xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 10fd0285305d0b48e8a3bf15d4f17fc4f3d68cb6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static int vcpu_mmap_sz(void);
28 
29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	if (fd < 0)
35 		goto error;
36 
37 	return fd;
38 
39 error:
40 	if (errno == EACCES || errno == ENOENT)
41 		ksft_exit_skip("- Cannot open '%s': %s.  %s\n",
42 			       path, strerror(errno),
43 			       errno == EACCES ? "Root required?" : enoent_help);
44 	TEST_FAIL("Failed to open '%s'", path);
45 }
46 
47 int open_path_or_exit(const char *path, int flags)
48 {
49 	return __open_path_or_exit(path, flags, "");
50 }
51 
52 /*
53  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
54  *
55  * Input Args:
56  *   flags - The flags to pass when opening KVM_DEV_PATH.
57  *
58  * Return:
59  *   The opened file descriptor of /dev/kvm.
60  */
61 static int _open_kvm_dev_path_or_exit(int flags)
62 {
63 	return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?");
64 }
65 
66 int open_kvm_dev_path_or_exit(void)
67 {
68 	return _open_kvm_dev_path_or_exit(O_RDONLY);
69 }
70 
71 static ssize_t get_module_param(const char *module_name, const char *param,
72 				void *buffer, size_t buffer_size)
73 {
74 	const int path_size = 128;
75 	char path[path_size];
76 	ssize_t bytes_read;
77 	int fd, r;
78 
79 	/* Verify KVM is loaded, to provide a more helpful SKIP message. */
80 	close(open_kvm_dev_path_or_exit());
81 
82 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
83 		     module_name, param);
84 	TEST_ASSERT(r < path_size,
85 		    "Failed to construct sysfs path in %d bytes.", path_size);
86 
87 	fd = open_path_or_exit(path, O_RDONLY);
88 
89 	bytes_read = read(fd, buffer, buffer_size);
90 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
91 		    path, bytes_read, buffer_size);
92 
93 	r = close(fd);
94 	TEST_ASSERT(!r, "close(%s) failed", path);
95 	return bytes_read;
96 }
97 
98 static int get_module_param_integer(const char *module_name, const char *param)
99 {
100 	/*
101 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
102 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
103 	 * at the end.
104 	 */
105 	char value[16 + 1 + 1];
106 	ssize_t r;
107 
108 	memset(value, '\0', sizeof(value));
109 
110 	r = get_module_param(module_name, param, value, sizeof(value));
111 	TEST_ASSERT(value[r - 1] == '\n',
112 		    "Expected trailing newline, got char '%c'", value[r - 1]);
113 
114 	/*
115 	 * Squash the newline, otherwise atoi_paranoid() will complain about
116 	 * trailing non-NUL characters in the string.
117 	 */
118 	value[r - 1] = '\0';
119 	return atoi_paranoid(value);
120 }
121 
122 static bool get_module_param_bool(const char *module_name, const char *param)
123 {
124 	char value;
125 	ssize_t r;
126 
127 	r = get_module_param(module_name, param, &value, sizeof(value));
128 	TEST_ASSERT_EQ(r, 1);
129 
130 	if (value == 'Y')
131 		return true;
132 	else if (value == 'N')
133 		return false;
134 
135 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
136 }
137 
138 bool get_kvm_param_bool(const char *param)
139 {
140 	return get_module_param_bool("kvm", param);
141 }
142 
143 bool get_kvm_intel_param_bool(const char *param)
144 {
145 	return get_module_param_bool("kvm_intel", param);
146 }
147 
148 bool get_kvm_amd_param_bool(const char *param)
149 {
150 	return get_module_param_bool("kvm_amd", param);
151 }
152 
153 int get_kvm_param_integer(const char *param)
154 {
155 	return get_module_param_integer("kvm", param);
156 }
157 
158 int get_kvm_intel_param_integer(const char *param)
159 {
160 	return get_module_param_integer("kvm_intel", param);
161 }
162 
163 int get_kvm_amd_param_integer(const char *param)
164 {
165 	return get_module_param_integer("kvm_amd", param);
166 }
167 
168 /*
169  * Capability
170  *
171  * Input Args:
172  *   cap - Capability
173  *
174  * Output Args: None
175  *
176  * Return:
177  *   On success, the Value corresponding to the capability (KVM_CAP_*)
178  *   specified by the value of cap.  On failure a TEST_ASSERT failure
179  *   is produced.
180  *
181  * Looks up and returns the value corresponding to the capability
182  * (KVM_CAP_*) given by cap.
183  */
184 unsigned int kvm_check_cap(long cap)
185 {
186 	int ret;
187 	int kvm_fd;
188 
189 	kvm_fd = open_kvm_dev_path_or_exit();
190 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
191 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
192 
193 	close(kvm_fd);
194 
195 	return (unsigned int)ret;
196 }
197 
198 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
199 {
200 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
201 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
202 	else
203 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
204 	vm->dirty_ring_size = ring_size;
205 }
206 
207 static void vm_open(struct kvm_vm *vm)
208 {
209 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
210 
211 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
212 
213 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
214 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
215 
216 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
217 		vm->stats.fd = vm_get_stats_fd(vm);
218 	else
219 		vm->stats.fd = -1;
220 }
221 
222 const char *vm_guest_mode_string(uint32_t i)
223 {
224 	static const char * const strings[] = {
225 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
226 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
227 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
228 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
229 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
230 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
231 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
232 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
233 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
234 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
235 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
236 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
237 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
238 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
239 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
240 		[VM_MODE_P47V47_16K]	= "PA-bits:47,  VA-bits:47, 16K pages",
241 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
242 	};
243 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
244 		       "Missing new mode strings?");
245 
246 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
247 
248 	return strings[i];
249 }
250 
251 const struct vm_guest_mode_params vm_guest_mode_params[] = {
252 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
253 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
254 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
255 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
256 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
257 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
258 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
259 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
260 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
261 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
262 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
263 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
264 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
265 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
266 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
267 	[VM_MODE_P47V47_16K]	= { 47, 47,  0x4000, 14 },
268 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
269 };
270 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
271 	       "Missing new mode params?");
272 
273 /*
274  * Initializes vm->vpages_valid to match the canonical VA space of the
275  * architecture.
276  *
277  * The default implementation is valid for architectures which split the
278  * range addressed by a single page table into a low and high region
279  * based on the MSB of the VA. On architectures with this behavior
280  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
281  */
282 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
283 {
284 	sparsebit_set_num(vm->vpages_valid,
285 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
286 	sparsebit_set_num(vm->vpages_valid,
287 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
288 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
289 }
290 
291 struct kvm_vm *____vm_create(struct vm_shape shape)
292 {
293 	struct kvm_vm *vm;
294 
295 	vm = calloc(1, sizeof(*vm));
296 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
297 
298 	INIT_LIST_HEAD(&vm->vcpus);
299 	vm->regions.gpa_tree = RB_ROOT;
300 	vm->regions.hva_tree = RB_ROOT;
301 	hash_init(vm->regions.slot_hash);
302 
303 	vm->mode = shape.mode;
304 	vm->type = shape.type;
305 
306 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
307 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
308 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
309 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
310 
311 	/* Setup mode specific traits. */
312 	switch (vm->mode) {
313 	case VM_MODE_P52V48_4K:
314 		vm->pgtable_levels = 4;
315 		break;
316 	case VM_MODE_P52V48_64K:
317 		vm->pgtable_levels = 3;
318 		break;
319 	case VM_MODE_P48V48_4K:
320 		vm->pgtable_levels = 4;
321 		break;
322 	case VM_MODE_P48V48_64K:
323 		vm->pgtable_levels = 3;
324 		break;
325 	case VM_MODE_P40V48_4K:
326 	case VM_MODE_P36V48_4K:
327 		vm->pgtable_levels = 4;
328 		break;
329 	case VM_MODE_P40V48_64K:
330 	case VM_MODE_P36V48_64K:
331 		vm->pgtable_levels = 3;
332 		break;
333 	case VM_MODE_P52V48_16K:
334 	case VM_MODE_P48V48_16K:
335 	case VM_MODE_P40V48_16K:
336 	case VM_MODE_P36V48_16K:
337 		vm->pgtable_levels = 4;
338 		break;
339 	case VM_MODE_P47V47_16K:
340 	case VM_MODE_P36V47_16K:
341 		vm->pgtable_levels = 3;
342 		break;
343 	case VM_MODE_PXXV48_4K:
344 #ifdef __x86_64__
345 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
346 		kvm_init_vm_address_properties(vm);
347 		/*
348 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
349 		 * it doesn't take effect unless a CR4.LA57 is set, which it
350 		 * isn't for this mode (48-bit virtual address space).
351 		 */
352 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
353 			    "Linear address width (%d bits) not supported",
354 			    vm->va_bits);
355 		pr_debug("Guest physical address width detected: %d\n",
356 			 vm->pa_bits);
357 		vm->pgtable_levels = 4;
358 		vm->va_bits = 48;
359 #else
360 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
361 #endif
362 		break;
363 	case VM_MODE_P47V64_4K:
364 		vm->pgtable_levels = 5;
365 		break;
366 	case VM_MODE_P44V64_4K:
367 		vm->pgtable_levels = 5;
368 		break;
369 	default:
370 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
371 	}
372 
373 #ifdef __aarch64__
374 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
375 	if (vm->pa_bits != 40)
376 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
377 #endif
378 
379 	vm_open(vm);
380 
381 	/* Limit to VA-bit canonical virtual addresses. */
382 	vm->vpages_valid = sparsebit_alloc();
383 	vm_vaddr_populate_bitmap(vm);
384 
385 	/* Limit physical addresses to PA-bits. */
386 	vm->max_gfn = vm_compute_max_gfn(vm);
387 
388 	/* Allocate and setup memory for guest. */
389 	vm->vpages_mapped = sparsebit_alloc();
390 
391 	return vm;
392 }
393 
394 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
395 				     uint32_t nr_runnable_vcpus,
396 				     uint64_t extra_mem_pages)
397 {
398 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
399 	uint64_t nr_pages;
400 
401 	TEST_ASSERT(nr_runnable_vcpus,
402 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
403 
404 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
405 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
406 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
407 
408 	/*
409 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
410 	 * test code and other per-VM assets that will be loaded into memslot0.
411 	 */
412 	nr_pages = 512;
413 
414 	/* Account for the per-vCPU stacks on behalf of the test. */
415 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
416 
417 	/*
418 	 * Account for the number of pages needed for the page tables.  The
419 	 * maximum page table size for a memory region will be when the
420 	 * smallest page size is used. Considering each page contains x page
421 	 * table descriptors, the total extra size for page tables (for extra
422 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
423 	 * than N/x*2.
424 	 */
425 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
426 
427 	/* Account for the number of pages needed by ucall. */
428 	nr_pages += ucall_nr_pages_required(page_size);
429 
430 	return vm_adjust_num_guest_pages(mode, nr_pages);
431 }
432 
433 void kvm_set_files_rlimit(uint32_t nr_vcpus)
434 {
435 	/*
436 	 * Each vCPU will open two file descriptors: the vCPU itself and the
437 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
438 	 * buffer for all other files a test may open.
439 	 */
440 	int nr_fds_wanted = nr_vcpus * 2 + 100;
441 	struct rlimit rl;
442 
443 	/*
444 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
445 	 * try raising the limits if needed.
446 	 */
447 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
448 
449 	if (rl.rlim_cur < nr_fds_wanted) {
450 		rl.rlim_cur = nr_fds_wanted;
451 		if (rl.rlim_max < nr_fds_wanted) {
452 			int old_rlim_max = rl.rlim_max;
453 
454 			rl.rlim_max = nr_fds_wanted;
455 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
456 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
457 				       old_rlim_max, nr_fds_wanted);
458 		} else {
459 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
460 		}
461 	}
462 
463 }
464 
465 static bool is_guest_memfd_required(struct vm_shape shape)
466 {
467 #ifdef __x86_64__
468 	return shape.type == KVM_X86_SNP_VM;
469 #else
470 	return false;
471 #endif
472 }
473 
474 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
475 			   uint64_t nr_extra_pages)
476 {
477 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
478 						 nr_extra_pages);
479 	struct userspace_mem_region *slot0;
480 	struct kvm_vm *vm;
481 	int i, flags;
482 
483 	kvm_set_files_rlimit(nr_runnable_vcpus);
484 
485 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
486 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
487 
488 	vm = ____vm_create(shape);
489 
490 	/*
491 	 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
492 	 * for CoCo VMs that require GUEST_MEMFD backed private memory.
493 	 */
494 	flags = 0;
495 	if (is_guest_memfd_required(shape))
496 		flags |= KVM_MEM_GUEST_MEMFD;
497 
498 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
499 	for (i = 0; i < NR_MEM_REGIONS; i++)
500 		vm->memslots[i] = 0;
501 
502 	kvm_vm_elf_load(vm, program_invocation_name);
503 
504 	/*
505 	 * TODO: Add proper defines to protect the library's memslots, and then
506 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
507 	 * read-only memslots as MMIO, and creating a read-only memslot for the
508 	 * MMIO region would prevent silently clobbering the MMIO region.
509 	 */
510 	slot0 = memslot2region(vm, 0);
511 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
512 
513 	if (guest_random_seed != last_guest_seed) {
514 		pr_info("Random seed: 0x%x\n", guest_random_seed);
515 		last_guest_seed = guest_random_seed;
516 	}
517 	guest_rng = new_guest_random_state(guest_random_seed);
518 	sync_global_to_guest(vm, guest_rng);
519 
520 	kvm_arch_vm_post_create(vm, nr_runnable_vcpus);
521 
522 	return vm;
523 }
524 
525 /*
526  * VM Create with customized parameters
527  *
528  * Input Args:
529  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
530  *   nr_vcpus - VCPU count
531  *   extra_mem_pages - Non-slot0 physical memory total size
532  *   guest_code - Guest entry point
533  *   vcpuids - VCPU IDs
534  *
535  * Output Args: None
536  *
537  * Return:
538  *   Pointer to opaque structure that describes the created VM.
539  *
540  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
541  * extra_mem_pages is only used to calculate the maximum page table size,
542  * no real memory allocation for non-slot0 memory in this function.
543  */
544 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
545 				      uint64_t extra_mem_pages,
546 				      void *guest_code, struct kvm_vcpu *vcpus[])
547 {
548 	struct kvm_vm *vm;
549 	int i;
550 
551 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
552 
553 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
554 
555 	for (i = 0; i < nr_vcpus; ++i)
556 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
557 
558 	kvm_arch_vm_finalize_vcpus(vm);
559 	return vm;
560 }
561 
562 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
563 					       struct kvm_vcpu **vcpu,
564 					       uint64_t extra_mem_pages,
565 					       void *guest_code)
566 {
567 	struct kvm_vcpu *vcpus[1];
568 	struct kvm_vm *vm;
569 
570 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
571 
572 	*vcpu = vcpus[0];
573 	return vm;
574 }
575 
576 /*
577  * VM Restart
578  *
579  * Input Args:
580  *   vm - VM that has been released before
581  *
582  * Output Args: None
583  *
584  * Reopens the file descriptors associated to the VM and reinstates the
585  * global state, such as the irqchip and the memory regions that are mapped
586  * into the guest.
587  */
588 void kvm_vm_restart(struct kvm_vm *vmp)
589 {
590 	int ctr;
591 	struct userspace_mem_region *region;
592 
593 	vm_open(vmp);
594 	if (vmp->has_irqchip)
595 		vm_create_irqchip(vmp);
596 
597 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
598 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
599 
600 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
601 			    "  rc: %i errno: %i\n"
602 			    "  slot: %u flags: 0x%x\n"
603 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
604 			    ret, errno, region->region.slot,
605 			    region->region.flags,
606 			    region->region.guest_phys_addr,
607 			    region->region.memory_size);
608 	}
609 }
610 
611 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
612 					      uint32_t vcpu_id)
613 {
614 	return __vm_vcpu_add(vm, vcpu_id);
615 }
616 
617 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
618 {
619 	kvm_vm_restart(vm);
620 
621 	return vm_vcpu_recreate(vm, 0);
622 }
623 
624 int __pin_task_to_cpu(pthread_t task, int cpu)
625 {
626 	cpu_set_t cpuset;
627 
628 	CPU_ZERO(&cpuset);
629 	CPU_SET(cpu, &cpuset);
630 
631 	return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset);
632 }
633 
634 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
635 {
636 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
637 
638 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
639 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
640 	return pcpu;
641 }
642 
643 void kvm_print_vcpu_pinning_help(void)
644 {
645 	const char *name = program_invocation_name;
646 
647 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
648 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
649 	       "     entry for the main application task (specified via entry\n"
650 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
651 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
652 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
653 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
654 	       "         %s -v 3 -c 22,23,24,50\n\n"
655 	       "     To leave the application task unpinned, drop the final entry:\n\n"
656 	       "         %s -v 3 -c 22,23,24\n\n"
657 	       "     (default: no pinning)\n", name, name);
658 }
659 
660 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
661 			    int nr_vcpus)
662 {
663 	cpu_set_t allowed_mask;
664 	char *cpu, *cpu_list;
665 	char delim[2] = ",";
666 	int i, r;
667 
668 	cpu_list = strdup(pcpus_string);
669 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
670 
671 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
672 	TEST_ASSERT(!r, "sched_getaffinity() failed");
673 
674 	cpu = strtok(cpu_list, delim);
675 
676 	/* 1. Get all pcpus for vcpus. */
677 	for (i = 0; i < nr_vcpus; i++) {
678 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
679 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
680 		cpu = strtok(NULL, delim);
681 	}
682 
683 	/* 2. Check if the main worker needs to be pinned. */
684 	if (cpu) {
685 		pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask));
686 		cpu = strtok(NULL, delim);
687 	}
688 
689 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
690 	free(cpu_list);
691 }
692 
693 /*
694  * Userspace Memory Region Find
695  *
696  * Input Args:
697  *   vm - Virtual Machine
698  *   start - Starting VM physical address
699  *   end - Ending VM physical address, inclusive.
700  *
701  * Output Args: None
702  *
703  * Return:
704  *   Pointer to overlapping region, NULL if no such region.
705  *
706  * Searches for a region with any physical memory that overlaps with
707  * any portion of the guest physical addresses from start to end
708  * inclusive.  If multiple overlapping regions exist, a pointer to any
709  * of the regions is returned.  Null is returned only when no overlapping
710  * region exists.
711  */
712 static struct userspace_mem_region *
713 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
714 {
715 	struct rb_node *node;
716 
717 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
718 		struct userspace_mem_region *region =
719 			container_of(node, struct userspace_mem_region, gpa_node);
720 		uint64_t existing_start = region->region.guest_phys_addr;
721 		uint64_t existing_end = region->region.guest_phys_addr
722 			+ region->region.memory_size - 1;
723 		if (start <= existing_end && end >= existing_start)
724 			return region;
725 
726 		if (start < existing_start)
727 			node = node->rb_left;
728 		else
729 			node = node->rb_right;
730 	}
731 
732 	return NULL;
733 }
734 
735 static void kvm_stats_release(struct kvm_binary_stats *stats)
736 {
737 	int ret;
738 
739 	if (stats->fd < 0)
740 		return;
741 
742 	if (stats->desc) {
743 		free(stats->desc);
744 		stats->desc = NULL;
745 	}
746 
747 	ret = close(stats->fd);
748 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
749 	stats->fd = -1;
750 }
751 
752 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
753 {
754 
755 }
756 
757 /*
758  * VM VCPU Remove
759  *
760  * Input Args:
761  *   vcpu - VCPU to remove
762  *
763  * Output Args: None
764  *
765  * Return: None, TEST_ASSERT failures for all error conditions
766  *
767  * Removes a vCPU from a VM and frees its resources.
768  */
769 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
770 {
771 	int ret;
772 
773 	if (vcpu->dirty_gfns) {
774 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
775 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
776 		vcpu->dirty_gfns = NULL;
777 	}
778 
779 	ret = munmap(vcpu->run, vcpu_mmap_sz());
780 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
781 
782 	ret = close(vcpu->fd);
783 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
784 
785 	kvm_stats_release(&vcpu->stats);
786 
787 	list_del(&vcpu->list);
788 
789 	vcpu_arch_free(vcpu);
790 	free(vcpu);
791 }
792 
793 void kvm_vm_release(struct kvm_vm *vmp)
794 {
795 	struct kvm_vcpu *vcpu, *tmp;
796 	int ret;
797 
798 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
799 		vm_vcpu_rm(vmp, vcpu);
800 
801 	ret = close(vmp->fd);
802 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
803 
804 	ret = close(vmp->kvm_fd);
805 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
806 
807 	/* Free cached stats metadata and close FD */
808 	kvm_stats_release(&vmp->stats);
809 
810 	kvm_arch_vm_release(vmp);
811 }
812 
813 static void __vm_mem_region_delete(struct kvm_vm *vm,
814 				   struct userspace_mem_region *region)
815 {
816 	int ret;
817 
818 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
819 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
820 	hash_del(&region->slot_node);
821 
822 	sparsebit_free(&region->unused_phy_pages);
823 	sparsebit_free(&region->protected_phy_pages);
824 	ret = munmap(region->mmap_start, region->mmap_size);
825 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
826 	if (region->fd >= 0) {
827 		/* There's an extra map when using shared memory. */
828 		ret = munmap(region->mmap_alias, region->mmap_size);
829 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
830 		close(region->fd);
831 	}
832 	if (region->region.guest_memfd >= 0)
833 		close(region->region.guest_memfd);
834 
835 	free(region);
836 }
837 
838 /*
839  * Destroys and frees the VM pointed to by vmp.
840  */
841 void kvm_vm_free(struct kvm_vm *vmp)
842 {
843 	int ctr;
844 	struct hlist_node *node;
845 	struct userspace_mem_region *region;
846 
847 	if (vmp == NULL)
848 		return;
849 
850 	/* Free userspace_mem_regions. */
851 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
852 		__vm_mem_region_delete(vmp, region);
853 
854 	/* Free sparsebit arrays. */
855 	sparsebit_free(&vmp->vpages_valid);
856 	sparsebit_free(&vmp->vpages_mapped);
857 
858 	kvm_vm_release(vmp);
859 
860 	/* Free the structure describing the VM. */
861 	free(vmp);
862 }
863 
864 int kvm_memfd_alloc(size_t size, bool hugepages)
865 {
866 	int memfd_flags = MFD_CLOEXEC;
867 	int fd, r;
868 
869 	if (hugepages)
870 		memfd_flags |= MFD_HUGETLB;
871 
872 	fd = memfd_create("kvm_selftest", memfd_flags);
873 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
874 
875 	r = ftruncate(fd, size);
876 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
877 
878 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
879 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
880 
881 	return fd;
882 }
883 
884 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
885 					       struct userspace_mem_region *region)
886 {
887 	struct rb_node **cur, *parent;
888 
889 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
890 		struct userspace_mem_region *cregion;
891 
892 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
893 		parent = *cur;
894 		if (region->region.guest_phys_addr <
895 		    cregion->region.guest_phys_addr)
896 			cur = &(*cur)->rb_left;
897 		else {
898 			TEST_ASSERT(region->region.guest_phys_addr !=
899 				    cregion->region.guest_phys_addr,
900 				    "Duplicate GPA in region tree");
901 
902 			cur = &(*cur)->rb_right;
903 		}
904 	}
905 
906 	rb_link_node(&region->gpa_node, parent, cur);
907 	rb_insert_color(&region->gpa_node, gpa_tree);
908 }
909 
910 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
911 					       struct userspace_mem_region *region)
912 {
913 	struct rb_node **cur, *parent;
914 
915 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
916 		struct userspace_mem_region *cregion;
917 
918 		cregion = container_of(*cur, typeof(*cregion), hva_node);
919 		parent = *cur;
920 		if (region->host_mem < cregion->host_mem)
921 			cur = &(*cur)->rb_left;
922 		else {
923 			TEST_ASSERT(region->host_mem !=
924 				    cregion->host_mem,
925 				    "Duplicate HVA in region tree");
926 
927 			cur = &(*cur)->rb_right;
928 		}
929 	}
930 
931 	rb_link_node(&region->hva_node, parent, cur);
932 	rb_insert_color(&region->hva_node, hva_tree);
933 }
934 
935 
936 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
937 				uint64_t gpa, uint64_t size, void *hva)
938 {
939 	struct kvm_userspace_memory_region region = {
940 		.slot = slot,
941 		.flags = flags,
942 		.guest_phys_addr = gpa,
943 		.memory_size = size,
944 		.userspace_addr = (uintptr_t)hva,
945 	};
946 
947 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
948 }
949 
950 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
951 			       uint64_t gpa, uint64_t size, void *hva)
952 {
953 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
954 
955 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
956 		    errno, strerror(errno));
957 }
958 
959 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
960 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
961 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
962 
963 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
964 				 uint64_t gpa, uint64_t size, void *hva,
965 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
966 {
967 	struct kvm_userspace_memory_region2 region = {
968 		.slot = slot,
969 		.flags = flags,
970 		.guest_phys_addr = gpa,
971 		.memory_size = size,
972 		.userspace_addr = (uintptr_t)hva,
973 		.guest_memfd = guest_memfd,
974 		.guest_memfd_offset = guest_memfd_offset,
975 	};
976 
977 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
978 
979 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
980 }
981 
982 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
983 				uint64_t gpa, uint64_t size, void *hva,
984 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
985 {
986 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
987 					       guest_memfd, guest_memfd_offset);
988 
989 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
990 		    errno, strerror(errno));
991 }
992 
993 
994 /* FIXME: This thing needs to be ripped apart and rewritten. */
995 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
996 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
997 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
998 {
999 	int ret;
1000 	struct userspace_mem_region *region;
1001 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
1002 	size_t mem_size = npages * vm->page_size;
1003 	size_t alignment;
1004 
1005 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
1006 
1007 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
1008 		"Number of guest pages is not compatible with the host. "
1009 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
1010 
1011 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
1012 		"address not on a page boundary.\n"
1013 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
1014 		guest_paddr, vm->page_size);
1015 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
1016 		<= vm->max_gfn, "Physical range beyond maximum "
1017 		"supported physical address,\n"
1018 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
1019 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
1020 		guest_paddr, npages, vm->max_gfn, vm->page_size);
1021 
1022 	/*
1023 	 * Confirm a mem region with an overlapping address doesn't
1024 	 * already exist.
1025 	 */
1026 	region = (struct userspace_mem_region *) userspace_mem_region_find(
1027 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
1028 	if (region != NULL)
1029 		TEST_FAIL("overlapping userspace_mem_region already "
1030 			"exists\n"
1031 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
1032 			"page_size: 0x%x\n"
1033 			"  existing guest_paddr: 0x%lx size: 0x%lx",
1034 			guest_paddr, npages, vm->page_size,
1035 			(uint64_t) region->region.guest_phys_addr,
1036 			(uint64_t) region->region.memory_size);
1037 
1038 	/* Confirm no region with the requested slot already exists. */
1039 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1040 			       slot) {
1041 		if (region->region.slot != slot)
1042 			continue;
1043 
1044 		TEST_FAIL("A mem region with the requested slot "
1045 			"already exists.\n"
1046 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1047 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1048 			slot, guest_paddr, npages,
1049 			region->region.slot,
1050 			(uint64_t) region->region.guest_phys_addr,
1051 			(uint64_t) region->region.memory_size);
1052 	}
1053 
1054 	/* Allocate and initialize new mem region structure. */
1055 	region = calloc(1, sizeof(*region));
1056 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1057 	region->mmap_size = mem_size;
1058 
1059 #ifdef __s390x__
1060 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1061 	alignment = 0x100000;
1062 #else
1063 	alignment = 1;
1064 #endif
1065 
1066 	/*
1067 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1068 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1069 	 * because mmap will always return an address aligned to the HugeTLB
1070 	 * page size.
1071 	 */
1072 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1073 		alignment = max(backing_src_pagesz, alignment);
1074 
1075 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1076 
1077 	/* Add enough memory to align up if necessary */
1078 	if (alignment > 1)
1079 		region->mmap_size += alignment;
1080 
1081 	region->fd = -1;
1082 	if (backing_src_is_shared(src_type))
1083 		region->fd = kvm_memfd_alloc(region->mmap_size,
1084 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1085 
1086 	region->mmap_start = mmap(NULL, region->mmap_size,
1087 				  PROT_READ | PROT_WRITE,
1088 				  vm_mem_backing_src_alias(src_type)->flag,
1089 				  region->fd, 0);
1090 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1091 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1092 
1093 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1094 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1095 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1096 		    region->mmap_start, backing_src_pagesz);
1097 
1098 	/* Align host address */
1099 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1100 
1101 	/* As needed perform madvise */
1102 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1103 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1104 		ret = madvise(region->host_mem, mem_size,
1105 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1106 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1107 			    region->host_mem, mem_size,
1108 			    vm_mem_backing_src_alias(src_type)->name);
1109 	}
1110 
1111 	region->backing_src_type = src_type;
1112 
1113 	if (flags & KVM_MEM_GUEST_MEMFD) {
1114 		if (guest_memfd < 0) {
1115 			uint32_t guest_memfd_flags = 0;
1116 			TEST_ASSERT(!guest_memfd_offset,
1117 				    "Offset must be zero when creating new guest_memfd");
1118 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1119 		} else {
1120 			/*
1121 			 * Install a unique fd for each memslot so that the fd
1122 			 * can be closed when the region is deleted without
1123 			 * needing to track if the fd is owned by the framework
1124 			 * or by the caller.
1125 			 */
1126 			guest_memfd = dup(guest_memfd);
1127 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1128 		}
1129 
1130 		region->region.guest_memfd = guest_memfd;
1131 		region->region.guest_memfd_offset = guest_memfd_offset;
1132 	} else {
1133 		region->region.guest_memfd = -1;
1134 	}
1135 
1136 	region->unused_phy_pages = sparsebit_alloc();
1137 	if (vm_arch_has_protected_memory(vm))
1138 		region->protected_phy_pages = sparsebit_alloc();
1139 	sparsebit_set_num(region->unused_phy_pages,
1140 		guest_paddr >> vm->page_shift, npages);
1141 	region->region.slot = slot;
1142 	region->region.flags = flags;
1143 	region->region.guest_phys_addr = guest_paddr;
1144 	region->region.memory_size = npages * vm->page_size;
1145 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1146 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1147 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1148 		"  rc: %i errno: %i\n"
1149 		"  slot: %u flags: 0x%x\n"
1150 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1151 		ret, errno, slot, flags,
1152 		guest_paddr, (uint64_t) region->region.memory_size,
1153 		region->region.guest_memfd);
1154 
1155 	/* Add to quick lookup data structures */
1156 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1157 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1158 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1159 
1160 	/* If shared memory, create an alias. */
1161 	if (region->fd >= 0) {
1162 		region->mmap_alias = mmap(NULL, region->mmap_size,
1163 					  PROT_READ | PROT_WRITE,
1164 					  vm_mem_backing_src_alias(src_type)->flag,
1165 					  region->fd, 0);
1166 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1167 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1168 
1169 		/* Align host alias address */
1170 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1171 	}
1172 }
1173 
1174 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1175 				 enum vm_mem_backing_src_type src_type,
1176 				 uint64_t guest_paddr, uint32_t slot,
1177 				 uint64_t npages, uint32_t flags)
1178 {
1179 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1180 }
1181 
1182 /*
1183  * Memslot to region
1184  *
1185  * Input Args:
1186  *   vm - Virtual Machine
1187  *   memslot - KVM memory slot ID
1188  *
1189  * Output Args: None
1190  *
1191  * Return:
1192  *   Pointer to memory region structure that describe memory region
1193  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1194  *   on error (e.g. currently no memory region using memslot as a KVM
1195  *   memory slot ID).
1196  */
1197 struct userspace_mem_region *
1198 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1199 {
1200 	struct userspace_mem_region *region;
1201 
1202 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1203 			       memslot)
1204 		if (region->region.slot == memslot)
1205 			return region;
1206 
1207 	fprintf(stderr, "No mem region with the requested slot found,\n"
1208 		"  requested slot: %u\n", memslot);
1209 	fputs("---- vm dump ----\n", stderr);
1210 	vm_dump(stderr, vm, 2);
1211 	TEST_FAIL("Mem region not found");
1212 	return NULL;
1213 }
1214 
1215 /*
1216  * VM Memory Region Flags Set
1217  *
1218  * Input Args:
1219  *   vm - Virtual Machine
1220  *   flags - Starting guest physical address
1221  *
1222  * Output Args: None
1223  *
1224  * Return: None
1225  *
1226  * Sets the flags of the memory region specified by the value of slot,
1227  * to the values given by flags.
1228  */
1229 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1230 {
1231 	int ret;
1232 	struct userspace_mem_region *region;
1233 
1234 	region = memslot2region(vm, slot);
1235 
1236 	region->region.flags = flags;
1237 
1238 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1239 
1240 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1241 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1242 		ret, errno, slot, flags);
1243 }
1244 
1245 /*
1246  * VM Memory Region Move
1247  *
1248  * Input Args:
1249  *   vm - Virtual Machine
1250  *   slot - Slot of the memory region to move
1251  *   new_gpa - Starting guest physical address
1252  *
1253  * Output Args: None
1254  *
1255  * Return: None
1256  *
1257  * Change the gpa of a memory region.
1258  */
1259 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1260 {
1261 	struct userspace_mem_region *region;
1262 	int ret;
1263 
1264 	region = memslot2region(vm, slot);
1265 
1266 	region->region.guest_phys_addr = new_gpa;
1267 
1268 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1269 
1270 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1271 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1272 		    ret, errno, slot, new_gpa);
1273 }
1274 
1275 /*
1276  * VM Memory Region Delete
1277  *
1278  * Input Args:
1279  *   vm - Virtual Machine
1280  *   slot - Slot of the memory region to delete
1281  *
1282  * Output Args: None
1283  *
1284  * Return: None
1285  *
1286  * Delete a memory region.
1287  */
1288 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1289 {
1290 	struct userspace_mem_region *region = memslot2region(vm, slot);
1291 
1292 	region->region.memory_size = 0;
1293 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1294 
1295 	__vm_mem_region_delete(vm, region);
1296 }
1297 
1298 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1299 			    bool punch_hole)
1300 {
1301 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1302 	struct userspace_mem_region *region;
1303 	uint64_t end = base + size;
1304 	uint64_t gpa, len;
1305 	off_t fd_offset;
1306 	int ret;
1307 
1308 	for (gpa = base; gpa < end; gpa += len) {
1309 		uint64_t offset;
1310 
1311 		region = userspace_mem_region_find(vm, gpa, gpa);
1312 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1313 			    "Private memory region not found for GPA 0x%lx", gpa);
1314 
1315 		offset = gpa - region->region.guest_phys_addr;
1316 		fd_offset = region->region.guest_memfd_offset + offset;
1317 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1318 
1319 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1320 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1321 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1322 			    region->region.guest_memfd, mode, fd_offset);
1323 	}
1324 }
1325 
1326 /* Returns the size of a vCPU's kvm_run structure. */
1327 static int vcpu_mmap_sz(void)
1328 {
1329 	int dev_fd, ret;
1330 
1331 	dev_fd = open_kvm_dev_path_or_exit();
1332 
1333 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1334 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1335 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1336 
1337 	close(dev_fd);
1338 
1339 	return ret;
1340 }
1341 
1342 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1343 {
1344 	struct kvm_vcpu *vcpu;
1345 
1346 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1347 		if (vcpu->id == vcpu_id)
1348 			return true;
1349 	}
1350 
1351 	return false;
1352 }
1353 
1354 /*
1355  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1356  * No additional vCPU setup is done.  Returns the vCPU.
1357  */
1358 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1359 {
1360 	struct kvm_vcpu *vcpu;
1361 
1362 	/* Confirm a vcpu with the specified id doesn't already exist. */
1363 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1364 
1365 	/* Allocate and initialize new vcpu structure. */
1366 	vcpu = calloc(1, sizeof(*vcpu));
1367 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1368 
1369 	vcpu->vm = vm;
1370 	vcpu->id = vcpu_id;
1371 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1372 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1373 
1374 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1375 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1376 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1377 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1378 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1379 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1380 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1381 
1382 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1383 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1384 	else
1385 		vcpu->stats.fd = -1;
1386 
1387 	/* Add to linked-list of VCPUs. */
1388 	list_add(&vcpu->list, &vm->vcpus);
1389 
1390 	return vcpu;
1391 }
1392 
1393 /*
1394  * VM Virtual Address Unused Gap
1395  *
1396  * Input Args:
1397  *   vm - Virtual Machine
1398  *   sz - Size (bytes)
1399  *   vaddr_min - Minimum Virtual Address
1400  *
1401  * Output Args: None
1402  *
1403  * Return:
1404  *   Lowest virtual address at or below vaddr_min, with at least
1405  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1406  *   size sz is available.
1407  *
1408  * Within the VM specified by vm, locates the lowest starting virtual
1409  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1410  * TEST_ASSERT failure occurs for invalid input or no area of at least
1411  * sz unallocated bytes >= vaddr_min is available.
1412  */
1413 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1414 			       vm_vaddr_t vaddr_min)
1415 {
1416 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1417 
1418 	/* Determine lowest permitted virtual page index. */
1419 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1420 	if ((pgidx_start * vm->page_size) < vaddr_min)
1421 		goto no_va_found;
1422 
1423 	/* Loop over section with enough valid virtual page indexes. */
1424 	if (!sparsebit_is_set_num(vm->vpages_valid,
1425 		pgidx_start, pages))
1426 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1427 			pgidx_start, pages);
1428 	do {
1429 		/*
1430 		 * Are there enough unused virtual pages available at
1431 		 * the currently proposed starting virtual page index.
1432 		 * If not, adjust proposed starting index to next
1433 		 * possible.
1434 		 */
1435 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1436 			pgidx_start, pages))
1437 			goto va_found;
1438 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1439 			pgidx_start, pages);
1440 		if (pgidx_start == 0)
1441 			goto no_va_found;
1442 
1443 		/*
1444 		 * If needed, adjust proposed starting virtual address,
1445 		 * to next range of valid virtual addresses.
1446 		 */
1447 		if (!sparsebit_is_set_num(vm->vpages_valid,
1448 			pgidx_start, pages)) {
1449 			pgidx_start = sparsebit_next_set_num(
1450 				vm->vpages_valid, pgidx_start, pages);
1451 			if (pgidx_start == 0)
1452 				goto no_va_found;
1453 		}
1454 	} while (pgidx_start != 0);
1455 
1456 no_va_found:
1457 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1458 
1459 	/* NOT REACHED */
1460 	return -1;
1461 
1462 va_found:
1463 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1464 		pgidx_start, pages),
1465 		"Unexpected, invalid virtual page index range,\n"
1466 		"  pgidx_start: 0x%lx\n"
1467 		"  pages: 0x%lx",
1468 		pgidx_start, pages);
1469 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1470 		pgidx_start, pages),
1471 		"Unexpected, pages already mapped,\n"
1472 		"  pgidx_start: 0x%lx\n"
1473 		"  pages: 0x%lx",
1474 		pgidx_start, pages);
1475 
1476 	return pgidx_start * vm->page_size;
1477 }
1478 
1479 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1480 				     vm_vaddr_t vaddr_min,
1481 				     enum kvm_mem_region_type type,
1482 				     bool protected)
1483 {
1484 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1485 
1486 	virt_pgd_alloc(vm);
1487 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1488 						KVM_UTIL_MIN_PFN * vm->page_size,
1489 						vm->memslots[type], protected);
1490 
1491 	/*
1492 	 * Find an unused range of virtual page addresses of at least
1493 	 * pages in length.
1494 	 */
1495 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1496 
1497 	/* Map the virtual pages. */
1498 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1499 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1500 
1501 		virt_pg_map(vm, vaddr, paddr);
1502 
1503 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1504 	}
1505 
1506 	return vaddr_start;
1507 }
1508 
1509 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1510 			    enum kvm_mem_region_type type)
1511 {
1512 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1513 				  vm_arch_has_protected_memory(vm));
1514 }
1515 
1516 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1517 				 vm_vaddr_t vaddr_min,
1518 				 enum kvm_mem_region_type type)
1519 {
1520 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1521 }
1522 
1523 /*
1524  * VM Virtual Address Allocate
1525  *
1526  * Input Args:
1527  *   vm - Virtual Machine
1528  *   sz - Size in bytes
1529  *   vaddr_min - Minimum starting virtual address
1530  *
1531  * Output Args: None
1532  *
1533  * Return:
1534  *   Starting guest virtual address
1535  *
1536  * Allocates at least sz bytes within the virtual address space of the vm
1537  * given by vm.  The allocated bytes are mapped to a virtual address >=
1538  * the address given by vaddr_min.  Note that each allocation uses a
1539  * a unique set of pages, with the minimum real allocation being at least
1540  * a page. The allocated physical space comes from the TEST_DATA memory region.
1541  */
1542 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1543 {
1544 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1545 }
1546 
1547 /*
1548  * VM Virtual Address Allocate Pages
1549  *
1550  * Input Args:
1551  *   vm - Virtual Machine
1552  *
1553  * Output Args: None
1554  *
1555  * Return:
1556  *   Starting guest virtual address
1557  *
1558  * Allocates at least N system pages worth of bytes within the virtual address
1559  * space of the vm.
1560  */
1561 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1562 {
1563 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1564 }
1565 
1566 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1567 {
1568 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1569 }
1570 
1571 /*
1572  * VM Virtual Address Allocate Page
1573  *
1574  * Input Args:
1575  *   vm - Virtual Machine
1576  *
1577  * Output Args: None
1578  *
1579  * Return:
1580  *   Starting guest virtual address
1581  *
1582  * Allocates at least one system page worth of bytes within the virtual address
1583  * space of the vm.
1584  */
1585 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1586 {
1587 	return vm_vaddr_alloc_pages(vm, 1);
1588 }
1589 
1590 /*
1591  * Map a range of VM virtual address to the VM's physical address
1592  *
1593  * Input Args:
1594  *   vm - Virtual Machine
1595  *   vaddr - Virtuall address to map
1596  *   paddr - VM Physical Address
1597  *   npages - The number of pages to map
1598  *
1599  * Output Args: None
1600  *
1601  * Return: None
1602  *
1603  * Within the VM given by @vm, creates a virtual translation for
1604  * @npages starting at @vaddr to the page range starting at @paddr.
1605  */
1606 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1607 	      unsigned int npages)
1608 {
1609 	size_t page_size = vm->page_size;
1610 	size_t size = npages * page_size;
1611 
1612 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1613 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1614 
1615 	while (npages--) {
1616 		virt_pg_map(vm, vaddr, paddr);
1617 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1618 
1619 		vaddr += page_size;
1620 		paddr += page_size;
1621 	}
1622 }
1623 
1624 /*
1625  * Address VM Physical to Host Virtual
1626  *
1627  * Input Args:
1628  *   vm - Virtual Machine
1629  *   gpa - VM physical address
1630  *
1631  * Output Args: None
1632  *
1633  * Return:
1634  *   Equivalent host virtual address
1635  *
1636  * Locates the memory region containing the VM physical address given
1637  * by gpa, within the VM given by vm.  When found, the host virtual
1638  * address providing the memory to the vm physical address is returned.
1639  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1640  */
1641 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1642 {
1643 	struct userspace_mem_region *region;
1644 
1645 	gpa = vm_untag_gpa(vm, gpa);
1646 
1647 	region = userspace_mem_region_find(vm, gpa, gpa);
1648 	if (!region) {
1649 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1650 		return NULL;
1651 	}
1652 
1653 	return (void *)((uintptr_t)region->host_mem
1654 		+ (gpa - region->region.guest_phys_addr));
1655 }
1656 
1657 /*
1658  * Address Host Virtual to VM Physical
1659  *
1660  * Input Args:
1661  *   vm - Virtual Machine
1662  *   hva - Host virtual address
1663  *
1664  * Output Args: None
1665  *
1666  * Return:
1667  *   Equivalent VM physical address
1668  *
1669  * Locates the memory region containing the host virtual address given
1670  * by hva, within the VM given by vm.  When found, the equivalent
1671  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1672  * region containing hva exists.
1673  */
1674 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1675 {
1676 	struct rb_node *node;
1677 
1678 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1679 		struct userspace_mem_region *region =
1680 			container_of(node, struct userspace_mem_region, hva_node);
1681 
1682 		if (hva >= region->host_mem) {
1683 			if (hva <= (region->host_mem
1684 				+ region->region.memory_size - 1))
1685 				return (vm_paddr_t)((uintptr_t)
1686 					region->region.guest_phys_addr
1687 					+ (hva - (uintptr_t)region->host_mem));
1688 
1689 			node = node->rb_right;
1690 		} else
1691 			node = node->rb_left;
1692 	}
1693 
1694 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1695 	return -1;
1696 }
1697 
1698 /*
1699  * Address VM physical to Host Virtual *alias*.
1700  *
1701  * Input Args:
1702  *   vm - Virtual Machine
1703  *   gpa - VM physical address
1704  *
1705  * Output Args: None
1706  *
1707  * Return:
1708  *   Equivalent address within the host virtual *alias* area, or NULL
1709  *   (without failing the test) if the guest memory is not shared (so
1710  *   no alias exists).
1711  *
1712  * Create a writable, shared virtual=>physical alias for the specific GPA.
1713  * The primary use case is to allow the host selftest to manipulate guest
1714  * memory without mapping said memory in the guest's address space. And, for
1715  * userfaultfd-based demand paging, to do so without triggering userfaults.
1716  */
1717 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1718 {
1719 	struct userspace_mem_region *region;
1720 	uintptr_t offset;
1721 
1722 	region = userspace_mem_region_find(vm, gpa, gpa);
1723 	if (!region)
1724 		return NULL;
1725 
1726 	if (!region->host_alias)
1727 		return NULL;
1728 
1729 	offset = gpa - region->region.guest_phys_addr;
1730 	return (void *) ((uintptr_t) region->host_alias + offset);
1731 }
1732 
1733 /* Create an interrupt controller chip for the specified VM. */
1734 void vm_create_irqchip(struct kvm_vm *vm)
1735 {
1736 	int r;
1737 
1738 	/*
1739 	 * Allocate a fully in-kernel IRQ chip by default, but fall back to a
1740 	 * split model (x86 only) if that fails (KVM x86 allows compiling out
1741 	 * support for KVM_CREATE_IRQCHIP).
1742 	 */
1743 	r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1744 	if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP))
1745 		vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24);
1746 	else
1747 		TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm);
1748 
1749 	vm->has_irqchip = true;
1750 }
1751 
1752 int _vcpu_run(struct kvm_vcpu *vcpu)
1753 {
1754 	int rc;
1755 
1756 	do {
1757 		rc = __vcpu_run(vcpu);
1758 	} while (rc == -1 && errno == EINTR);
1759 
1760 	if (!rc)
1761 		assert_on_unhandled_exception(vcpu);
1762 
1763 	return rc;
1764 }
1765 
1766 /*
1767  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1768  * Assert if the KVM returns an error (other than -EINTR).
1769  */
1770 void vcpu_run(struct kvm_vcpu *vcpu)
1771 {
1772 	int ret = _vcpu_run(vcpu);
1773 
1774 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1775 }
1776 
1777 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1778 {
1779 	int ret;
1780 
1781 	vcpu->run->immediate_exit = 1;
1782 	ret = __vcpu_run(vcpu);
1783 	vcpu->run->immediate_exit = 0;
1784 
1785 	TEST_ASSERT(ret == -1 && errno == EINTR,
1786 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1787 		    ret, errno);
1788 }
1789 
1790 /*
1791  * Get the list of guest registers which are supported for
1792  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1793  * it is the caller's responsibility to free the list.
1794  */
1795 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1796 {
1797 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1798 	int ret;
1799 
1800 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1801 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1802 
1803 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1804 	reg_list->n = reg_list_n.n;
1805 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1806 	return reg_list;
1807 }
1808 
1809 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1810 {
1811 	uint32_t page_size = getpagesize();
1812 	uint32_t size = vcpu->vm->dirty_ring_size;
1813 
1814 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1815 
1816 	if (!vcpu->dirty_gfns) {
1817 		void *addr;
1818 
1819 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1820 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1821 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1822 
1823 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1824 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1825 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1826 
1827 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1828 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1829 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1830 
1831 		vcpu->dirty_gfns = addr;
1832 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1833 	}
1834 
1835 	return vcpu->dirty_gfns;
1836 }
1837 
1838 /*
1839  * Device Ioctl
1840  */
1841 
1842 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1843 {
1844 	struct kvm_device_attr attribute = {
1845 		.group = group,
1846 		.attr = attr,
1847 		.flags = 0,
1848 	};
1849 
1850 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1851 }
1852 
1853 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1854 {
1855 	struct kvm_create_device create_dev = {
1856 		.type = type,
1857 		.flags = KVM_CREATE_DEVICE_TEST,
1858 	};
1859 
1860 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1861 }
1862 
1863 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1864 {
1865 	struct kvm_create_device create_dev = {
1866 		.type = type,
1867 		.fd = -1,
1868 		.flags = 0,
1869 	};
1870 	int err;
1871 
1872 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1873 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1874 	return err ? : create_dev.fd;
1875 }
1876 
1877 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1878 {
1879 	struct kvm_device_attr kvmattr = {
1880 		.group = group,
1881 		.attr = attr,
1882 		.flags = 0,
1883 		.addr = (uintptr_t)val,
1884 	};
1885 
1886 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1887 }
1888 
1889 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1890 {
1891 	struct kvm_device_attr kvmattr = {
1892 		.group = group,
1893 		.attr = attr,
1894 		.flags = 0,
1895 		.addr = (uintptr_t)val,
1896 	};
1897 
1898 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1899 }
1900 
1901 /*
1902  * IRQ related functions.
1903  */
1904 
1905 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1906 {
1907 	struct kvm_irq_level irq_level = {
1908 		.irq    = irq,
1909 		.level  = level,
1910 	};
1911 
1912 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1913 }
1914 
1915 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1916 {
1917 	int ret = _kvm_irq_line(vm, irq, level);
1918 
1919 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1920 }
1921 
1922 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1923 {
1924 	struct kvm_irq_routing *routing;
1925 	size_t size;
1926 
1927 	size = sizeof(struct kvm_irq_routing);
1928 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1929 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1930 	routing = calloc(1, size);
1931 	assert(routing);
1932 
1933 	return routing;
1934 }
1935 
1936 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1937 		uint32_t gsi, uint32_t pin)
1938 {
1939 	int i;
1940 
1941 	assert(routing);
1942 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1943 
1944 	i = routing->nr;
1945 	routing->entries[i].gsi = gsi;
1946 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1947 	routing->entries[i].flags = 0;
1948 	routing->entries[i].u.irqchip.irqchip = 0;
1949 	routing->entries[i].u.irqchip.pin = pin;
1950 	routing->nr++;
1951 }
1952 
1953 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1954 {
1955 	int ret;
1956 
1957 	assert(routing);
1958 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1959 	free(routing);
1960 
1961 	return ret;
1962 }
1963 
1964 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1965 {
1966 	int ret;
1967 
1968 	ret = _kvm_gsi_routing_write(vm, routing);
1969 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1970 }
1971 
1972 /*
1973  * VM Dump
1974  *
1975  * Input Args:
1976  *   vm - Virtual Machine
1977  *   indent - Left margin indent amount
1978  *
1979  * Output Args:
1980  *   stream - Output FILE stream
1981  *
1982  * Return: None
1983  *
1984  * Dumps the current state of the VM given by vm, to the FILE stream
1985  * given by stream.
1986  */
1987 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1988 {
1989 	int ctr;
1990 	struct userspace_mem_region *region;
1991 	struct kvm_vcpu *vcpu;
1992 
1993 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1994 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1995 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1996 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1997 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1998 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1999 			"host_virt: %p\n", indent + 2, "",
2000 			(uint64_t) region->region.guest_phys_addr,
2001 			(uint64_t) region->region.memory_size,
2002 			region->host_mem);
2003 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2004 		sparsebit_dump(stream, region->unused_phy_pages, 0);
2005 		if (region->protected_phy_pages) {
2006 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
2007 			sparsebit_dump(stream, region->protected_phy_pages, 0);
2008 		}
2009 	}
2010 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2011 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2012 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
2013 		vm->pgd_created);
2014 	if (vm->pgd_created) {
2015 		fprintf(stream, "%*sVirtual Translation Tables:\n",
2016 			indent + 2, "");
2017 		virt_dump(stream, vm, indent + 4);
2018 	}
2019 	fprintf(stream, "%*sVCPUs:\n", indent, "");
2020 
2021 	list_for_each_entry(vcpu, &vm->vcpus, list)
2022 		vcpu_dump(stream, vcpu, indent + 2);
2023 }
2024 
2025 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
2026 
2027 /* Known KVM exit reasons */
2028 static struct exit_reason {
2029 	unsigned int reason;
2030 	const char *name;
2031 } exit_reasons_known[] = {
2032 	KVM_EXIT_STRING(UNKNOWN),
2033 	KVM_EXIT_STRING(EXCEPTION),
2034 	KVM_EXIT_STRING(IO),
2035 	KVM_EXIT_STRING(HYPERCALL),
2036 	KVM_EXIT_STRING(DEBUG),
2037 	KVM_EXIT_STRING(HLT),
2038 	KVM_EXIT_STRING(MMIO),
2039 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2040 	KVM_EXIT_STRING(SHUTDOWN),
2041 	KVM_EXIT_STRING(FAIL_ENTRY),
2042 	KVM_EXIT_STRING(INTR),
2043 	KVM_EXIT_STRING(SET_TPR),
2044 	KVM_EXIT_STRING(TPR_ACCESS),
2045 	KVM_EXIT_STRING(S390_SIEIC),
2046 	KVM_EXIT_STRING(S390_RESET),
2047 	KVM_EXIT_STRING(DCR),
2048 	KVM_EXIT_STRING(NMI),
2049 	KVM_EXIT_STRING(INTERNAL_ERROR),
2050 	KVM_EXIT_STRING(OSI),
2051 	KVM_EXIT_STRING(PAPR_HCALL),
2052 	KVM_EXIT_STRING(S390_UCONTROL),
2053 	KVM_EXIT_STRING(WATCHDOG),
2054 	KVM_EXIT_STRING(S390_TSCH),
2055 	KVM_EXIT_STRING(EPR),
2056 	KVM_EXIT_STRING(SYSTEM_EVENT),
2057 	KVM_EXIT_STRING(S390_STSI),
2058 	KVM_EXIT_STRING(IOAPIC_EOI),
2059 	KVM_EXIT_STRING(HYPERV),
2060 	KVM_EXIT_STRING(ARM_NISV),
2061 	KVM_EXIT_STRING(X86_RDMSR),
2062 	KVM_EXIT_STRING(X86_WRMSR),
2063 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2064 	KVM_EXIT_STRING(AP_RESET_HOLD),
2065 	KVM_EXIT_STRING(X86_BUS_LOCK),
2066 	KVM_EXIT_STRING(XEN),
2067 	KVM_EXIT_STRING(RISCV_SBI),
2068 	KVM_EXIT_STRING(RISCV_CSR),
2069 	KVM_EXIT_STRING(NOTIFY),
2070 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2071 	KVM_EXIT_STRING(MEMORY_FAULT),
2072 };
2073 
2074 /*
2075  * Exit Reason String
2076  *
2077  * Input Args:
2078  *   exit_reason - Exit reason
2079  *
2080  * Output Args: None
2081  *
2082  * Return:
2083  *   Constant string pointer describing the exit reason.
2084  *
2085  * Locates and returns a constant string that describes the KVM exit
2086  * reason given by exit_reason.  If no such string is found, a constant
2087  * string of "Unknown" is returned.
2088  */
2089 const char *exit_reason_str(unsigned int exit_reason)
2090 {
2091 	unsigned int n1;
2092 
2093 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2094 		if (exit_reason == exit_reasons_known[n1].reason)
2095 			return exit_reasons_known[n1].name;
2096 	}
2097 
2098 	return "Unknown";
2099 }
2100 
2101 /*
2102  * Physical Contiguous Page Allocator
2103  *
2104  * Input Args:
2105  *   vm - Virtual Machine
2106  *   num - number of pages
2107  *   paddr_min - Physical address minimum
2108  *   memslot - Memory region to allocate page from
2109  *   protected - True if the pages will be used as protected/private memory
2110  *
2111  * Output Args: None
2112  *
2113  * Return:
2114  *   Starting physical address
2115  *
2116  * Within the VM specified by vm, locates a range of available physical
2117  * pages at or above paddr_min. If found, the pages are marked as in use
2118  * and their base address is returned. A TEST_ASSERT failure occurs if
2119  * not enough pages are available at or above paddr_min.
2120  */
2121 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2122 				vm_paddr_t paddr_min, uint32_t memslot,
2123 				bool protected)
2124 {
2125 	struct userspace_mem_region *region;
2126 	sparsebit_idx_t pg, base;
2127 
2128 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2129 
2130 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2131 		"not divisible by page size.\n"
2132 		"  paddr_min: 0x%lx page_size: 0x%x",
2133 		paddr_min, vm->page_size);
2134 
2135 	region = memslot2region(vm, memslot);
2136 	TEST_ASSERT(!protected || region->protected_phy_pages,
2137 		    "Region doesn't support protected memory");
2138 
2139 	base = pg = paddr_min >> vm->page_shift;
2140 	do {
2141 		for (; pg < base + num; ++pg) {
2142 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2143 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2144 				break;
2145 			}
2146 		}
2147 	} while (pg && pg != base + num);
2148 
2149 	if (pg == 0) {
2150 		fprintf(stderr, "No guest physical page available, "
2151 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2152 			paddr_min, vm->page_size, memslot);
2153 		fputs("---- vm dump ----\n", stderr);
2154 		vm_dump(stderr, vm, 2);
2155 		abort();
2156 	}
2157 
2158 	for (pg = base; pg < base + num; ++pg) {
2159 		sparsebit_clear(region->unused_phy_pages, pg);
2160 		if (protected)
2161 			sparsebit_set(region->protected_phy_pages, pg);
2162 	}
2163 
2164 	return base * vm->page_size;
2165 }
2166 
2167 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2168 			     uint32_t memslot)
2169 {
2170 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2171 }
2172 
2173 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2174 {
2175 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2176 				 vm->memslots[MEM_REGION_PT]);
2177 }
2178 
2179 /*
2180  * Address Guest Virtual to Host Virtual
2181  *
2182  * Input Args:
2183  *   vm - Virtual Machine
2184  *   gva - VM virtual address
2185  *
2186  * Output Args: None
2187  *
2188  * Return:
2189  *   Equivalent host virtual address
2190  */
2191 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2192 {
2193 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2194 }
2195 
2196 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2197 {
2198 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2199 }
2200 
2201 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2202 				      unsigned int page_shift,
2203 				      unsigned int new_page_shift,
2204 				      bool ceil)
2205 {
2206 	unsigned int n = 1 << (new_page_shift - page_shift);
2207 
2208 	if (page_shift >= new_page_shift)
2209 		return num_pages * (1 << (page_shift - new_page_shift));
2210 
2211 	return num_pages / n + !!(ceil && num_pages % n);
2212 }
2213 
2214 static inline int getpageshift(void)
2215 {
2216 	return __builtin_ffs(getpagesize()) - 1;
2217 }
2218 
2219 unsigned int
2220 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2221 {
2222 	return vm_calc_num_pages(num_guest_pages,
2223 				 vm_guest_mode_params[mode].page_shift,
2224 				 getpageshift(), true);
2225 }
2226 
2227 unsigned int
2228 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2229 {
2230 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2231 				 vm_guest_mode_params[mode].page_shift, false);
2232 }
2233 
2234 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2235 {
2236 	unsigned int n;
2237 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2238 	return vm_adjust_num_guest_pages(mode, n);
2239 }
2240 
2241 /*
2242  * Read binary stats descriptors
2243  *
2244  * Input Args:
2245  *   stats_fd - the file descriptor for the binary stats file from which to read
2246  *   header - the binary stats metadata header corresponding to the given FD
2247  *
2248  * Output Args: None
2249  *
2250  * Return:
2251  *   A pointer to a newly allocated series of stat descriptors.
2252  *   Caller is responsible for freeing the returned kvm_stats_desc.
2253  *
2254  * Read the stats descriptors from the binary stats interface.
2255  */
2256 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2257 					      struct kvm_stats_header *header)
2258 {
2259 	struct kvm_stats_desc *stats_desc;
2260 	ssize_t desc_size, total_size, ret;
2261 
2262 	desc_size = get_stats_descriptor_size(header);
2263 	total_size = header->num_desc * desc_size;
2264 
2265 	stats_desc = calloc(header->num_desc, desc_size);
2266 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2267 
2268 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2269 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2270 
2271 	return stats_desc;
2272 }
2273 
2274 /*
2275  * Read stat data for a particular stat
2276  *
2277  * Input Args:
2278  *   stats_fd - the file descriptor for the binary stats file from which to read
2279  *   header - the binary stats metadata header corresponding to the given FD
2280  *   desc - the binary stat metadata for the particular stat to be read
2281  *   max_elements - the maximum number of 8-byte values to read into data
2282  *
2283  * Output Args:
2284  *   data - the buffer into which stat data should be read
2285  *
2286  * Read the data values of a specified stat from the binary stats interface.
2287  */
2288 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2289 		    struct kvm_stats_desc *desc, uint64_t *data,
2290 		    size_t max_elements)
2291 {
2292 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2293 	size_t size = nr_elements * sizeof(*data);
2294 	ssize_t ret;
2295 
2296 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2297 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2298 
2299 	ret = pread(stats_fd, data, size,
2300 		    header->data_offset + desc->offset);
2301 
2302 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2303 		    desc->name, errno, strerror(errno));
2304 	TEST_ASSERT(ret == size,
2305 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2306 		    desc->name, size, ret);
2307 }
2308 
2309 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2310 		  uint64_t *data, size_t max_elements)
2311 {
2312 	struct kvm_stats_desc *desc;
2313 	size_t size_desc;
2314 	int i;
2315 
2316 	if (!stats->desc) {
2317 		read_stats_header(stats->fd, &stats->header);
2318 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2319 	}
2320 
2321 	size_desc = get_stats_descriptor_size(&stats->header);
2322 
2323 	for (i = 0; i < stats->header.num_desc; ++i) {
2324 		desc = (void *)stats->desc + (i * size_desc);
2325 
2326 		if (strcmp(desc->name, name))
2327 			continue;
2328 
2329 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2330 		return;
2331 	}
2332 
2333 	TEST_FAIL("Unable to find stat '%s'", name);
2334 }
2335 
2336 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
2337 {
2338 }
2339 
2340 __weak void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
2341 {
2342 }
2343 
2344 __weak void kvm_arch_vm_release(struct kvm_vm *vm)
2345 {
2346 }
2347 
2348 __weak void kvm_selftest_arch_init(void)
2349 {
2350 }
2351 
2352 void __attribute((constructor)) kvm_selftest_init(void)
2353 {
2354 	/* Tell stdout not to buffer its content. */
2355 	setbuf(stdout, NULL);
2356 
2357 	guest_random_seed = last_guest_seed = random();
2358 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2359 
2360 	kvm_selftest_arch_init();
2361 }
2362 
2363 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2364 {
2365 	sparsebit_idx_t pg = 0;
2366 	struct userspace_mem_region *region;
2367 
2368 	if (!vm_arch_has_protected_memory(vm))
2369 		return false;
2370 
2371 	region = userspace_mem_region_find(vm, paddr, paddr);
2372 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2373 
2374 	pg = paddr >> vm->page_shift;
2375 	return sparsebit_is_set(region->protected_phy_pages, pg);
2376 }
2377