO, and creating a read-only memslot for the 490 * MMIO region would prevent silently clobbering the MMIO region. 491 */ 492 slot0 = memslot2region(vm, 0); 493 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 494 495 if (guest_random_seed != last_guest_seed) { 496 pr_info("Random seed: 0x%x\n", guest_random_seed); 497 last_guest_seed = guest_random_seed; 498 } 499 guest_rng = new_guest_random_state(guest_random_seed); 500 sync_global_to_guest(vm, guest_rng); 501 502 kvm_arch_vm_post_create(vm); 503 504 return vm; 505 } 506 507 /* 508 * VM Create with customized parameters 509 * 510 * Input Args: 511 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 512 * nr_vcpus - VCPU count 513 * extra_mem_pages - Non-slot0 physical memory total size 514 * guest_code - Guest entry point 515 * vcpuids - VCPU IDs 516 * 517 * Output Args: None 518 * 519 * Return: 520 * Pointer to opaque structure that describes the created VM. 521 * 522 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 523 * extra_mem_pages is only used to calculate the maximum page table size, 524 * no real memory allocation for non-slot0 memory in this function. 525 */ 526 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 527 uint64_t extra_mem_pages, 528 void *guest_code, struct kvm_vcpu *vcpus[]) 529 { 530 struct kvm_vm *vm; 531 int i; 532 533 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 534 535 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 536 537 for (i = 0; i < nr_vcpus; ++i) 538 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 539 540 return vm; 541 } 542 543 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 544 struct kvm_vcpu **vcpu, 545 uint64_t extra_mem_pages, 546 void *guest_code) 547 { 548 struct kvm_vcpu *vcpus[1]; 549 struct kvm_vm *vm; 550 551 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 552 553 *vcpu = vcpus[0]; 554 return vm; 555 } 556 557 /* 558 * VM Restart 559 * 560 * Input Args: 561 * vm - VM that has been released before 562 * 563 * Output Args: None 564 * 565 * Reopens the file descriptors associated to the VM and reinstates the 566 * global state, such as the irqchip and the memory regions that are mapped 567 * into the guest. 568 */ 569 void kvm_vm_restart(struct kvm_vm *vmp) 570 { 571 int ctr; 572 struct userspace_mem_region *region; 573 574 vm_open(vmp); 575 if (vmp->has_irqchip) 576 vm_create_irqchip(vmp); 577 578 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 579 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 580 581 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 582 " rc: %i errno: %i\n" 583 " slot: %u flags: 0x%x\n" 584 " guest_phys_addr: 0x%llx size: 0x%llx", 585 ret, errno, region->region.slot, 586 region->region.flags, 587 region->region.guest_phys_addr, 588 region->region.memory_size); 589 } 590 } 591 592 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 593 uint32_t vcpu_id) 594 { 595 return __vm_vcpu_add(vm, vcpu_id); 596 } 597 598 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 599 { 600 kvm_vm_restart(vm); 601 602 return vm_vcpu_recreate(vm, 0); 603 } 604 605 void kvm_pin_this_task_to_pcpu(uint32_t pcpu) 606 { 607 cpu_set_t mask; 608 int r; 609 610 CPU_ZERO(&mask); 611 CPU_SET(pcpu, &mask); 612 r = sched_setaffinity(0, sizeof(mask), &mask); 613 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu); 614 } 615 616 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 617 { 618 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 619 620 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 621 "Not allowed to run on pCPU '%d', check cgroups?", pcpu); 622 return pcpu; 623 } 624 625 void kvm_print_vcpu_pinning_help(void) 626 { 627 const char *name = program_invocation_name; 628 629 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 630 " values (target pCPU), one for each vCPU, plus an optional\n" 631 " entry for the main application task (specified via entry\n" 632 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 633 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 634 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 635 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 636 " %s -v 3 -c 22,23,24,50\n\n" 637 " To leave the application task unpinned, drop the final entry:\n\n" 638 " %s -v 3 -c 22,23,24\n\n" 639 " (default: no pinning)\n", name, name); 640 } 641 642 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 643 int nr_vcpus) 644 { 645 cpu_set_t allowed_mask; 646 char *cpu, *cpu_list; 647 char delim[2] = ","; 648 int i, r; 649 650 cpu_list = strdup(pcpus_string); 651 TEST_ASSERT(cpu_list, "strdup() allocation failed."); 652 653 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 654 TEST_ASSERT(!r, "sched_getaffinity() failed"); 655 656 cpu = strtok(cpu_list, delim); 657 658 /* 1. Get all pcpus for vcpus. */ 659 for (i = 0; i < nr_vcpus; i++) { 660 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i); 661 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 662 cpu = strtok(NULL, delim); 663 } 664 665 /* 2. Check if the main worker needs to be pinned. */ 666 if (cpu) { 667 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); 668 cpu = strtok(NULL, delim); 669 } 670 671 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 672 free(cpu_list); 673 } 674 675 /* 676 * Userspace Memory Region Find 677 * 678 * Input Args: 679 * vm - Virtual Machine 680 * start - Starting VM physical address 681 * end - Ending VM physical address, inclusive. 682 * 683 * Output Args: None 684 * 685 * Return: 686 * Pointer to overlapping region, NULL if no such region. 687 * 688 * Searches for a region with any physical memory that overlaps with 689 * any portion of the guest physical addresses from start to end 690 * inclusive. If multiple overlapping regions exist, a pointer to any 691 * of the regions is returned. Null is returned only when no overlapping 692 * region exists. 693 */ 694 static struct userspace_mem_region * 695 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 696 { 697 struct rb_node *node; 698 699 for (node = vm->regions.gpa_tree.rb_node; node; ) { 700 struct userspace_mem_region *region = 701 container_of(node, struct userspace_mem_region, gpa_node); 702 uint64_t existing_start = region->region.guest_phys_addr; 703 uint64_t existing_end = region->region.guest_phys_addr 704 + region->region.memory_size - 1; 705 if (start <= existing_end && end >= existing_start) 706 return region; 707 708 if (start < existing_start) 709 node = node->rb_left; 710 else 711 node = node->rb_right; 712 } 713 714 return NULL; 715 } 716 717 static void kvm_stats_release(struct kvm_binary_stats *stats) 718 { 719 int ret; 720 721 if (stats->fd < 0) 722 return; 723 724 if (stats->desc) { 725 free(stats->desc); 726 stats->desc = NULL; 727 } 728 729 ret = close(stats->fd); 730 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 731 stats->fd = -1; 732 } 733 734 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 735 { 736 737 } 738 739 /* 740 * VM VCPU Remove 741 * 742 * Input Args: 743 * vcpu - VCPU to remove 744 * 745 * Output Args: None 746 * 747 * Return: None, TEST_ASSERT failures for all error conditions 748 * 749 * Removes a vCPU from a VM and frees its resources. 750 */ 751 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 752 { 753 int ret; 754 755 if (vcpu->dirty_gfns) { 756 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 757 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 758 vcpu->dirty_gfns = NULL; 759 } 760 761 ret = munmap(vcpu->run, vcpu_mmap_sz()); 762 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 763 764 ret = close(vcpu->fd); 765 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 766 767 kvm_stats_release(&vcpu->stats); 768 769 list_del(&vcpu->list); 770 771 vcpu_arch_free(vcpu); 772 free(vcpu); 773 } 774 775 void kvm_vm_release(struct kvm_vm *vmp) 776 { 777 struct kvm_vcpu *vcpu, *tmp; 778 int ret; 779 780 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 781 vm_vcpu_rm(vmp, vcpu); 782 783 ret = close(vmp->fd); 784 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 785 786 ret = close(vmp->kvm_fd); 787 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 788 789 /* Free cached stats metadata and close FD */ 790 kvm_stats_release(&vmp->stats); 791 } 792 793 static void __vm_mem_region_delete(struct kvm_vm *vm, 794 struct userspace_mem_region *region) 795 { 796 int ret; 797 798 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 799 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 800 hash_del(®ion->slot_node); 801 802 sparsebit_free(®ion->unused_phy_pages); 803 sparsebit_free(®ion->protected_phy_pages); 804 ret = munmap(region->mmap_start, region->mmap_size); 805 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 806 if (region->fd >= 0) { 807 /* There's an extra map when using shared memory. */ 808 ret = munmap(region->mmap_alias, region->mmap_size); 809 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 810 close(region->fd); 811 } 812 if (region->region.guest_memfd >= 0) 813 close(region->region.guest_memfd); 814 815 free(region); 816 } 817 818 /* 819 * Destroys and frees the VM pointed to by vmp. 820 */ 821 void kvm_vm_free(struct kvm_vm *vmp) 822 { 823 int ctr; 824 struct hlist_node *node; 825 struct userspace_mem_region *region; 826 827 if (vmp == NULL) 828 return; 829 830 /* Free userspace_mem_regions. */ 831 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 832 __vm_mem_region_delete(vmp, region); 833 834 /* Free sparsebit arrays. */ 835 sparsebit_free(&vmp->vpages_valid); 836 sparsebit_free(&vmp->vpages_mapped); 837 838 kvm_vm_release(vmp); 839 840 /* Free the structure describing the VM. */ 841 free(vmp); 842 } 843 844 int kvm_memfd_alloc(size_t size, bool hugepages) 845 { 846 int memfd_flags = MFD_CLOEXEC; 847 int fd, r; 848 849 if (hugepages) 850 memfd_flags |= MFD_HUGETLB; 851 852 fd = memfd_create("kvm_selftest", memfd_flags); 853 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 854 855 r = ftruncate(fd, size); 856 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 857 858 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 859 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 860 861 return fd; 862 } 863 864 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 865 struct userspace_mem_region *region) 866 { 867 struct rb_node **cur, *parent; 868 869 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 870 struct userspace_mem_region *cregion; 871 872 cregion = container_of(*cur, typeof(*cregion), gpa_node); 873 parent = *cur; 874 if (region->region.guest_phys_addr < 875 cregion->region.guest_phys_addr) 876 cur = &(*cur)->rb_left; 877 else { 878 TEST_ASSERT(region->region.guest_phys_addr != 879 cregion->region.guest_phys_addr, 880 "Duplicate GPA in region tree"); 881 882 cur = &(*cur)->rb_right; 883 } 884 } 885 886 rb_link_node(®ion->gpa_node, parent, cur); 887 rb_insert_color(®ion->gpa_node, gpa_tree); 888 } 889 890 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 891 struct userspace_mem_region *region) 892 { 893 struct rb_node **cur, *parent; 894 895 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 896 struct userspace_mem_region *cregion; 897 898 cregion = container_of(*cur, typeof(*cregion), hva_node); 899 parent = *cur; 900 if (region->host_mem < cregion->host_mem) 901 cur = &(*cur)->rb_left; 902 else { 903 TEST_ASSERT(region->host_mem != 904 cregion->host_mem, 905 "Duplicate HVA in region tree"); 906 907 cur = &(*cur)->rb_right; 908 } 909 } 910 911 rb_link_node(®ion->hva_node, parent, cur); 912 rb_insert_color(®ion->hva_node, hva_tree); 913 } 914 915 916 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 917 uint64_t gpa, uint64_t size, void *hva) 918 { 919 struct kvm_userspace_memory_region region = { 920 .slot = slot, 921 .flags = flags, 922 .guest_phys_addr = gpa, 923 .memory_size = size, 924 .userspace_addr = (uintptr_t)hva, 925 }; 926 927 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 928 } 929 930 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 931 uint64_t gpa, uint64_t size, void *hva) 932 { 933 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 934 935 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 936 errno, strerror(errno)); 937 } 938 939 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2() \ 940 __TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2), \ 941 "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)") 942 943 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 944 uint64_t gpa, uint64_t size, void *hva, 945 uint32_t guest_memfd, uint64_t guest_memfd_offset) 946 { 947 struct kvm_userspace_memory_region2 region = { 948 .slot = slot, 949 .flags = flags, 950 .guest_phys_addr = gpa, 951 .memory_size = size, 952 .userspace_addr = (uintptr_t)hva, 953 .guest_memfd = guest_memfd, 954 .guest_memfd_offset = guest_memfd_offset, 955 }; 956 957 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 958 959 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 960 } 961 962 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 963 uint64_t gpa, uint64_t size, void *hva, 964 uint32_t guest_memfd, uint64_t guest_memfd_offset) 965 { 966 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 967 guest_memfd, guest_memfd_offset); 968 969 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 970 errno, strerror(errno)); 971 } 972 973 974 /* FIXME: This thing needs to be ripped apart and rewritten. */ 975 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 976 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 977 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 978 { 979 int ret; 980 struct userspace_mem_region *region; 981 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 982 size_t mem_size = npages * vm->page_size; 983 size_t alignment; 984 985 TEST_REQUIRE_SET_USER_MEMORY_REGION2(); 986 987 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 988 "Number of guest pages is not compatible with the host. " 989 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 990 991 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 992 "address not on a page boundary.\n" 993 " guest_paddr: 0x%lx vm->page_size: 0x%x", 994 guest_paddr, vm->page_size); 995 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 996 <= vm->max_gfn, "Physical range beyond maximum " 997 "supported physical address,\n" 998 " guest_paddr: 0x%lx npages: 0x%lx\n" 999 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 1000 guest_paddr, npages, vm->max_gfn, vm->page_size); 1001 1002 /* 1003 * Confirm a mem region with an overlapping address doesn't 1004 * already exist. 1005 */ 1006 region = (struct userspace_mem_region *) userspace_mem_region_find( 1007 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 1008 if (region != NULL) 1009 TEST_FAIL("overlapping userspace_mem_region already " 1010 "exists\n" 1011 " requested guest_paddr: 0x%lx npages: 0x%lx " 1012 "page_size: 0x%x\n" 1013 " existing guest_paddr: 0x%lx size: 0x%lx", 1014 guest_paddr, npages, vm->page_size, 1015 (uint64_t) region->region.guest_phys_addr, 1016 (uint64_t) region->region.memory_size); 1017 1018 /* Confirm no region with the requested slot already exists. */ 1019 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1020 slot) { 1021 if (region->region.slot != slot) 1022 continue; 1023 1024 TEST_FAIL("A mem region with the requested slot " 1025 "already exists.\n" 1026 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 1027 " existing slot: %u paddr: 0x%lx size: 0x%lx", 1028 slot, guest_paddr, npages, 1029 region->region.slot, 1030 (uint64_t) region->region.guest_phys_addr, 1031 (uint64_t) region->region.memory_size); 1032 } 1033 1034 /* Allocate and initialize new mem region structure. */ 1035 region = calloc(1, sizeof(*region)); 1036 TEST_ASSERT(region != NULL, "Insufficient Memory"); 1037 region->mmap_size = mem_size; 1038 1039 #ifdef __s390x__ 1040 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 1041 alignment = 0x100000; 1042 #else 1043 alignment = 1; 1044 #endif 1045 1046 /* 1047 * When using THP mmap is not guaranteed to returned a hugepage aligned 1048 * address so we have to pad the mmap. Padding is not needed for HugeTLB 1049 * because mmap will always return an address aligned to the HugeTLB 1050 * page size. 1051 */ 1052 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 1053 alignment = max(backing_src_pagesz, alignment); 1054 1055 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 1056 1057 /* Add enough memory to align up if necessary */ 1058 if (alignment > 1) 1059 region->mmap_size += alignment; 1060 1061 region->fd = -1; 1062 if (backing_src_is_shared(src_type)) 1063 region->fd = kvm_memfd_alloc(region->mmap_size, 1064 src_type == VM_MEM_SRC_SHARED_HUGETLB); 1065 1066 region->mmap_start = mmap(NULL, region->mmap_size, 1067 PROT_READ | PROT_WRITE, 1068 vm_mem_backing_src_alias(src_type)->flag, 1069 region->fd, 0); 1070 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1071 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1072 1073 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1074 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1075 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1076 region->mmap_start, backing_src_pagesz); 1077 1078 /* Align host address */ 1079 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1080 1081 /* As needed perform madvise */ 1082 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1083 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1084 ret = madvise(region->host_mem, mem_size, 1085 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1086 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1087 region->host_mem, mem_size, 1088 vm_mem_backing_src_alias(src_type)->name); 1089 } 1090 1091 region->backing_src_type = src_type; 1092 1093 if (flags & KVM_MEM_GUEST_MEMFD) { 1094 if (guest_memfd < 0) { 1095 uint32_t guest_memfd_flags = 0; 1096 TEST_ASSERT(!guest_memfd_offset, 1097 "Offset must be zero when creating new guest_memfd"); 1098 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1099 } else { 1100 /* 1101 * Install a unique fd for each memslot so that the fd 1102 * can be closed when the region is deleted without 1103 * needing to track if the fd is owned by the framework 1104 * or by the caller. 1105 */ 1106 guest_memfd = dup(guest_memfd); 1107 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1108 } 1109 1110 region->region.guest_memfd = guest_memfd; 1111 region->region.guest_memfd_offset = guest_memfd_offset; 1112 } else { 1113 region->region.guest_memfd = -1; 1114 } 1115 1116 region->unused_phy_pages = sparsebit_alloc(); 1117 if (vm_arch_has_protected_memory(vm)) 1118 region->protected_phy_pages = sparsebit_alloc(); 1119 sparsebit_set_num(region->unused_phy_pages, 1120 guest_paddr >> vm->page_shift, npages); 1121 region->region.slot = slot; 1122 region->region.flags = flags; 1123 region->region.guest_phys_addr = guest_paddr; 1124 region->region.memory_size = npages * vm->page_size; 1125 region->region.userspace_addr = (uintptr_t) region->host_mem; 1126 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1127 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1128 " rc: %i errno: %i\n" 1129 " slot: %u flags: 0x%x\n" 1130 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d", 1131 ret, errno, slot, flags, 1132 guest_paddr, (uint64_t) region->region.memory_size, 1133 region->region.guest_memfd); 1134 1135 /* Add to quick lookup data structures */ 1136 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1137 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1138 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1139 1140 /* If shared memory, create an alias. */ 1141 if (region->fd >= 0) { 1142 region->mmap_alias = mmap(NULL, region->mmap_size, 1143 PROT_READ | PROT_WRITE, 1144 vm_mem_backing_src_alias(src_type)->flag, 1145 region->fd, 0); 1146 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1147 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1148 1149 /* Align host alias address */ 1150 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1151 } 1152 } 1153 1154 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1155 enum vm_mem_backing_src_type src_type, 1156 uint64_t guest_paddr, uint32_t slot, 1157 uint64_t npages, uint32_t flags) 1158 { 1159 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1160 } 1161 1162 /* 1163 * Memslot to region 1164 * 1165 * Input Args: 1166 * vm - Virtual Machine 1167 * memslot - KVM memory slot ID 1168 * 1169 * Output Args: None 1170 * 1171 * Return: 1172 * Pointer to memory region structure that describe memory region 1173 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1174 * on error (e.g. currently no memory region using memslot as a KVM 1175 * memory slot ID). 1176 */ 1177 struct userspace_mem_region * 1178 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1179 { 1180 struct userspace_mem_region *region; 1181 1182 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1183 memslot) 1184 if (region->region.slot == memslot) 1185 return region; 1186 1187 fprintf(stderr, "No mem region with the requested slot found,\n" 1188 " requested slot: %u\n", memslot); 1189 fputs("---- vm dump ----\n", stderr); 1190 vm_dump(stderr, vm, 2); 1191 TEST_FAIL("Mem region not found"); 1192 return NULL; 1193 } 1194 1195 /* 1196 * VM Memory Region Flags Set 1197 * 1198 * Input Args: 1199 * vm - Virtual Machine 1200 * flags - Starting guest physical address 1201 * 1202 * Output Args: None 1203 * 1204 * Return: None 1205 * 1206 * Sets the flags of the memory region specified by the value of slot, 1207 * to the values given by flags. 1208 */ 1209 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1210 { 1211 int ret; 1212 struct userspace_mem_region *region; 1213 1214 region = memslot2region(vm, slot); 1215 1216 region->region.flags = flags; 1217 1218 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1219 1220 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1221 " rc: %i errno: %i slot: %u flags: 0x%x", 1222 ret, errno, slot, flags); 1223 } 1224 1225 /* 1226 * VM Memory Region Move 1227 * 1228 * Input Args: 1229 * vm - Virtual Machine 1230 * slot - Slot of the memory region to move 1231 * new_gpa - Starting guest physical address 1232 * 1233 * Output Args: None 1234 * 1235 * Return: None 1236 * 1237 * Change the gpa of a memory region. 1238 */ 1239 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1240 { 1241 struct userspace_mem_region *region; 1242 int ret; 1243 1244 region = memslot2region(vm, slot); 1245 1246 region->region.guest_phys_addr = new_gpa; 1247 1248 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1249 1250 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1251 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1252 ret, errno, slot, new_gpa); 1253 } 1254 1255 /* 1256 * VM Memory Region Delete 1257 * 1258 * Input Args: 1259 * vm - Virtual Machine 1260 * slot - Slot of the memory region to delete 1261 * 1262 * Output Args: None 1263 * 1264 * Return: None 1265 * 1266 * Delete a memory region. 1267 */ 1268 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1269 { 1270 struct userspace_mem_region *region = memslot2region(vm, slot); 1271 1272 region->region.memory_size = 0; 1273 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1274 1275 __vm_mem_region_delete(vm, region); 1276 } 1277 1278 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1279 bool punch_hole) 1280 { 1281 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1282 struct userspace_mem_region *region; 1283 uint64_t end = base + size; 1284 uint64_t gpa, len; 1285 off_t fd_offset; 1286 int ret; 1287 1288 for (gpa = base; gpa < end; gpa += len) { 1289 uint64_t offset; 1290 1291 region = userspace_mem_region_find(vm, gpa, gpa); 1292 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1293 "Private memory region not found for GPA 0x%lx", gpa); 1294 1295 offset = gpa - region->region.guest_phys_addr; 1296 fd_offset = region->region.guest_memfd_offset + offset; 1297 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1298 1299 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1300 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx", 1301 punch_hole ? "punch hole" : "allocate", gpa, len, 1302 region->region.guest_memfd, mode, fd_offset); 1303 } 1304 } 1305 1306 /* Returns the size of a vCPU's kvm_run structure. */ 1307 static int vcpu_mmap_sz(void) 1308 { 1309 int dev_fd, ret; 1310 1311 dev_fd = open_kvm_dev_path_or_exit(); 1312 1313 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1314 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1315 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1316 1317 close(dev_fd); 1318 1319 return ret; 1320 } 1321 1322 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1323 { 1324 struct kvm_vcpu *vcpu; 1325 1326 list_for_each_entry(vcpu, &vm->vcpus, list) { 1327 if (vcpu->id == vcpu_id) 1328 return true; 1329 } 1330 1331 return false; 1332 } 1333 1334 /* 1335 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1336 * No additional vCPU setup is done. Returns the vCPU. 1337 */ 1338 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1339 { 1340 struct kvm_vcpu *vcpu; 1341 1342 /* Confirm a vcpu with the specified id doesn't already exist. */ 1343 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id); 1344 1345 /* Allocate and initialize new vcpu structure. */ 1346 vcpu = calloc(1, sizeof(*vcpu)); 1347 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1348 1349 vcpu->vm = vm; 1350 vcpu->id = vcpu_id; 1351 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1352 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1353 1354 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1355 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1356 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1357 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1358 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1359 TEST_ASSERT(vcpu->run != MAP_FAILED, 1360 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1361 1362 if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD)) 1363 vcpu->stats.fd = vcpu_get_stats_fd(vcpu); 1364 else 1365 vcpu->stats.fd = -1; 1366 1367 /* Add to linked-list of VCPUs. */ 1368 list_add(&vcpu->list, &vm->vcpus); 1369 1370 return vcpu; 1371 } 1372 1373 /* 1374 * VM Virtual Address Unused Gap 1375 * 1376 * Input Args: 1377 * vm - Virtual Machine 1378 * sz - Size (bytes) 1379 * vaddr_min - Minimum Virtual Address 1380 * 1381 * Output Args: None 1382 * 1383 * Return: 1384 * Lowest virtual address at or below vaddr_min, with at least 1385 * sz unused bytes. TEST_ASSERT failure if no area of at least 1386 * size sz is available. 1387 * 1388 * Within the VM specified by vm, locates the lowest starting virtual 1389 * address >= vaddr_min, that has at least sz unallocated bytes. A 1390 * TEST_ASSERT failure occurs for invalid input or no area of at least 1391 * sz unallocated bytes >= vaddr_min is available. 1392 */ 1393 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1394 vm_vaddr_t vaddr_min) 1395 { 1396 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1397 1398 /* Determine lowest permitted virtual page index. */ 1399 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1400 if ((pgidx_start * vm->page_size) < vaddr_min) 1401 goto no_va_found; 1402 1403 /* Loop over section with enough valid virtual page indexes. */ 1404 if (!sparsebit_is_set_num(vm->vpages_valid, 1405 pgidx_start, pages)) 1406 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1407 pgidx_start, pages); 1408 do { 1409 /* 1410 * Are there enough unused virtual pages available at 1411 * the currently proposed starting virtual page index. 1412 * If not, adjust proposed starting index to next 1413 * possible. 1414 */ 1415 if (sparsebit_is_clear_num(vm->vpages_mapped, 1416 pgidx_start, pages)) 1417 goto va_found; 1418 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1419 pgidx_start, pages); 1420 if (pgidx_start == 0) 1421 goto no_va_found; 1422 1423 /* 1424 * If needed, adjust proposed starting virtual address, 1425 * to next range of valid virtual addresses. 1426 */ 1427 if (!sparsebit_is_set_num(vm->vpages_valid, 1428 pgidx_start, pages)) { 1429 pgidx_start = sparsebit_next_set_num( 1430 vm->vpages_valid, pgidx_start, pages); 1431 if (pgidx_start == 0) 1432 goto no_va_found; 1433 } 1434 } while (pgidx_start != 0); 1435 1436 no_va_found: 1437 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1438 1439 /* NOT REACHED */ 1440 return -1; 1441 1442 va_found: 1443 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1444 pgidx_start, pages), 1445 "Unexpected, invalid virtual page index range,\n" 1446 " pgidx_start: 0x%lx\n" 1447 " pages: 0x%lx", 1448 pgidx_start, pages); 1449 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1450 pgidx_start, pages), 1451 "Unexpected, pages already mapped,\n" 1452 " pgidx_start: 0x%lx\n" 1453 " pages: 0x%lx", 1454 pgidx_start, pages); 1455 1456 return pgidx_start * vm->page_size; 1457 } 1458 1459 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, 1460 vm_vaddr_t vaddr_min, 1461 enum kvm_mem_region_type type, 1462 bool protected) 1463 { 1464 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1465 1466 virt_pgd_alloc(vm); 1467 vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages, 1468 KVM_UTIL_MIN_PFN * vm->page_size, 1469 vm->memslots[type], protected); 1470 1471 /* 1472 * Find an unused range of virtual page addresses of at least 1473 * pages in length. 1474 */ 1475 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1476 1477 /* Map the virtual pages. */ 1478 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1479 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1480 1481 virt_pg_map(vm, vaddr, paddr); 1482 1483 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1484 } 1485 1486 return vaddr_start; 1487 } 1488 1489 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1490 enum kvm_mem_region_type type) 1491 { 1492 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, 1493 vm_arch_has_protected_memory(vm)); 1494 } 1495 1496 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 1497 vm_vaddr_t vaddr_min, 1498 enum kvm_mem_region_type type) 1499 { 1500 return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false); 1501 } 1502 1503 /* 1504 * VM Virtual Address Allocate 1505 * 1506 * Input Args: 1507 * vm - Virtual Machine 1508 * sz - Size in bytes 1509 * vaddr_min - Minimum starting virtual address 1510 * 1511 * Output Args: None 1512 * 1513 * Return: 1514 * Starting guest virtual address 1515 * 1516 * Allocates at least sz bytes within the virtual address space of the vm 1517 * given by vm. The allocated bytes are mapped to a virtual address >= 1518 * the address given by vaddr_min. Note that each allocation uses a 1519 * a unique set of pages, with the minimum real allocation being at least 1520 * a page. The allocated physical space comes from the TEST_DATA memory region. 1521 */ 1522 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1523 { 1524 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1525 } 1526 1527 /* 1528 * VM Virtual Address Allocate Pages 1529 * 1530 * Input Args: 1531 * vm - Virtual Machine 1532 * 1533 * Output Args: None 1534 * 1535 * Return: 1536 * Starting guest virtual address 1537 * 1538 * Allocates at least N system pages worth of bytes within the virtual address 1539 * space of the vm. 1540 */ 1541 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1542 { 1543 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1544 } 1545 1546 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1547 { 1548 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1549 } 1550 1551 /* 1552 * VM Virtual Address Allocate Page 1553 * 1554 * Input Args: 1555 * vm - Virtual Machine 1556 * 1557 * Output Args: None 1558 * 1559 * Return: 1560 * Starting guest virtual address 1561 * 1562 * Allocates at least one system page worth of bytes within the virtual address 1563 * space of the vm. 1564 */ 1565 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1566 { 1567 return vm_vaddr_alloc_pages(vm, 1); 1568 } 1569 1570 /* 1571 * Map a range of VM virtual address to the VM's physical address 1572 * 1573 * Input Args: 1574 * vm - Virtual Machine 1575 * vaddr - Virtuall address to map 1576 * paddr - VM Physical Address 1577 * npages - The number of pages to map 1578 * 1579 * Output Args: None 1580 * 1581 * Return: None 1582 * 1583 * Within the VM given by @vm, creates a virtual translation for 1584 * @npages starting at @vaddr to the page range starting at @paddr. 1585 */ 1586 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1587 unsigned int npages) 1588 { 1589 size_t page_size = vm->page_size; 1590 size_t size = npages * page_size; 1591 1592 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1593 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1594 1595 while (npages--) { 1596 virt_pg_map(vm, vaddr, paddr); 1597 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1598 1599 vaddr += page_size; 1600 paddr += page_size; 1601 } 1602 } 1603 1604 /* 1605 * Address VM Physical to Host Virtual 1606 * 1607 * Input Args: 1608 * vm - Virtual Machine 1609 * gpa - VM physical address 1610 * 1611 * Output Args: None 1612 * 1613 * Return: 1614 * Equivalent host virtual address 1615 * 1616 * Locates the memory region containing the VM physical address given 1617 * by gpa, within the VM given by vm. When found, the host virtual 1618 * address providing the memory to the vm physical address is returned. 1619 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1620 */ 1621 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1622 { 1623 struct userspace_mem_region *region; 1624 1625 gpa = vm_untag_gpa(vm, gpa); 1626 1627 region = userspace_mem_region_find(vm, gpa, gpa); 1628 if (!region) { 1629 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1630 return NULL; 1631 } 1632 1633 return (void *)((uintptr_t)region->host_mem 1634 + (gpa - region->region.guest_phys_addr)); 1635 } 1636 1637 /* 1638 * Address Host Virtual to VM Physical 1639 * 1640 * Input Args: 1641 * vm - Virtual Machine 1642 * hva - Host virtual address 1643 * 1644 * Output Args: None 1645 * 1646 * Return: 1647 * Equivalent VM physical address 1648 * 1649 * Locates the memory region containing the host virtual address given 1650 * by hva, within the VM given by vm. When found, the equivalent 1651 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1652 * region containing hva exists. 1653 */ 1654 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1655 { 1656 struct rb_node *node; 1657 1658 for (node = vm->regions.hva_tree.rb_node; node; ) { 1659 struct userspace_mem_region *region = 1660 container_of(node, struct userspace_mem_region, hva_node); 1661 1662 if (hva >= region->host_mem) { 1663 if (hva <= (region->host_mem 1664 + region->region.memory_size - 1)) 1665 return (vm_paddr_t)((uintptr_t) 1666 region->region.guest_phys_addr 1667 + (hva - (uintptr_t)region->host_mem)); 1668 1669 node = node->rb_right; 1670 } else 1671 node = node->rb_left; 1672 } 1673 1674 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1675 return -1; 1676 } 1677 1678 /* 1679 * Address VM physical to Host Virtual *alias*. 1680 * 1681 * Input Args: 1682 * vm - Virtual Machine 1683 * gpa - VM physical address 1684 * 1685 * Output Args: None 1686 * 1687 * Return: 1688 * Equivalent address within the host virtual *alias* area, or NULL 1689 * (without failing the test) if the guest memory is not shared (so 1690 * no alias exists). 1691 * 1692 * Create a writable, shared virtual=>physical alias for the specific GPA. 1693 * The primary use case is to allow the host selftest to manipulate guest 1694 * memory without mapping said memory in the guest's address space. And, for 1695 * userfaultfd-based demand paging, to do so without triggering userfaults. 1696 */ 1697 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1698 { 1699 struct userspace_mem_region *region; 1700 uintptr_t offset; 1701 1702 region = userspace_mem_region_find(vm, gpa, gpa); 1703 if (!region) 1704 return NULL; 1705 1706 if (!region->host_alias) 1707 return NULL; 1708 1709 offset = gpa - region->region.guest_phys_addr; 1710 return (void *) ((uintptr_t) region->host_alias + offset); 1711 } 1712 1713 /* Create an interrupt controller chip for the specified VM. */ 1714 void vm_create_irqchip(struct kvm_vm *vm) 1715 { 1716 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1717 1718 vm->has_irqchip = true; 1719 } 1720 1721 int _vcpu_run(struct kvm_vcpu *vcpu) 1722 { 1723 int rc; 1724 1725 do { 1726 rc = __vcpu_run(vcpu); 1727 } while (rc == -1 && errno == EINTR); 1728 1729 if (!rc) 1730 assert_on_unhandled_exception(vcpu); 1731 1732 return rc; 1733 } 1734 1735 /* 1736 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1737 * Assert if the KVM returns an error (other than -EINTR). 1738 */ 1739 void vcpu_run(struct kvm_vcpu *vcpu) 1740 { 1741 int ret = _vcpu_run(vcpu); 1742 1743 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1744 } 1745 1746 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1747 { 1748 int ret; 1749 1750 vcpu->run->immediate_exit = 1; 1751 ret = __vcpu_run(vcpu); 1752 vcpu->run->immediate_exit = 0; 1753 1754 TEST_ASSERT(ret == -1 && errno == EINTR, 1755 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1756 ret, errno); 1757 } 1758 1759 /* 1760 * Get the list of guest registers which are supported for 1761 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1762 * it is the caller's responsibility to free the list. 1763 */ 1764 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1765 { 1766 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1767 int ret; 1768 1769 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1770 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1771 1772 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1773 reg_list->n = reg_list_n.n; 1774 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1775 return reg_list; 1776 } 1777 1778 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1779 { 1780 uint32_t page_size = getpagesize(); 1781 uint32_t size = vcpu->vm->dirty_ring_size; 1782 1783 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1784 1785 if (!vcpu->dirty_gfns) { 1786 void *addr; 1787 1788 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1789 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1790 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1791 1792 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1793 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1794 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1795 1796 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1797 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1798 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1799 1800 vcpu->dirty_gfns = addr; 1801 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1802 } 1803 1804 return vcpu->dirty_gfns; 1805 } 1806 1807 /* 1808 * Device Ioctl 1809 */ 1810 1811 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1812 { 1813 struct kvm_device_attr attribute = { 1814 .group = group, 1815 .attr = attr, 1816 .flags = 0, 1817 }; 1818 1819 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1820 } 1821 1822 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1823 { 1824 struct kvm_create_device create_dev = { 1825 .type = type, 1826 .flags = KVM_CREATE_DEVICE_TEST, 1827 }; 1828 1829 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1830 } 1831 1832 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1833 { 1834 struct kvm_create_device create_dev = { 1835 .type = type, 1836 .fd = -1, 1837 .flags = 0, 1838 }; 1839 int err; 1840 1841 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1842 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1843 return err ? : create_dev.fd; 1844 } 1845 1846 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1847 { 1848 struct kvm_device_attr kvmattr = { 1849 .group = group, 1850 .attr = attr, 1851 .flags = 0, 1852 .addr = (uintptr_t)val, 1853 }; 1854 1855 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1856 } 1857 1858 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1859 { 1860 struct kvm_device_attr kvmattr = { 1861 .group = group, 1862 .attr = attr, 1863 .flags = 0, 1864 .addr = (uintptr_t)val, 1865 }; 1866 1867 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1868 } 1869 1870 /* 1871 * IRQ related functions. 1872 */ 1873 1874 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1875 { 1876 struct kvm_irq_level irq_level = { 1877 .irq = irq, 1878 .level = level, 1879 }; 1880 1881 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1882 } 1883 1884 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1885 { 1886 int ret = _kvm_irq_line(vm, irq, level); 1887 1888 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1889 } 1890 1891 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1892 { 1893 struct kvm_irq_routing *routing; 1894 size_t size; 1895 1896 size = sizeof(struct kvm_irq_routing); 1897 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1898 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1899 routing = calloc(1, size); 1900 assert(routing); 1901 1902 return routing; 1903 } 1904 1905 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1906 uint32_t gsi, uint32_t pin) 1907 { 1908 int i; 1909 1910 assert(routing); 1911 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1912 1913 i = routing->nr; 1914 routing->entries[i].gsi = gsi; 1915 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1916 routing->entries[i].flags = 0; 1917 routing->entries[i].u.irqchip.irqchip = 0; 1918 routing->entries[i].u.irqchip.pin = pin; 1919 routing->nr++; 1920 } 1921 1922 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1923 { 1924 int ret; 1925 1926 assert(routing); 1927 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1928 free(routing); 1929 1930 return ret; 1931 } 1932 1933 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1934 { 1935 int ret; 1936 1937 ret = _kvm_gsi_routing_write(vm, routing); 1938 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1939 } 1940 1941 /* 1942 * VM Dump 1943 * 1944 * Input Args: 1945 * vm - Virtual Machine 1946 * indent - Left margin indent amount 1947 * 1948 * Output Args: 1949 * stream - Output FILE stream 1950 * 1951 * Return: None 1952 * 1953 * Dumps the current state of the VM given by vm, to the FILE stream 1954 * given by stream. 1955 */ 1956 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1957 { 1958 int ctr; 1959 struct userspace_mem_region *region; 1960 struct kvm_vcpu *vcpu; 1961 1962 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1963 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1964 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1965 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1966 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1967 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1968 "host_virt: %p\n", indent + 2, "", 1969 (uint64_t) region->region.guest_phys_addr, 1970 (uint64_t) region->region.memory_size, 1971 region->host_mem); 1972 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1973 sparsebit_dump(stream, region->unused_phy_pages, 0); 1974 if (region->protected_phy_pages) { 1975 fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, ""); 1976 sparsebit_dump(stream, region->protected_phy_pages, 0); 1977 } 1978 } 1979 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1980 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1981 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1982 vm->pgd_created); 1983 if (vm->pgd_created) { 1984 fprintf(stream, "%*sVirtual Translation Tables:\n", 1985 indent + 2, ""); 1986 virt_dump(stream, vm, indent + 4); 1987 } 1988 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1989 1990 list_for_each_entry(vcpu, &vm->vcpus, list) 1991 vcpu_dump(stream, vcpu, indent + 2); 1992 } 1993 1994 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1995 1996 /* Known KVM exit reasons */ 1997 static struct exit_reason { 1998 unsigned int reason; 1999 const char *name; 2000 } exit_reasons_known[] = { 2001 KVM_EXIT_STRING(UNKNOWN), 2002 KVM_EXIT_STRING(EXCEPTION), 2003 KVM_EXIT_STRING(IO), 2004 KVM_EXIT_STRING(HYPERCALL), 2005 KVM_EXIT_STRING(DEBUG), 2006 KVM_EXIT_STRING(HLT), 2007 KVM_EXIT_STRING(MMIO), 2008 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 2009 KVM_EXIT_STRING(SHUTDOWN), 2010 KVM_EXIT_STRING(FAIL_ENTRY), 2011 KVM_EXIT_STRING(INTR), 2012 KVM_EXIT_STRING(SET_TPR), 2013 KVM_EXIT_STRING(TPR_ACCESS), 2014 KVM_EXIT_STRING(S390_SIEIC), 2015 KVM_EXIT_STRING(S390_RESET), 2016 KVM_EXIT_STRING(DCR), 2017 KVM_EXIT_STRING(NMI), 2018 KVM_EXIT_STRING(INTERNAL_ERROR), 2019 KVM_EXIT_STRING(OSI), 2020 KVM_EXIT_STRING(PAPR_HCALL), 2021 KVM_EXIT_STRING(S390_UCONTROL), 2022 KVM_EXIT_STRING(WATCHDOG), 2023 KVM_EXIT_STRING(S390_TSCH), 2024 KVM_EXIT_STRING(EPR), 2025 KVM_EXIT_STRING(SYSTEM_EVENT), 2026 KVM_EXIT_STRING(S390_STSI), 2027 KVM_EXIT_STRING(IOAPIC_EOI), 2028 KVM_EXIT_STRING(HYPERV), 2029 KVM_EXIT_STRING(ARM_NISV), 2030 KVM_EXIT_STRING(X86_RDMSR), 2031 KVM_EXIT_STRING(X86_WRMSR), 2032 KVM_EXIT_STRING(DIRTY_RING_FULL), 2033 KVM_EXIT_STRING(AP_RESET_HOLD), 2034 KVM_EXIT_STRING(X86_BUS_LOCK), 2035 KVM_EXIT_STRING(XEN), 2036 KVM_EXIT_STRING(RISCV_SBI), 2037 KVM_EXIT_STRING(RISCV_CSR), 2038 KVM_EXIT_STRING(NOTIFY), 2039 KVM_EXIT_STRING(LOONGARCH_IOCSR), 2040 KVM_EXIT_STRING(MEMORY_FAULT), 2041 }; 2042 2043 /* 2044 * Exit Reason String 2045 * 2046 * Input Args: 2047 * exit_reason - Exit reason 2048 * 2049 * Output Args: None 2050 * 2051 * Return: 2052 * Constant string pointer describing the exit reason. 2053 * 2054 * Locates and returns a constant string that describes the KVM exit 2055 * reason given by exit_reason. If no such string is found, a constant 2056 * string of "Unknown" is returned. 2057 */ 2058 const char *exit_reason_str(unsigned int exit_reason) 2059 { 2060 unsigned int n1; 2061 2062 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2063 if (exit_reason == exit_reasons_known[n1].reason) 2064 return exit_reasons_known[n1].name; 2065 } 2066 2067 return "Unknown"; 2068 } 2069 2070 /* 2071 * Physical Contiguous Page Allocator 2072 * 2073 * Input Args: 2074 * vm - Virtual Machine 2075 * num - number of pages 2076 * paddr_min - Physical address minimum 2077 * memslot - Memory region to allocate page from 2078 * protected - True if the pages will be used as protected/private memory 2079 * 2080 * Output Args: None 2081 * 2082 * Return: 2083 * Starting physical address 2084 * 2085 * Within the VM specified by vm, locates a range of available physical 2086 * pages at or above paddr_min. If found, the pages are marked as in use 2087 * and their base address is returned. A TEST_ASSERT failure occurs if 2088 * not enough pages are available at or above paddr_min. 2089 */ 2090 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2091 vm_paddr_t paddr_min, uint32_t memslot, 2092 bool protected) 2093 { 2094 struct userspace_mem_region *region; 2095 sparsebit_idx_t pg, base; 2096 2097 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2098 2099 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2100 "not divisible by page size.\n" 2101 " paddr_min: 0x%lx page_size: 0x%x", 2102 paddr_min, vm->page_size); 2103 2104 region = memslot2region(vm, memslot); 2105 TEST_ASSERT(!protected || region->protected_phy_pages, 2106 "Region doesn't support protected memory"); 2107 2108 base = pg = paddr_min >> vm->page_shift; 2109 do { 2110 for (; pg < base + num; ++pg) { 2111 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2112 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2113 break; 2114 } 2115 } 2116 } while (pg && pg != base + num); 2117 2118 if (pg == 0) { 2119 fprintf(stderr, "No guest physical page available, " 2120 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2121 paddr_min, vm->page_size, memslot); 2122 fputs("---- vm dump ----\n", stderr); 2123 vm_dump(stderr, vm, 2); 2124 abort(); 2125 } 2126 2127 for (pg = base; pg < base + num; ++pg) { 2128 sparsebit_clear(region->unused_phy_pages, pg); 2129 if (protected) 2130 sparsebit_set(region->protected_phy_pages, pg); 2131 } 2132 2133 return base * vm->page_size; 2134 } 2135 2136 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2137 uint32_t memslot) 2138 { 2139 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2140 } 2141 2142 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2143 { 2144 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2145 vm->memslots[MEM_REGION_PT]); 2146 } 2147 2148 /* 2149 * Address Guest Virtual to Host Virtual 2150 * 2151 * Input Args: 2152 * vm - Virtual Machine 2153 * gva - VM virtual address 2154 * 2155 * Output Args: None 2156 * 2157 * Return: 2158 * Equivalent host virtual address 2159 */ 2160 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2161 { 2162 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2163 } 2164 2165 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2166 { 2167 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2168 } 2169 2170 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2171 unsigned int page_shift, 2172 unsigned int new_page_shift, 2173 bool ceil) 2174 { 2175 unsigned int n = 1 << (new_page_shift - page_shift); 2176 2177 if (page_shift >= new_page_shift) 2178 return num_pages * (1 << (page_shift - new_page_shift)); 2179 2180 return num_pages / n + !!(ceil && num_pages % n); 2181 } 2182 2183 static inline int getpageshift(void) 2184 { 2185 return __builtin_ffs(getpagesize()) - 1; 2186 } 2187 2188 unsigned int 2189 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2190 { 2191 return vm_calc_num_pages(num_guest_pages, 2192 vm_guest_mode_params[mode].page_shift, 2193 getpageshift(), true); 2194 } 2195 2196 unsigned int 2197 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2198 { 2199 return vm_calc_num_pages(num_host_pages, getpageshift(), 2200 vm_guest_mode_params[mode].page_shift, false); 2201 } 2202 2203 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2204 { 2205 unsigned int n; 2206 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2207 return vm_adjust_num_guest_pages(mode, n); 2208 } 2209 2210 /* 2211 * Read binary stats descriptors 2212 * 2213 * Input Args: 2214 * stats_fd - the file descriptor for the binary stats file from which to read 2215 * header - the binary stats metadata header corresponding to the given FD 2216 * 2217 * Output Args: None 2218 * 2219 * Return: 2220 * A pointer to a newly allocated series of stat descriptors. 2221 * Caller is responsible for freeing the returned kvm_stats_desc. 2222 * 2223 * Read the stats descriptors from the binary stats interface. 2224 */ 2225 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2226 struct kvm_stats_header *header) 2227 { 2228 struct kvm_stats_desc *stats_desc; 2229 ssize_t desc_size, total_size, ret; 2230 2231 desc_size = get_stats_descriptor_size(header); 2232 total_size = header->num_desc * desc_size; 2233 2234 stats_desc = calloc(header->num_desc, desc_size); 2235 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2236 2237 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2238 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2239 2240 return stats_desc; 2241 } 2242 2243 /* 2244 * Read stat data for a particular stat 2245 * 2246 * Input Args: 2247 * stats_fd - the file descriptor for the binary stats file from which to read 2248 * header - the binary stats metadata header corresponding to the given FD 2249 * desc - the binary stat metadata for the particular stat to be read 2250 * max_elements - the maximum number of 8-byte values to read into data 2251 * 2252 * Output Args: 2253 * data - the buffer into which stat data should be read 2254 * 2255 * Read the data values of a specified stat from the binary stats interface. 2256 */ 2257 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2258 struct kvm_stats_desc *desc, uint64_t *data, 2259 size_t max_elements) 2260 { 2261 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2262 size_t size = nr_elements * sizeof(*data); 2263 ssize_t ret; 2264 2265 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2266 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2267 2268 ret = pread(stats_fd, data, size, 2269 header->data_offset + desc->offset); 2270 2271 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2272 desc->name, errno, strerror(errno)); 2273 TEST_ASSERT(ret == size, 2274 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2275 desc->name, size, ret); 2276 } 2277 2278 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 2279 uint64_t *data, size_t max_elements) 2280 { 2281 struct kvm_stats_desc *desc; 2282 size_t size_desc; 2283 int i; 2284 2285 if (!stats->desc) { 2286 read_stats_header(stats->fd, &stats->header); 2287 stats->desc = read_stats_descriptors(stats->fd, &stats->header); 2288 } 2289 2290 size_desc = get_stats_descriptor_size(&stats->header); 2291 2292 for (i = 0; i < stats->header.num_desc; ++i) { 2293 desc = (void *)stats->desc + (i * size_desc); 2294 2295 if (strcmp(desc->name, name)) 2296 continue; 2297 2298 read_stat_data(stats->fd, &stats->header, desc, data, max_elements); 2299 return; 2300 } 2301 2302 TEST_FAIL("Unable to find stat '%s'", name); 2303 } 2304 2305 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2306 { 2307 } 2308 2309 __weak void kvm_selftest_arch_init(void) 2310 { 2311 } 2312 2313 void __attribute((constructor)) kvm_selftest_init(void) 2314 { 2315 /* Tell stdout not to buffer its content. */ 2316 setbuf(stdout, NULL); 2317 2318 guest_random_seed = last_guest_seed = random(); 2319 pr_info("Random seed: 0x%x\n", guest_random_seed); 2320 2321 kvm_selftest_arch_init(); 2322 } 2323 2324 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr) 2325 { 2326 sparsebit_idx_t pg = 0; 2327 struct userspace_mem_region *region; 2328 2329 if (!vm_arch_has_protected_memory(vm)) 2330 return false; 2331 2332 region = userspace_mem_region_find(vm, paddr, paddr); 2333 TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr); 2334 2335 pg = paddr >> vm->page_shift; 2336 return sparsebit_is_set(region->protected_phy_pages, pg); 2337 } 2338