xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 1446e331432d7f24ed56b870ad605a4345fee43f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <unistd.h>
18 #include <linux/kernel.h>
19 
20 #define KVM_UTIL_MIN_PFN	2
21 
22 static int vcpu_mmap_sz(void);
23 
24 int open_path_or_exit(const char *path, int flags)
25 {
26 	int fd;
27 
28 	fd = open(path, flags);
29 	__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
30 
31 	return fd;
32 }
33 
34 /*
35  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
36  *
37  * Input Args:
38  *   flags - The flags to pass when opening KVM_DEV_PATH.
39  *
40  * Return:
41  *   The opened file descriptor of /dev/kvm.
42  */
43 static int _open_kvm_dev_path_or_exit(int flags)
44 {
45 	return open_path_or_exit(KVM_DEV_PATH, flags);
46 }
47 
48 int open_kvm_dev_path_or_exit(void)
49 {
50 	return _open_kvm_dev_path_or_exit(O_RDONLY);
51 }
52 
53 static bool get_module_param_bool(const char *module_name, const char *param)
54 {
55 	const int path_size = 128;
56 	char path[path_size];
57 	char value;
58 	ssize_t r;
59 	int fd;
60 
61 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
62 		     module_name, param);
63 	TEST_ASSERT(r < path_size,
64 		    "Failed to construct sysfs path in %d bytes.", path_size);
65 
66 	fd = open_path_or_exit(path, O_RDONLY);
67 
68 	r = read(fd, &value, 1);
69 	TEST_ASSERT(r == 1, "read(%s) failed", path);
70 
71 	r = close(fd);
72 	TEST_ASSERT(!r, "close(%s) failed", path);
73 
74 	if (value == 'Y')
75 		return true;
76 	else if (value == 'N')
77 		return false;
78 
79 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
80 }
81 
82 bool get_kvm_intel_param_bool(const char *param)
83 {
84 	return get_module_param_bool("kvm_intel", param);
85 }
86 
87 bool get_kvm_amd_param_bool(const char *param)
88 {
89 	return get_module_param_bool("kvm_amd", param);
90 }
91 
92 /*
93  * Capability
94  *
95  * Input Args:
96  *   cap - Capability
97  *
98  * Output Args: None
99  *
100  * Return:
101  *   On success, the Value corresponding to the capability (KVM_CAP_*)
102  *   specified by the value of cap.  On failure a TEST_ASSERT failure
103  *   is produced.
104  *
105  * Looks up and returns the value corresponding to the capability
106  * (KVM_CAP_*) given by cap.
107  */
108 unsigned int kvm_check_cap(long cap)
109 {
110 	int ret;
111 	int kvm_fd;
112 
113 	kvm_fd = open_kvm_dev_path_or_exit();
114 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
115 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
116 
117 	close(kvm_fd);
118 
119 	return (unsigned int)ret;
120 }
121 
122 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
123 {
124 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
125 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
126 	else
127 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
128 	vm->dirty_ring_size = ring_size;
129 }
130 
131 static void vm_open(struct kvm_vm *vm)
132 {
133 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
134 
135 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
136 
137 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
138 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
139 }
140 
141 const char *vm_guest_mode_string(uint32_t i)
142 {
143 	static const char * const strings[] = {
144 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
145 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
146 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
147 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
148 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
149 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
150 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
151 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
152 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
153 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
154 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
155 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
156 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
157 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
158 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
159 	};
160 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
161 		       "Missing new mode strings?");
162 
163 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
164 
165 	return strings[i];
166 }
167 
168 const struct vm_guest_mode_params vm_guest_mode_params[] = {
169 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
170 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
171 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
172 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
173 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
174 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
175 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
176 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
177 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
178 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
179 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
180 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
181 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
182 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
183 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
184 };
185 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
186 	       "Missing new mode params?");
187 
188 struct kvm_vm *____vm_create(enum vm_guest_mode mode)
189 {
190 	struct kvm_vm *vm;
191 
192 	vm = calloc(1, sizeof(*vm));
193 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
194 
195 	INIT_LIST_HEAD(&vm->vcpus);
196 	vm->regions.gpa_tree = RB_ROOT;
197 	vm->regions.hva_tree = RB_ROOT;
198 	hash_init(vm->regions.slot_hash);
199 
200 	vm->mode = mode;
201 	vm->type = 0;
202 
203 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
204 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
205 	vm->page_size = vm_guest_mode_params[mode].page_size;
206 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
207 
208 	/* Setup mode specific traits. */
209 	switch (vm->mode) {
210 	case VM_MODE_P52V48_4K:
211 		vm->pgtable_levels = 4;
212 		break;
213 	case VM_MODE_P52V48_64K:
214 		vm->pgtable_levels = 3;
215 		break;
216 	case VM_MODE_P48V48_4K:
217 		vm->pgtable_levels = 4;
218 		break;
219 	case VM_MODE_P48V48_64K:
220 		vm->pgtable_levels = 3;
221 		break;
222 	case VM_MODE_P40V48_4K:
223 	case VM_MODE_P36V48_4K:
224 		vm->pgtable_levels = 4;
225 		break;
226 	case VM_MODE_P40V48_64K:
227 	case VM_MODE_P36V48_64K:
228 		vm->pgtable_levels = 3;
229 		break;
230 	case VM_MODE_P48V48_16K:
231 	case VM_MODE_P40V48_16K:
232 	case VM_MODE_P36V48_16K:
233 		vm->pgtable_levels = 4;
234 		break;
235 	case VM_MODE_P36V47_16K:
236 		vm->pgtable_levels = 3;
237 		break;
238 	case VM_MODE_PXXV48_4K:
239 #ifdef __x86_64__
240 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
241 		/*
242 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
243 		 * it doesn't take effect unless a CR4.LA57 is set, which it
244 		 * isn't for this VM_MODE.
245 		 */
246 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
247 			    "Linear address width (%d bits) not supported",
248 			    vm->va_bits);
249 		pr_debug("Guest physical address width detected: %d\n",
250 			 vm->pa_bits);
251 		vm->pgtable_levels = 4;
252 		vm->va_bits = 48;
253 #else
254 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
255 #endif
256 		break;
257 	case VM_MODE_P47V64_4K:
258 		vm->pgtable_levels = 5;
259 		break;
260 	case VM_MODE_P44V64_4K:
261 		vm->pgtable_levels = 5;
262 		break;
263 	default:
264 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
265 	}
266 
267 #ifdef __aarch64__
268 	if (vm->pa_bits != 40)
269 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
270 #endif
271 
272 	vm_open(vm);
273 
274 	/* Limit to VA-bit canonical virtual addresses. */
275 	vm->vpages_valid = sparsebit_alloc();
276 	sparsebit_set_num(vm->vpages_valid,
277 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
278 	sparsebit_set_num(vm->vpages_valid,
279 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
280 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
281 
282 	/* Limit physical addresses to PA-bits. */
283 	vm->max_gfn = vm_compute_max_gfn(vm);
284 
285 	/* Allocate and setup memory for guest. */
286 	vm->vpages_mapped = sparsebit_alloc();
287 
288 	return vm;
289 }
290 
291 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
292 				     uint32_t nr_runnable_vcpus,
293 				     uint64_t extra_mem_pages)
294 {
295 	uint64_t nr_pages;
296 
297 	TEST_ASSERT(nr_runnable_vcpus,
298 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
299 
300 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
301 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
302 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
303 
304 	/*
305 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
306 	 * test code and other per-VM assets that will be loaded into memslot0.
307 	 */
308 	nr_pages = 512;
309 
310 	/* Account for the per-vCPU stacks on behalf of the test. */
311 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
312 
313 	/*
314 	 * Account for the number of pages needed for the page tables.  The
315 	 * maximum page table size for a memory region will be when the
316 	 * smallest page size is used. Considering each page contains x page
317 	 * table descriptors, the total extra size for page tables (for extra
318 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
319 	 * than N/x*2.
320 	 */
321 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
322 
323 	return vm_adjust_num_guest_pages(mode, nr_pages);
324 }
325 
326 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
327 			   uint64_t nr_extra_pages)
328 {
329 	uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
330 						 nr_extra_pages);
331 	struct kvm_vm *vm;
332 	int i;
333 
334 	pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
335 		 vm_guest_mode_string(mode), nr_pages);
336 
337 	vm = ____vm_create(mode);
338 
339 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
340 	for (i = 0; i < NR_MEM_REGIONS; i++)
341 		vm->memslots[i] = 0;
342 
343 	kvm_vm_elf_load(vm, program_invocation_name);
344 
345 #ifdef __x86_64__
346 	vm_create_irqchip(vm);
347 #endif
348 	return vm;
349 }
350 
351 /*
352  * VM Create with customized parameters
353  *
354  * Input Args:
355  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
356  *   nr_vcpus - VCPU count
357  *   extra_mem_pages - Non-slot0 physical memory total size
358  *   guest_code - Guest entry point
359  *   vcpuids - VCPU IDs
360  *
361  * Output Args: None
362  *
363  * Return:
364  *   Pointer to opaque structure that describes the created VM.
365  *
366  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
367  * extra_mem_pages is only used to calculate the maximum page table size,
368  * no real memory allocation for non-slot0 memory in this function.
369  */
370 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
371 				      uint64_t extra_mem_pages,
372 				      void *guest_code, struct kvm_vcpu *vcpus[])
373 {
374 	struct kvm_vm *vm;
375 	int i;
376 
377 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
378 
379 	vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
380 
381 	for (i = 0; i < nr_vcpus; ++i)
382 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
383 
384 	return vm;
385 }
386 
387 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
388 					 uint64_t extra_mem_pages,
389 					 void *guest_code)
390 {
391 	struct kvm_vcpu *vcpus[1];
392 	struct kvm_vm *vm;
393 
394 	vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
395 				    guest_code, vcpus);
396 
397 	*vcpu = vcpus[0];
398 	return vm;
399 }
400 
401 /*
402  * VM Restart
403  *
404  * Input Args:
405  *   vm - VM that has been released before
406  *
407  * Output Args: None
408  *
409  * Reopens the file descriptors associated to the VM and reinstates the
410  * global state, such as the irqchip and the memory regions that are mapped
411  * into the guest.
412  */
413 void kvm_vm_restart(struct kvm_vm *vmp)
414 {
415 	int ctr;
416 	struct userspace_mem_region *region;
417 
418 	vm_open(vmp);
419 	if (vmp->has_irqchip)
420 		vm_create_irqchip(vmp);
421 
422 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
423 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
424 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
425 			    "  rc: %i errno: %i\n"
426 			    "  slot: %u flags: 0x%x\n"
427 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
428 			    ret, errno, region->region.slot,
429 			    region->region.flags,
430 			    region->region.guest_phys_addr,
431 			    region->region.memory_size);
432 	}
433 }
434 
435 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
436 					      uint32_t vcpu_id)
437 {
438 	return __vm_vcpu_add(vm, vcpu_id);
439 }
440 
441 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
442 {
443 	kvm_vm_restart(vm);
444 
445 	return vm_vcpu_recreate(vm, 0);
446 }
447 
448 /*
449  * Userspace Memory Region Find
450  *
451  * Input Args:
452  *   vm - Virtual Machine
453  *   start - Starting VM physical address
454  *   end - Ending VM physical address, inclusive.
455  *
456  * Output Args: None
457  *
458  * Return:
459  *   Pointer to overlapping region, NULL if no such region.
460  *
461  * Searches for a region with any physical memory that overlaps with
462  * any portion of the guest physical addresses from start to end
463  * inclusive.  If multiple overlapping regions exist, a pointer to any
464  * of the regions is returned.  Null is returned only when no overlapping
465  * region exists.
466  */
467 static struct userspace_mem_region *
468 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
469 {
470 	struct rb_node *node;
471 
472 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
473 		struct userspace_mem_region *region =
474 			container_of(node, struct userspace_mem_region, gpa_node);
475 		uint64_t existing_start = region->region.guest_phys_addr;
476 		uint64_t existing_end = region->region.guest_phys_addr
477 			+ region->region.memory_size - 1;
478 		if (start <= existing_end && end >= existing_start)
479 			return region;
480 
481 		if (start < existing_start)
482 			node = node->rb_left;
483 		else
484 			node = node->rb_right;
485 	}
486 
487 	return NULL;
488 }
489 
490 /*
491  * KVM Userspace Memory Region Find
492  *
493  * Input Args:
494  *   vm - Virtual Machine
495  *   start - Starting VM physical address
496  *   end - Ending VM physical address, inclusive.
497  *
498  * Output Args: None
499  *
500  * Return:
501  *   Pointer to overlapping region, NULL if no such region.
502  *
503  * Public interface to userspace_mem_region_find. Allows tests to look up
504  * the memslot datastructure for a given range of guest physical memory.
505  */
506 struct kvm_userspace_memory_region *
507 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
508 				 uint64_t end)
509 {
510 	struct userspace_mem_region *region;
511 
512 	region = userspace_mem_region_find(vm, start, end);
513 	if (!region)
514 		return NULL;
515 
516 	return &region->region;
517 }
518 
519 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
520 {
521 
522 }
523 
524 /*
525  * VM VCPU Remove
526  *
527  * Input Args:
528  *   vcpu - VCPU to remove
529  *
530  * Output Args: None
531  *
532  * Return: None, TEST_ASSERT failures for all error conditions
533  *
534  * Removes a vCPU from a VM and frees its resources.
535  */
536 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
537 {
538 	int ret;
539 
540 	if (vcpu->dirty_gfns) {
541 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
542 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
543 		vcpu->dirty_gfns = NULL;
544 	}
545 
546 	ret = munmap(vcpu->run, vcpu_mmap_sz());
547 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
548 
549 	ret = close(vcpu->fd);
550 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
551 
552 	list_del(&vcpu->list);
553 
554 	vcpu_arch_free(vcpu);
555 	free(vcpu);
556 }
557 
558 void kvm_vm_release(struct kvm_vm *vmp)
559 {
560 	struct kvm_vcpu *vcpu, *tmp;
561 	int ret;
562 
563 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
564 		vm_vcpu_rm(vmp, vcpu);
565 
566 	ret = close(vmp->fd);
567 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
568 
569 	ret = close(vmp->kvm_fd);
570 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
571 }
572 
573 static void __vm_mem_region_delete(struct kvm_vm *vm,
574 				   struct userspace_mem_region *region,
575 				   bool unlink)
576 {
577 	int ret;
578 
579 	if (unlink) {
580 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
581 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
582 		hash_del(&region->slot_node);
583 	}
584 
585 	region->region.memory_size = 0;
586 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
587 
588 	sparsebit_free(&region->unused_phy_pages);
589 	ret = munmap(region->mmap_start, region->mmap_size);
590 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
591 	if (region->fd >= 0) {
592 		/* There's an extra map when using shared memory. */
593 		ret = munmap(region->mmap_alias, region->mmap_size);
594 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
595 		close(region->fd);
596 	}
597 
598 	free(region);
599 }
600 
601 /*
602  * Destroys and frees the VM pointed to by vmp.
603  */
604 void kvm_vm_free(struct kvm_vm *vmp)
605 {
606 	int ctr;
607 	struct hlist_node *node;
608 	struct userspace_mem_region *region;
609 
610 	if (vmp == NULL)
611 		return;
612 
613 	/* Free cached stats metadata and close FD */
614 	if (vmp->stats_fd) {
615 		free(vmp->stats_desc);
616 		close(vmp->stats_fd);
617 	}
618 
619 	/* Free userspace_mem_regions. */
620 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
621 		__vm_mem_region_delete(vmp, region, false);
622 
623 	/* Free sparsebit arrays. */
624 	sparsebit_free(&vmp->vpages_valid);
625 	sparsebit_free(&vmp->vpages_mapped);
626 
627 	kvm_vm_release(vmp);
628 
629 	/* Free the structure describing the VM. */
630 	free(vmp);
631 }
632 
633 int kvm_memfd_alloc(size_t size, bool hugepages)
634 {
635 	int memfd_flags = MFD_CLOEXEC;
636 	int fd, r;
637 
638 	if (hugepages)
639 		memfd_flags |= MFD_HUGETLB;
640 
641 	fd = memfd_create("kvm_selftest", memfd_flags);
642 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
643 
644 	r = ftruncate(fd, size);
645 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
646 
647 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
648 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
649 
650 	return fd;
651 }
652 
653 /*
654  * Memory Compare, host virtual to guest virtual
655  *
656  * Input Args:
657  *   hva - Starting host virtual address
658  *   vm - Virtual Machine
659  *   gva - Starting guest virtual address
660  *   len - number of bytes to compare
661  *
662  * Output Args: None
663  *
664  * Input/Output Args: None
665  *
666  * Return:
667  *   Returns 0 if the bytes starting at hva for a length of len
668  *   are equal the guest virtual bytes starting at gva.  Returns
669  *   a value < 0, if bytes at hva are less than those at gva.
670  *   Otherwise a value > 0 is returned.
671  *
672  * Compares the bytes starting at the host virtual address hva, for
673  * a length of len, to the guest bytes starting at the guest virtual
674  * address given by gva.
675  */
676 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
677 {
678 	size_t amt;
679 
680 	/*
681 	 * Compare a batch of bytes until either a match is found
682 	 * or all the bytes have been compared.
683 	 */
684 	for (uintptr_t offset = 0; offset < len; offset += amt) {
685 		uintptr_t ptr1 = (uintptr_t)hva + offset;
686 
687 		/*
688 		 * Determine host address for guest virtual address
689 		 * at offset.
690 		 */
691 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
692 
693 		/*
694 		 * Determine amount to compare on this pass.
695 		 * Don't allow the comparsion to cross a page boundary.
696 		 */
697 		amt = len - offset;
698 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
699 			amt = vm->page_size - (ptr1 % vm->page_size);
700 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
701 			amt = vm->page_size - (ptr2 % vm->page_size);
702 
703 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
704 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
705 
706 		/*
707 		 * Perform the comparison.  If there is a difference
708 		 * return that result to the caller, otherwise need
709 		 * to continue on looking for a mismatch.
710 		 */
711 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
712 		if (ret != 0)
713 			return ret;
714 	}
715 
716 	/*
717 	 * No mismatch found.  Let the caller know the two memory
718 	 * areas are equal.
719 	 */
720 	return 0;
721 }
722 
723 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
724 					       struct userspace_mem_region *region)
725 {
726 	struct rb_node **cur, *parent;
727 
728 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
729 		struct userspace_mem_region *cregion;
730 
731 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
732 		parent = *cur;
733 		if (region->region.guest_phys_addr <
734 		    cregion->region.guest_phys_addr)
735 			cur = &(*cur)->rb_left;
736 		else {
737 			TEST_ASSERT(region->region.guest_phys_addr !=
738 				    cregion->region.guest_phys_addr,
739 				    "Duplicate GPA in region tree");
740 
741 			cur = &(*cur)->rb_right;
742 		}
743 	}
744 
745 	rb_link_node(&region->gpa_node, parent, cur);
746 	rb_insert_color(&region->gpa_node, gpa_tree);
747 }
748 
749 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
750 					       struct userspace_mem_region *region)
751 {
752 	struct rb_node **cur, *parent;
753 
754 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
755 		struct userspace_mem_region *cregion;
756 
757 		cregion = container_of(*cur, typeof(*cregion), hva_node);
758 		parent = *cur;
759 		if (region->host_mem < cregion->host_mem)
760 			cur = &(*cur)->rb_left;
761 		else {
762 			TEST_ASSERT(region->host_mem !=
763 				    cregion->host_mem,
764 				    "Duplicate HVA in region tree");
765 
766 			cur = &(*cur)->rb_right;
767 		}
768 	}
769 
770 	rb_link_node(&region->hva_node, parent, cur);
771 	rb_insert_color(&region->hva_node, hva_tree);
772 }
773 
774 
775 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
776 				uint64_t gpa, uint64_t size, void *hva)
777 {
778 	struct kvm_userspace_memory_region region = {
779 		.slot = slot,
780 		.flags = flags,
781 		.guest_phys_addr = gpa,
782 		.memory_size = size,
783 		.userspace_addr = (uintptr_t)hva,
784 	};
785 
786 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
787 }
788 
789 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
790 			       uint64_t gpa, uint64_t size, void *hva)
791 {
792 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
793 
794 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
795 		    errno, strerror(errno));
796 }
797 
798 /*
799  * VM Userspace Memory Region Add
800  *
801  * Input Args:
802  *   vm - Virtual Machine
803  *   src_type - Storage source for this region.
804  *              NULL to use anonymous memory.
805  *   guest_paddr - Starting guest physical address
806  *   slot - KVM region slot
807  *   npages - Number of physical pages
808  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
809  *
810  * Output Args: None
811  *
812  * Return: None
813  *
814  * Allocates a memory area of the number of pages specified by npages
815  * and maps it to the VM specified by vm, at a starting physical address
816  * given by guest_paddr.  The region is created with a KVM region slot
817  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
818  * region is created with the flags given by flags.
819  */
820 void vm_userspace_mem_region_add(struct kvm_vm *vm,
821 	enum vm_mem_backing_src_type src_type,
822 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
823 	uint32_t flags)
824 {
825 	int ret;
826 	struct userspace_mem_region *region;
827 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
828 	size_t alignment;
829 
830 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
831 		"Number of guest pages is not compatible with the host. "
832 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
833 
834 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
835 		"address not on a page boundary.\n"
836 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
837 		guest_paddr, vm->page_size);
838 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
839 		<= vm->max_gfn, "Physical range beyond maximum "
840 		"supported physical address,\n"
841 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
842 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
843 		guest_paddr, npages, vm->max_gfn, vm->page_size);
844 
845 	/*
846 	 * Confirm a mem region with an overlapping address doesn't
847 	 * already exist.
848 	 */
849 	region = (struct userspace_mem_region *) userspace_mem_region_find(
850 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
851 	if (region != NULL)
852 		TEST_FAIL("overlapping userspace_mem_region already "
853 			"exists\n"
854 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
855 			"page_size: 0x%x\n"
856 			"  existing guest_paddr: 0x%lx size: 0x%lx",
857 			guest_paddr, npages, vm->page_size,
858 			(uint64_t) region->region.guest_phys_addr,
859 			(uint64_t) region->region.memory_size);
860 
861 	/* Confirm no region with the requested slot already exists. */
862 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
863 			       slot) {
864 		if (region->region.slot != slot)
865 			continue;
866 
867 		TEST_FAIL("A mem region with the requested slot "
868 			"already exists.\n"
869 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
870 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
871 			slot, guest_paddr, npages,
872 			region->region.slot,
873 			(uint64_t) region->region.guest_phys_addr,
874 			(uint64_t) region->region.memory_size);
875 	}
876 
877 	/* Allocate and initialize new mem region structure. */
878 	region = calloc(1, sizeof(*region));
879 	TEST_ASSERT(region != NULL, "Insufficient Memory");
880 	region->mmap_size = npages * vm->page_size;
881 
882 #ifdef __s390x__
883 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
884 	alignment = 0x100000;
885 #else
886 	alignment = 1;
887 #endif
888 
889 	/*
890 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
891 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
892 	 * because mmap will always return an address aligned to the HugeTLB
893 	 * page size.
894 	 */
895 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
896 		alignment = max(backing_src_pagesz, alignment);
897 
898 	ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
899 
900 	/* Add enough memory to align up if necessary */
901 	if (alignment > 1)
902 		region->mmap_size += alignment;
903 
904 	region->fd = -1;
905 	if (backing_src_is_shared(src_type))
906 		region->fd = kvm_memfd_alloc(region->mmap_size,
907 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
908 
909 	region->mmap_start = mmap(NULL, region->mmap_size,
910 				  PROT_READ | PROT_WRITE,
911 				  vm_mem_backing_src_alias(src_type)->flag,
912 				  region->fd, 0);
913 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
914 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
915 
916 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
917 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
918 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
919 		    region->mmap_start, backing_src_pagesz);
920 
921 	/* Align host address */
922 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
923 
924 	/* As needed perform madvise */
925 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
926 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
927 		ret = madvise(region->host_mem, npages * vm->page_size,
928 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
929 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
930 			    region->host_mem, npages * vm->page_size,
931 			    vm_mem_backing_src_alias(src_type)->name);
932 	}
933 
934 	region->backing_src_type = src_type;
935 	region->unused_phy_pages = sparsebit_alloc();
936 	sparsebit_set_num(region->unused_phy_pages,
937 		guest_paddr >> vm->page_shift, npages);
938 	region->region.slot = slot;
939 	region->region.flags = flags;
940 	region->region.guest_phys_addr = guest_paddr;
941 	region->region.memory_size = npages * vm->page_size;
942 	region->region.userspace_addr = (uintptr_t) region->host_mem;
943 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
944 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
945 		"  rc: %i errno: %i\n"
946 		"  slot: %u flags: 0x%x\n"
947 		"  guest_phys_addr: 0x%lx size: 0x%lx",
948 		ret, errno, slot, flags,
949 		guest_paddr, (uint64_t) region->region.memory_size);
950 
951 	/* Add to quick lookup data structures */
952 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
953 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
954 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
955 
956 	/* If shared memory, create an alias. */
957 	if (region->fd >= 0) {
958 		region->mmap_alias = mmap(NULL, region->mmap_size,
959 					  PROT_READ | PROT_WRITE,
960 					  vm_mem_backing_src_alias(src_type)->flag,
961 					  region->fd, 0);
962 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
963 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
964 
965 		/* Align host alias address */
966 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
967 	}
968 }
969 
970 /*
971  * Memslot to region
972  *
973  * Input Args:
974  *   vm - Virtual Machine
975  *   memslot - KVM memory slot ID
976  *
977  * Output Args: None
978  *
979  * Return:
980  *   Pointer to memory region structure that describe memory region
981  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
982  *   on error (e.g. currently no memory region using memslot as a KVM
983  *   memory slot ID).
984  */
985 struct userspace_mem_region *
986 memslot2region(struct kvm_vm *vm, uint32_t memslot)
987 {
988 	struct userspace_mem_region *region;
989 
990 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
991 			       memslot)
992 		if (region->region.slot == memslot)
993 			return region;
994 
995 	fprintf(stderr, "No mem region with the requested slot found,\n"
996 		"  requested slot: %u\n", memslot);
997 	fputs("---- vm dump ----\n", stderr);
998 	vm_dump(stderr, vm, 2);
999 	TEST_FAIL("Mem region not found");
1000 	return NULL;
1001 }
1002 
1003 /*
1004  * VM Memory Region Flags Set
1005  *
1006  * Input Args:
1007  *   vm - Virtual Machine
1008  *   flags - Starting guest physical address
1009  *
1010  * Output Args: None
1011  *
1012  * Return: None
1013  *
1014  * Sets the flags of the memory region specified by the value of slot,
1015  * to the values given by flags.
1016  */
1017 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1018 {
1019 	int ret;
1020 	struct userspace_mem_region *region;
1021 
1022 	region = memslot2region(vm, slot);
1023 
1024 	region->region.flags = flags;
1025 
1026 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1027 
1028 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1029 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1030 		ret, errno, slot, flags);
1031 }
1032 
1033 /*
1034  * VM Memory Region Move
1035  *
1036  * Input Args:
1037  *   vm - Virtual Machine
1038  *   slot - Slot of the memory region to move
1039  *   new_gpa - Starting guest physical address
1040  *
1041  * Output Args: None
1042  *
1043  * Return: None
1044  *
1045  * Change the gpa of a memory region.
1046  */
1047 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1048 {
1049 	struct userspace_mem_region *region;
1050 	int ret;
1051 
1052 	region = memslot2region(vm, slot);
1053 
1054 	region->region.guest_phys_addr = new_gpa;
1055 
1056 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1057 
1058 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1059 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1060 		    ret, errno, slot, new_gpa);
1061 }
1062 
1063 /*
1064  * VM Memory Region Delete
1065  *
1066  * Input Args:
1067  *   vm - Virtual Machine
1068  *   slot - Slot of the memory region to delete
1069  *
1070  * Output Args: None
1071  *
1072  * Return: None
1073  *
1074  * Delete a memory region.
1075  */
1076 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1077 {
1078 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1079 }
1080 
1081 /* Returns the size of a vCPU's kvm_run structure. */
1082 static int vcpu_mmap_sz(void)
1083 {
1084 	int dev_fd, ret;
1085 
1086 	dev_fd = open_kvm_dev_path_or_exit();
1087 
1088 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1089 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1090 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1091 
1092 	close(dev_fd);
1093 
1094 	return ret;
1095 }
1096 
1097 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1098 {
1099 	struct kvm_vcpu *vcpu;
1100 
1101 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1102 		if (vcpu->id == vcpu_id)
1103 			return true;
1104 	}
1105 
1106 	return false;
1107 }
1108 
1109 /*
1110  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1111  * No additional vCPU setup is done.  Returns the vCPU.
1112  */
1113 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1114 {
1115 	struct kvm_vcpu *vcpu;
1116 
1117 	/* Confirm a vcpu with the specified id doesn't already exist. */
1118 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1119 
1120 	/* Allocate and initialize new vcpu structure. */
1121 	vcpu = calloc(1, sizeof(*vcpu));
1122 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1123 
1124 	vcpu->vm = vm;
1125 	vcpu->id = vcpu_id;
1126 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1127 	TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1128 
1129 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1130 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1131 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1132 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1133 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1134 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1135 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1136 
1137 	/* Add to linked-list of VCPUs. */
1138 	list_add(&vcpu->list, &vm->vcpus);
1139 
1140 	return vcpu;
1141 }
1142 
1143 /*
1144  * VM Virtual Address Unused Gap
1145  *
1146  * Input Args:
1147  *   vm - Virtual Machine
1148  *   sz - Size (bytes)
1149  *   vaddr_min - Minimum Virtual Address
1150  *
1151  * Output Args: None
1152  *
1153  * Return:
1154  *   Lowest virtual address at or below vaddr_min, with at least
1155  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1156  *   size sz is available.
1157  *
1158  * Within the VM specified by vm, locates the lowest starting virtual
1159  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1160  * TEST_ASSERT failure occurs for invalid input or no area of at least
1161  * sz unallocated bytes >= vaddr_min is available.
1162  */
1163 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1164 				      vm_vaddr_t vaddr_min)
1165 {
1166 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1167 
1168 	/* Determine lowest permitted virtual page index. */
1169 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1170 	if ((pgidx_start * vm->page_size) < vaddr_min)
1171 		goto no_va_found;
1172 
1173 	/* Loop over section with enough valid virtual page indexes. */
1174 	if (!sparsebit_is_set_num(vm->vpages_valid,
1175 		pgidx_start, pages))
1176 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1177 			pgidx_start, pages);
1178 	do {
1179 		/*
1180 		 * Are there enough unused virtual pages available at
1181 		 * the currently proposed starting virtual page index.
1182 		 * If not, adjust proposed starting index to next
1183 		 * possible.
1184 		 */
1185 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1186 			pgidx_start, pages))
1187 			goto va_found;
1188 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1189 			pgidx_start, pages);
1190 		if (pgidx_start == 0)
1191 			goto no_va_found;
1192 
1193 		/*
1194 		 * If needed, adjust proposed starting virtual address,
1195 		 * to next range of valid virtual addresses.
1196 		 */
1197 		if (!sparsebit_is_set_num(vm->vpages_valid,
1198 			pgidx_start, pages)) {
1199 			pgidx_start = sparsebit_next_set_num(
1200 				vm->vpages_valid, pgidx_start, pages);
1201 			if (pgidx_start == 0)
1202 				goto no_va_found;
1203 		}
1204 	} while (pgidx_start != 0);
1205 
1206 no_va_found:
1207 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1208 
1209 	/* NOT REACHED */
1210 	return -1;
1211 
1212 va_found:
1213 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1214 		pgidx_start, pages),
1215 		"Unexpected, invalid virtual page index range,\n"
1216 		"  pgidx_start: 0x%lx\n"
1217 		"  pages: 0x%lx",
1218 		pgidx_start, pages);
1219 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1220 		pgidx_start, pages),
1221 		"Unexpected, pages already mapped,\n"
1222 		"  pgidx_start: 0x%lx\n"
1223 		"  pages: 0x%lx",
1224 		pgidx_start, pages);
1225 
1226 	return pgidx_start * vm->page_size;
1227 }
1228 
1229 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1230 			    enum kvm_mem_region_type type)
1231 {
1232 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1233 
1234 	virt_pgd_alloc(vm);
1235 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1236 					      KVM_UTIL_MIN_PFN * vm->page_size,
1237 					      vm->memslots[type]);
1238 
1239 	/*
1240 	 * Find an unused range of virtual page addresses of at least
1241 	 * pages in length.
1242 	 */
1243 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1244 
1245 	/* Map the virtual pages. */
1246 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1247 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1248 
1249 		virt_pg_map(vm, vaddr, paddr);
1250 
1251 		sparsebit_set(vm->vpages_mapped,
1252 			vaddr >> vm->page_shift);
1253 	}
1254 
1255 	return vaddr_start;
1256 }
1257 
1258 /*
1259  * VM Virtual Address Allocate
1260  *
1261  * Input Args:
1262  *   vm - Virtual Machine
1263  *   sz - Size in bytes
1264  *   vaddr_min - Minimum starting virtual address
1265  *
1266  * Output Args: None
1267  *
1268  * Return:
1269  *   Starting guest virtual address
1270  *
1271  * Allocates at least sz bytes within the virtual address space of the vm
1272  * given by vm.  The allocated bytes are mapped to a virtual address >=
1273  * the address given by vaddr_min.  Note that each allocation uses a
1274  * a unique set of pages, with the minimum real allocation being at least
1275  * a page. The allocated physical space comes from the TEST_DATA memory region.
1276  */
1277 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1278 {
1279 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1280 }
1281 
1282 /*
1283  * VM Virtual Address Allocate Pages
1284  *
1285  * Input Args:
1286  *   vm - Virtual Machine
1287  *
1288  * Output Args: None
1289  *
1290  * Return:
1291  *   Starting guest virtual address
1292  *
1293  * Allocates at least N system pages worth of bytes within the virtual address
1294  * space of the vm.
1295  */
1296 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1297 {
1298 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1299 }
1300 
1301 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1302 {
1303 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1304 }
1305 
1306 /*
1307  * VM Virtual Address Allocate Page
1308  *
1309  * Input Args:
1310  *   vm - Virtual Machine
1311  *
1312  * Output Args: None
1313  *
1314  * Return:
1315  *   Starting guest virtual address
1316  *
1317  * Allocates at least one system page worth of bytes within the virtual address
1318  * space of the vm.
1319  */
1320 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1321 {
1322 	return vm_vaddr_alloc_pages(vm, 1);
1323 }
1324 
1325 /*
1326  * Map a range of VM virtual address to the VM's physical address
1327  *
1328  * Input Args:
1329  *   vm - Virtual Machine
1330  *   vaddr - Virtuall address to map
1331  *   paddr - VM Physical Address
1332  *   npages - The number of pages to map
1333  *
1334  * Output Args: None
1335  *
1336  * Return: None
1337  *
1338  * Within the VM given by @vm, creates a virtual translation for
1339  * @npages starting at @vaddr to the page range starting at @paddr.
1340  */
1341 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1342 	      unsigned int npages)
1343 {
1344 	size_t page_size = vm->page_size;
1345 	size_t size = npages * page_size;
1346 
1347 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1348 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1349 
1350 	while (npages--) {
1351 		virt_pg_map(vm, vaddr, paddr);
1352 		vaddr += page_size;
1353 		paddr += page_size;
1354 	}
1355 }
1356 
1357 /*
1358  * Address VM Physical to Host Virtual
1359  *
1360  * Input Args:
1361  *   vm - Virtual Machine
1362  *   gpa - VM physical address
1363  *
1364  * Output Args: None
1365  *
1366  * Return:
1367  *   Equivalent host virtual address
1368  *
1369  * Locates the memory region containing the VM physical address given
1370  * by gpa, within the VM given by vm.  When found, the host virtual
1371  * address providing the memory to the vm physical address is returned.
1372  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1373  */
1374 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1375 {
1376 	struct userspace_mem_region *region;
1377 
1378 	region = userspace_mem_region_find(vm, gpa, gpa);
1379 	if (!region) {
1380 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1381 		return NULL;
1382 	}
1383 
1384 	return (void *)((uintptr_t)region->host_mem
1385 		+ (gpa - region->region.guest_phys_addr));
1386 }
1387 
1388 /*
1389  * Address Host Virtual to VM Physical
1390  *
1391  * Input Args:
1392  *   vm - Virtual Machine
1393  *   hva - Host virtual address
1394  *
1395  * Output Args: None
1396  *
1397  * Return:
1398  *   Equivalent VM physical address
1399  *
1400  * Locates the memory region containing the host virtual address given
1401  * by hva, within the VM given by vm.  When found, the equivalent
1402  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1403  * region containing hva exists.
1404  */
1405 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1406 {
1407 	struct rb_node *node;
1408 
1409 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1410 		struct userspace_mem_region *region =
1411 			container_of(node, struct userspace_mem_region, hva_node);
1412 
1413 		if (hva >= region->host_mem) {
1414 			if (hva <= (region->host_mem
1415 				+ region->region.memory_size - 1))
1416 				return (vm_paddr_t)((uintptr_t)
1417 					region->region.guest_phys_addr
1418 					+ (hva - (uintptr_t)region->host_mem));
1419 
1420 			node = node->rb_right;
1421 		} else
1422 			node = node->rb_left;
1423 	}
1424 
1425 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1426 	return -1;
1427 }
1428 
1429 /*
1430  * Address VM physical to Host Virtual *alias*.
1431  *
1432  * Input Args:
1433  *   vm - Virtual Machine
1434  *   gpa - VM physical address
1435  *
1436  * Output Args: None
1437  *
1438  * Return:
1439  *   Equivalent address within the host virtual *alias* area, or NULL
1440  *   (without failing the test) if the guest memory is not shared (so
1441  *   no alias exists).
1442  *
1443  * Create a writable, shared virtual=>physical alias for the specific GPA.
1444  * The primary use case is to allow the host selftest to manipulate guest
1445  * memory without mapping said memory in the guest's address space. And, for
1446  * userfaultfd-based demand paging, to do so without triggering userfaults.
1447  */
1448 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1449 {
1450 	struct userspace_mem_region *region;
1451 	uintptr_t offset;
1452 
1453 	region = userspace_mem_region_find(vm, gpa, gpa);
1454 	if (!region)
1455 		return NULL;
1456 
1457 	if (!region->host_alias)
1458 		return NULL;
1459 
1460 	offset = gpa - region->region.guest_phys_addr;
1461 	return (void *) ((uintptr_t) region->host_alias + offset);
1462 }
1463 
1464 /* Create an interrupt controller chip for the specified VM. */
1465 void vm_create_irqchip(struct kvm_vm *vm)
1466 {
1467 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1468 
1469 	vm->has_irqchip = true;
1470 }
1471 
1472 int _vcpu_run(struct kvm_vcpu *vcpu)
1473 {
1474 	int rc;
1475 
1476 	do {
1477 		rc = __vcpu_run(vcpu);
1478 	} while (rc == -1 && errno == EINTR);
1479 
1480 	assert_on_unhandled_exception(vcpu);
1481 
1482 	return rc;
1483 }
1484 
1485 /*
1486  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1487  * Assert if the KVM returns an error (other than -EINTR).
1488  */
1489 void vcpu_run(struct kvm_vcpu *vcpu)
1490 {
1491 	int ret = _vcpu_run(vcpu);
1492 
1493 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1494 }
1495 
1496 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1497 {
1498 	int ret;
1499 
1500 	vcpu->run->immediate_exit = 1;
1501 	ret = __vcpu_run(vcpu);
1502 	vcpu->run->immediate_exit = 0;
1503 
1504 	TEST_ASSERT(ret == -1 && errno == EINTR,
1505 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1506 		    ret, errno);
1507 }
1508 
1509 /*
1510  * Get the list of guest registers which are supported for
1511  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1512  * it is the caller's responsibility to free the list.
1513  */
1514 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1515 {
1516 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1517 	int ret;
1518 
1519 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1520 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1521 
1522 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1523 	reg_list->n = reg_list_n.n;
1524 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1525 	return reg_list;
1526 }
1527 
1528 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1529 {
1530 	uint32_t page_size = vcpu->vm->page_size;
1531 	uint32_t size = vcpu->vm->dirty_ring_size;
1532 
1533 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1534 
1535 	if (!vcpu->dirty_gfns) {
1536 		void *addr;
1537 
1538 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1539 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1540 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1541 
1542 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1543 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1544 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1545 
1546 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1547 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1548 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1549 
1550 		vcpu->dirty_gfns = addr;
1551 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1552 	}
1553 
1554 	return vcpu->dirty_gfns;
1555 }
1556 
1557 /*
1558  * Device Ioctl
1559  */
1560 
1561 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1562 {
1563 	struct kvm_device_attr attribute = {
1564 		.group = group,
1565 		.attr = attr,
1566 		.flags = 0,
1567 	};
1568 
1569 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1570 }
1571 
1572 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1573 {
1574 	struct kvm_create_device create_dev = {
1575 		.type = type,
1576 		.flags = KVM_CREATE_DEVICE_TEST,
1577 	};
1578 
1579 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1580 }
1581 
1582 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1583 {
1584 	struct kvm_create_device create_dev = {
1585 		.type = type,
1586 		.fd = -1,
1587 		.flags = 0,
1588 	};
1589 	int err;
1590 
1591 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1592 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1593 	return err ? : create_dev.fd;
1594 }
1595 
1596 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1597 {
1598 	struct kvm_device_attr kvmattr = {
1599 		.group = group,
1600 		.attr = attr,
1601 		.flags = 0,
1602 		.addr = (uintptr_t)val,
1603 	};
1604 
1605 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1606 }
1607 
1608 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1609 {
1610 	struct kvm_device_attr kvmattr = {
1611 		.group = group,
1612 		.attr = attr,
1613 		.flags = 0,
1614 		.addr = (uintptr_t)val,
1615 	};
1616 
1617 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1618 }
1619 
1620 /*
1621  * IRQ related functions.
1622  */
1623 
1624 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1625 {
1626 	struct kvm_irq_level irq_level = {
1627 		.irq    = irq,
1628 		.level  = level,
1629 	};
1630 
1631 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1632 }
1633 
1634 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1635 {
1636 	int ret = _kvm_irq_line(vm, irq, level);
1637 
1638 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1639 }
1640 
1641 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1642 {
1643 	struct kvm_irq_routing *routing;
1644 	size_t size;
1645 
1646 	size = sizeof(struct kvm_irq_routing);
1647 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1648 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1649 	routing = calloc(1, size);
1650 	assert(routing);
1651 
1652 	return routing;
1653 }
1654 
1655 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1656 		uint32_t gsi, uint32_t pin)
1657 {
1658 	int i;
1659 
1660 	assert(routing);
1661 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1662 
1663 	i = routing->nr;
1664 	routing->entries[i].gsi = gsi;
1665 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1666 	routing->entries[i].flags = 0;
1667 	routing->entries[i].u.irqchip.irqchip = 0;
1668 	routing->entries[i].u.irqchip.pin = pin;
1669 	routing->nr++;
1670 }
1671 
1672 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1673 {
1674 	int ret;
1675 
1676 	assert(routing);
1677 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1678 	free(routing);
1679 
1680 	return ret;
1681 }
1682 
1683 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1684 {
1685 	int ret;
1686 
1687 	ret = _kvm_gsi_routing_write(vm, routing);
1688 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1689 }
1690 
1691 /*
1692  * VM Dump
1693  *
1694  * Input Args:
1695  *   vm - Virtual Machine
1696  *   indent - Left margin indent amount
1697  *
1698  * Output Args:
1699  *   stream - Output FILE stream
1700  *
1701  * Return: None
1702  *
1703  * Dumps the current state of the VM given by vm, to the FILE stream
1704  * given by stream.
1705  */
1706 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1707 {
1708 	int ctr;
1709 	struct userspace_mem_region *region;
1710 	struct kvm_vcpu *vcpu;
1711 
1712 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1713 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1714 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1715 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1716 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1717 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1718 			"host_virt: %p\n", indent + 2, "",
1719 			(uint64_t) region->region.guest_phys_addr,
1720 			(uint64_t) region->region.memory_size,
1721 			region->host_mem);
1722 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1723 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1724 	}
1725 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1726 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1727 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1728 		vm->pgd_created);
1729 	if (vm->pgd_created) {
1730 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1731 			indent + 2, "");
1732 		virt_dump(stream, vm, indent + 4);
1733 	}
1734 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1735 
1736 	list_for_each_entry(vcpu, &vm->vcpus, list)
1737 		vcpu_dump(stream, vcpu, indent + 2);
1738 }
1739 
1740 /* Known KVM exit reasons */
1741 static struct exit_reason {
1742 	unsigned int reason;
1743 	const char *name;
1744 } exit_reasons_known[] = {
1745 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1746 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1747 	{KVM_EXIT_IO, "IO"},
1748 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1749 	{KVM_EXIT_DEBUG, "DEBUG"},
1750 	{KVM_EXIT_HLT, "HLT"},
1751 	{KVM_EXIT_MMIO, "MMIO"},
1752 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1753 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1754 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1755 	{KVM_EXIT_INTR, "INTR"},
1756 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1757 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1758 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1759 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1760 	{KVM_EXIT_DCR, "DCR"},
1761 	{KVM_EXIT_NMI, "NMI"},
1762 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1763 	{KVM_EXIT_OSI, "OSI"},
1764 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1765 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1766 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
1767 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
1768 	{KVM_EXIT_XEN, "XEN"},
1769 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1770 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1771 #endif
1772 };
1773 
1774 /*
1775  * Exit Reason String
1776  *
1777  * Input Args:
1778  *   exit_reason - Exit reason
1779  *
1780  * Output Args: None
1781  *
1782  * Return:
1783  *   Constant string pointer describing the exit reason.
1784  *
1785  * Locates and returns a constant string that describes the KVM exit
1786  * reason given by exit_reason.  If no such string is found, a constant
1787  * string of "Unknown" is returned.
1788  */
1789 const char *exit_reason_str(unsigned int exit_reason)
1790 {
1791 	unsigned int n1;
1792 
1793 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1794 		if (exit_reason == exit_reasons_known[n1].reason)
1795 			return exit_reasons_known[n1].name;
1796 	}
1797 
1798 	return "Unknown";
1799 }
1800 
1801 /*
1802  * Physical Contiguous Page Allocator
1803  *
1804  * Input Args:
1805  *   vm - Virtual Machine
1806  *   num - number of pages
1807  *   paddr_min - Physical address minimum
1808  *   memslot - Memory region to allocate page from
1809  *
1810  * Output Args: None
1811  *
1812  * Return:
1813  *   Starting physical address
1814  *
1815  * Within the VM specified by vm, locates a range of available physical
1816  * pages at or above paddr_min. If found, the pages are marked as in use
1817  * and their base address is returned. A TEST_ASSERT failure occurs if
1818  * not enough pages are available at or above paddr_min.
1819  */
1820 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1821 			      vm_paddr_t paddr_min, uint32_t memslot)
1822 {
1823 	struct userspace_mem_region *region;
1824 	sparsebit_idx_t pg, base;
1825 
1826 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1827 
1828 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1829 		"not divisible by page size.\n"
1830 		"  paddr_min: 0x%lx page_size: 0x%x",
1831 		paddr_min, vm->page_size);
1832 
1833 	region = memslot2region(vm, memslot);
1834 	base = pg = paddr_min >> vm->page_shift;
1835 
1836 	do {
1837 		for (; pg < base + num; ++pg) {
1838 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1839 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1840 				break;
1841 			}
1842 		}
1843 	} while (pg && pg != base + num);
1844 
1845 	if (pg == 0) {
1846 		fprintf(stderr, "No guest physical page available, "
1847 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1848 			paddr_min, vm->page_size, memslot);
1849 		fputs("---- vm dump ----\n", stderr);
1850 		vm_dump(stderr, vm, 2);
1851 		abort();
1852 	}
1853 
1854 	for (pg = base; pg < base + num; ++pg)
1855 		sparsebit_clear(region->unused_phy_pages, pg);
1856 
1857 	return base * vm->page_size;
1858 }
1859 
1860 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1861 			     uint32_t memslot)
1862 {
1863 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1864 }
1865 
1866 /* Arbitrary minimum physical address used for virtual translation tables. */
1867 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
1868 
1869 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1870 {
1871 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
1872 				 vm->memslots[MEM_REGION_PT]);
1873 }
1874 
1875 /*
1876  * Address Guest Virtual to Host Virtual
1877  *
1878  * Input Args:
1879  *   vm - Virtual Machine
1880  *   gva - VM virtual address
1881  *
1882  * Output Args: None
1883  *
1884  * Return:
1885  *   Equivalent host virtual address
1886  */
1887 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1888 {
1889 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1890 }
1891 
1892 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1893 {
1894 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1895 }
1896 
1897 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1898 				      unsigned int page_shift,
1899 				      unsigned int new_page_shift,
1900 				      bool ceil)
1901 {
1902 	unsigned int n = 1 << (new_page_shift - page_shift);
1903 
1904 	if (page_shift >= new_page_shift)
1905 		return num_pages * (1 << (page_shift - new_page_shift));
1906 
1907 	return num_pages / n + !!(ceil && num_pages % n);
1908 }
1909 
1910 static inline int getpageshift(void)
1911 {
1912 	return __builtin_ffs(getpagesize()) - 1;
1913 }
1914 
1915 unsigned int
1916 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1917 {
1918 	return vm_calc_num_pages(num_guest_pages,
1919 				 vm_guest_mode_params[mode].page_shift,
1920 				 getpageshift(), true);
1921 }
1922 
1923 unsigned int
1924 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
1925 {
1926 	return vm_calc_num_pages(num_host_pages, getpageshift(),
1927 				 vm_guest_mode_params[mode].page_shift, false);
1928 }
1929 
1930 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
1931 {
1932 	unsigned int n;
1933 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
1934 	return vm_adjust_num_guest_pages(mode, n);
1935 }
1936 
1937 /*
1938  * Read binary stats descriptors
1939  *
1940  * Input Args:
1941  *   stats_fd - the file descriptor for the binary stats file from which to read
1942  *   header - the binary stats metadata header corresponding to the given FD
1943  *
1944  * Output Args: None
1945  *
1946  * Return:
1947  *   A pointer to a newly allocated series of stat descriptors.
1948  *   Caller is responsible for freeing the returned kvm_stats_desc.
1949  *
1950  * Read the stats descriptors from the binary stats interface.
1951  */
1952 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
1953 					      struct kvm_stats_header *header)
1954 {
1955 	struct kvm_stats_desc *stats_desc;
1956 	ssize_t desc_size, total_size, ret;
1957 
1958 	desc_size = get_stats_descriptor_size(header);
1959 	total_size = header->num_desc * desc_size;
1960 
1961 	stats_desc = calloc(header->num_desc, desc_size);
1962 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
1963 
1964 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
1965 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
1966 
1967 	return stats_desc;
1968 }
1969 
1970 /*
1971  * Read stat data for a particular stat
1972  *
1973  * Input Args:
1974  *   stats_fd - the file descriptor for the binary stats file from which to read
1975  *   header - the binary stats metadata header corresponding to the given FD
1976  *   desc - the binary stat metadata for the particular stat to be read
1977  *   max_elements - the maximum number of 8-byte values to read into data
1978  *
1979  * Output Args:
1980  *   data - the buffer into which stat data should be read
1981  *
1982  * Read the data values of a specified stat from the binary stats interface.
1983  */
1984 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
1985 		    struct kvm_stats_desc *desc, uint64_t *data,
1986 		    size_t max_elements)
1987 {
1988 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
1989 	size_t size = nr_elements * sizeof(*data);
1990 	ssize_t ret;
1991 
1992 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
1993 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
1994 
1995 	ret = pread(stats_fd, data, size,
1996 		    header->data_offset + desc->offset);
1997 
1998 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
1999 		    desc->name, errno, strerror(errno));
2000 	TEST_ASSERT(ret == size,
2001 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2002 		    desc->name, size, ret);
2003 }
2004 
2005 /*
2006  * Read the data of the named stat
2007  *
2008  * Input Args:
2009  *   vm - the VM for which the stat should be read
2010  *   stat_name - the name of the stat to read
2011  *   max_elements - the maximum number of 8-byte values to read into data
2012  *
2013  * Output Args:
2014  *   data - the buffer into which stat data should be read
2015  *
2016  * Read the data values of a specified stat from the binary stats interface.
2017  */
2018 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2019 		   size_t max_elements)
2020 {
2021 	struct kvm_stats_desc *desc;
2022 	size_t size_desc;
2023 	int i;
2024 
2025 	if (!vm->stats_fd) {
2026 		vm->stats_fd = vm_get_stats_fd(vm);
2027 		read_stats_header(vm->stats_fd, &vm->stats_header);
2028 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2029 							&vm->stats_header);
2030 	}
2031 
2032 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2033 
2034 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2035 		desc = (void *)vm->stats_desc + (i * size_desc);
2036 
2037 		if (strcmp(desc->name, stat_name))
2038 			continue;
2039 
2040 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2041 			       data, max_elements);
2042 
2043 		break;
2044 	}
2045 }
2046