1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "processor.h" 12 13 #include <assert.h> 14 #include <sched.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 int open_path_or_exit(const char *path, int flags) 26 { 27 int fd; 28 29 fd = open(path, flags); 30 __TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno); 31 32 return fd; 33 } 34 35 /* 36 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 37 * 38 * Input Args: 39 * flags - The flags to pass when opening KVM_DEV_PATH. 40 * 41 * Return: 42 * The opened file descriptor of /dev/kvm. 43 */ 44 static int _open_kvm_dev_path_or_exit(int flags) 45 { 46 return open_path_or_exit(KVM_DEV_PATH, flags); 47 } 48 49 int open_kvm_dev_path_or_exit(void) 50 { 51 return _open_kvm_dev_path_or_exit(O_RDONLY); 52 } 53 54 static bool get_module_param_bool(const char *module_name, const char *param) 55 { 56 const int path_size = 128; 57 char path[path_size]; 58 char value; 59 ssize_t r; 60 int fd; 61 62 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s", 63 module_name, param); 64 TEST_ASSERT(r < path_size, 65 "Failed to construct sysfs path in %d bytes.", path_size); 66 67 fd = open_path_or_exit(path, O_RDONLY); 68 69 r = read(fd, &value, 1); 70 TEST_ASSERT(r == 1, "read(%s) failed", path); 71 72 r = close(fd); 73 TEST_ASSERT(!r, "close(%s) failed", path); 74 75 if (value == 'Y') 76 return true; 77 else if (value == 'N') 78 return false; 79 80 TEST_FAIL("Unrecognized value '%c' for boolean module param", value); 81 } 82 83 bool get_kvm_param_bool(const char *param) 84 { 85 return get_module_param_bool("kvm", param); 86 } 87 88 bool get_kvm_intel_param_bool(const char *param) 89 { 90 return get_module_param_bool("kvm_intel", param); 91 } 92 93 bool get_kvm_amd_param_bool(const char *param) 94 { 95 return get_module_param_bool("kvm_amd", param); 96 } 97 98 /* 99 * Capability 100 * 101 * Input Args: 102 * cap - Capability 103 * 104 * Output Args: None 105 * 106 * Return: 107 * On success, the Value corresponding to the capability (KVM_CAP_*) 108 * specified by the value of cap. On failure a TEST_ASSERT failure 109 * is produced. 110 * 111 * Looks up and returns the value corresponding to the capability 112 * (KVM_CAP_*) given by cap. 113 */ 114 unsigned int kvm_check_cap(long cap) 115 { 116 int ret; 117 int kvm_fd; 118 119 kvm_fd = open_kvm_dev_path_or_exit(); 120 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap); 121 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 122 123 close(kvm_fd); 124 125 return (unsigned int)ret; 126 } 127 128 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 129 { 130 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL)) 131 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size); 132 else 133 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size); 134 vm->dirty_ring_size = ring_size; 135 } 136 137 static void vm_open(struct kvm_vm *vm) 138 { 139 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR); 140 141 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT)); 142 143 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type); 144 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd)); 145 } 146 147 const char *vm_guest_mode_string(uint32_t i) 148 { 149 static const char * const strings[] = { 150 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 151 [VM_MODE_P52V48_16K] = "PA-bits:52, VA-bits:48, 16K pages", 152 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 153 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 154 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 155 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 156 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 157 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 158 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 159 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 160 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 161 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 162 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 163 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 164 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 165 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 166 }; 167 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 168 "Missing new mode strings?"); 169 170 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 171 172 return strings[i]; 173 } 174 175 const struct vm_guest_mode_params vm_guest_mode_params[] = { 176 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 177 [VM_MODE_P52V48_16K] = { 52, 48, 0x4000, 14 }, 178 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 179 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 180 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 181 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 182 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 183 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 184 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 185 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 186 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 187 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 188 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 189 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 190 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 191 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 192 }; 193 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 194 "Missing new mode params?"); 195 196 /* 197 * Initializes vm->vpages_valid to match the canonical VA space of the 198 * architecture. 199 * 200 * The default implementation is valid for architectures which split the 201 * range addressed by a single page table into a low and high region 202 * based on the MSB of the VA. On architectures with this behavior 203 * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1]. 204 */ 205 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm) 206 { 207 sparsebit_set_num(vm->vpages_valid, 208 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 209 sparsebit_set_num(vm->vpages_valid, 210 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 211 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 212 } 213 214 struct kvm_vm *____vm_create(struct vm_shape shape) 215 { 216 struct kvm_vm *vm; 217 218 vm = calloc(1, sizeof(*vm)); 219 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 220 221 INIT_LIST_HEAD(&vm->vcpus); 222 vm->regions.gpa_tree = RB_ROOT; 223 vm->regions.hva_tree = RB_ROOT; 224 hash_init(vm->regions.slot_hash); 225 226 vm->mode = shape.mode; 227 vm->type = shape.type; 228 229 vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits; 230 vm->va_bits = vm_guest_mode_params[vm->mode].va_bits; 231 vm->page_size = vm_guest_mode_params[vm->mode].page_size; 232 vm->page_shift = vm_guest_mode_params[vm->mode].page_shift; 233 234 /* Setup mode specific traits. */ 235 switch (vm->mode) { 236 case VM_MODE_P52V48_4K: 237 vm->pgtable_levels = 4; 238 break; 239 case VM_MODE_P52V48_64K: 240 vm->pgtable_levels = 3; 241 break; 242 case VM_MODE_P48V48_4K: 243 vm->pgtable_levels = 4; 244 break; 245 case VM_MODE_P48V48_64K: 246 vm->pgtable_levels = 3; 247 break; 248 case VM_MODE_P40V48_4K: 249 case VM_MODE_P36V48_4K: 250 vm->pgtable_levels = 4; 251 break; 252 case VM_MODE_P40V48_64K: 253 case VM_MODE_P36V48_64K: 254 vm->pgtable_levels = 3; 255 break; 256 case VM_MODE_P52V48_16K: 257 case VM_MODE_P48V48_16K: 258 case VM_MODE_P40V48_16K: 259 case VM_MODE_P36V48_16K: 260 vm->pgtable_levels = 4; 261 break; 262 case VM_MODE_P36V47_16K: 263 vm->pgtable_levels = 3; 264 break; 265 case VM_MODE_PXXV48_4K: 266 #ifdef __x86_64__ 267 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 268 /* 269 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 270 * it doesn't take effect unless a CR4.LA57 is set, which it 271 * isn't for this mode (48-bit virtual address space). 272 */ 273 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 274 "Linear address width (%d bits) not supported", 275 vm->va_bits); 276 pr_debug("Guest physical address width detected: %d\n", 277 vm->pa_bits); 278 vm->pgtable_levels = 4; 279 vm->va_bits = 48; 280 #else 281 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 282 #endif 283 break; 284 case VM_MODE_P47V64_4K: 285 vm->pgtable_levels = 5; 286 break; 287 case VM_MODE_P44V64_4K: 288 vm->pgtable_levels = 5; 289 break; 290 default: 291 TEST_FAIL("Unknown guest mode: 0x%x", vm->mode); 292 } 293 294 #ifdef __aarch64__ 295 TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types"); 296 if (vm->pa_bits != 40) 297 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 298 #endif 299 300 vm_open(vm); 301 302 /* Limit to VA-bit canonical virtual addresses. */ 303 vm->vpages_valid = sparsebit_alloc(); 304 vm_vaddr_populate_bitmap(vm); 305 306 /* Limit physical addresses to PA-bits. */ 307 vm->max_gfn = vm_compute_max_gfn(vm); 308 309 /* Allocate and setup memory for guest. */ 310 vm->vpages_mapped = sparsebit_alloc(); 311 312 return vm; 313 } 314 315 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode, 316 uint32_t nr_runnable_vcpus, 317 uint64_t extra_mem_pages) 318 { 319 uint64_t page_size = vm_guest_mode_params[mode].page_size; 320 uint64_t nr_pages; 321 322 TEST_ASSERT(nr_runnable_vcpus, 323 "Use vm_create_barebones() for VMs that _never_ have vCPUs\n"); 324 325 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 326 "nr_vcpus = %d too large for host, max-vcpus = %d", 327 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 328 329 /* 330 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the 331 * test code and other per-VM assets that will be loaded into memslot0. 332 */ 333 nr_pages = 512; 334 335 /* Account for the per-vCPU stacks on behalf of the test. */ 336 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS; 337 338 /* 339 * Account for the number of pages needed for the page tables. The 340 * maximum page table size for a memory region will be when the 341 * smallest page size is used. Considering each page contains x page 342 * table descriptors, the total extra size for page tables (for extra 343 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 344 * than N/x*2. 345 */ 346 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2; 347 348 /* Account for the number of pages needed by ucall. */ 349 nr_pages += ucall_nr_pages_required(page_size); 350 351 return vm_adjust_num_guest_pages(mode, nr_pages); 352 } 353 354 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 355 uint64_t nr_extra_pages) 356 { 357 uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus, 358 nr_extra_pages); 359 struct userspace_mem_region *slot0; 360 struct kvm_vm *vm; 361 int i; 362 363 pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__, 364 vm_guest_mode_string(shape.mode), shape.type, nr_pages); 365 366 vm = ____vm_create(shape); 367 368 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0); 369 for (i = 0; i < NR_MEM_REGIONS; i++) 370 vm->memslots[i] = 0; 371 372 kvm_vm_elf_load(vm, program_invocation_name); 373 374 /* 375 * TODO: Add proper defines to protect the library's memslots, and then 376 * carve out memslot1 for the ucall MMIO address. KVM treats writes to 377 * read-only memslots as MMIO, and creating a read-only memslot for the 378 * MMIO region would prevent silently clobbering the MMIO region. 379 */ 380 slot0 = memslot2region(vm, 0); 381 ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size); 382 383 kvm_arch_vm_post_create(vm); 384 385 return vm; 386 } 387 388 /* 389 * VM Create with customized parameters 390 * 391 * Input Args: 392 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 393 * nr_vcpus - VCPU count 394 * extra_mem_pages - Non-slot0 physical memory total size 395 * guest_code - Guest entry point 396 * vcpuids - VCPU IDs 397 * 398 * Output Args: None 399 * 400 * Return: 401 * Pointer to opaque structure that describes the created VM. 402 * 403 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 404 * extra_mem_pages is only used to calculate the maximum page table size, 405 * no real memory allocation for non-slot0 memory in this function. 406 */ 407 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 408 uint64_t extra_mem_pages, 409 void *guest_code, struct kvm_vcpu *vcpus[]) 410 { 411 struct kvm_vm *vm; 412 int i; 413 414 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array"); 415 416 vm = __vm_create(shape, nr_vcpus, extra_mem_pages); 417 418 for (i = 0; i < nr_vcpus; ++i) 419 vcpus[i] = vm_vcpu_add(vm, i, guest_code); 420 421 return vm; 422 } 423 424 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 425 struct kvm_vcpu **vcpu, 426 uint64_t extra_mem_pages, 427 void *guest_code) 428 { 429 struct kvm_vcpu *vcpus[1]; 430 struct kvm_vm *vm; 431 432 vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus); 433 434 *vcpu = vcpus[0]; 435 return vm; 436 } 437 438 /* 439 * VM Restart 440 * 441 * Input Args: 442 * vm - VM that has been released before 443 * 444 * Output Args: None 445 * 446 * Reopens the file descriptors associated to the VM and reinstates the 447 * global state, such as the irqchip and the memory regions that are mapped 448 * into the guest. 449 */ 450 void kvm_vm_restart(struct kvm_vm *vmp) 451 { 452 int ctr; 453 struct userspace_mem_region *region; 454 455 vm_open(vmp); 456 if (vmp->has_irqchip) 457 vm_create_irqchip(vmp); 458 459 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 460 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 461 462 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 463 " rc: %i errno: %i\n" 464 " slot: %u flags: 0x%x\n" 465 " guest_phys_addr: 0x%llx size: 0x%llx", 466 ret, errno, region->region.slot, 467 region->region.flags, 468 region->region.guest_phys_addr, 469 region->region.memory_size); 470 } 471 } 472 473 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, 474 uint32_t vcpu_id) 475 { 476 return __vm_vcpu_add(vm, vcpu_id); 477 } 478 479 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm) 480 { 481 kvm_vm_restart(vm); 482 483 return vm_vcpu_recreate(vm, 0); 484 } 485 486 void kvm_pin_this_task_to_pcpu(uint32_t pcpu) 487 { 488 cpu_set_t mask; 489 int r; 490 491 CPU_ZERO(&mask); 492 CPU_SET(pcpu, &mask); 493 r = sched_setaffinity(0, sizeof(mask), &mask); 494 TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu); 495 } 496 497 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask) 498 { 499 uint32_t pcpu = atoi_non_negative("CPU number", cpu_str); 500 501 TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask), 502 "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu); 503 return pcpu; 504 } 505 506 void kvm_print_vcpu_pinning_help(void) 507 { 508 const char *name = program_invocation_name; 509 510 printf(" -c: Pin tasks to physical CPUs. Takes a list of comma separated\n" 511 " values (target pCPU), one for each vCPU, plus an optional\n" 512 " entry for the main application task (specified via entry\n" 513 " <nr_vcpus + 1>). If used, entries must be provided for all\n" 514 " vCPUs, i.e. pinning vCPUs is all or nothing.\n\n" 515 " E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n" 516 " vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n" 517 " %s -v 3 -c 22,23,24,50\n\n" 518 " To leave the application task unpinned, drop the final entry:\n\n" 519 " %s -v 3 -c 22,23,24\n\n" 520 " (default: no pinning)\n", name, name); 521 } 522 523 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 524 int nr_vcpus) 525 { 526 cpu_set_t allowed_mask; 527 char *cpu, *cpu_list; 528 char delim[2] = ","; 529 int i, r; 530 531 cpu_list = strdup(pcpus_string); 532 TEST_ASSERT(cpu_list, "strdup() allocation failed.\n"); 533 534 r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask); 535 TEST_ASSERT(!r, "sched_getaffinity() failed"); 536 537 cpu = strtok(cpu_list, delim); 538 539 /* 1. Get all pcpus for vcpus. */ 540 for (i = 0; i < nr_vcpus; i++) { 541 TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i); 542 vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask); 543 cpu = strtok(NULL, delim); 544 } 545 546 /* 2. Check if the main worker needs to be pinned. */ 547 if (cpu) { 548 kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask)); 549 cpu = strtok(NULL, delim); 550 } 551 552 TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu); 553 free(cpu_list); 554 } 555 556 /* 557 * Userspace Memory Region Find 558 * 559 * Input Args: 560 * vm - Virtual Machine 561 * start - Starting VM physical address 562 * end - Ending VM physical address, inclusive. 563 * 564 * Output Args: None 565 * 566 * Return: 567 * Pointer to overlapping region, NULL if no such region. 568 * 569 * Searches for a region with any physical memory that overlaps with 570 * any portion of the guest physical addresses from start to end 571 * inclusive. If multiple overlapping regions exist, a pointer to any 572 * of the regions is returned. Null is returned only when no overlapping 573 * region exists. 574 */ 575 static struct userspace_mem_region * 576 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 577 { 578 struct rb_node *node; 579 580 for (node = vm->regions.gpa_tree.rb_node; node; ) { 581 struct userspace_mem_region *region = 582 container_of(node, struct userspace_mem_region, gpa_node); 583 uint64_t existing_start = region->region.guest_phys_addr; 584 uint64_t existing_end = region->region.guest_phys_addr 585 + region->region.memory_size - 1; 586 if (start <= existing_end && end >= existing_start) 587 return region; 588 589 if (start < existing_start) 590 node = node->rb_left; 591 else 592 node = node->rb_right; 593 } 594 595 return NULL; 596 } 597 598 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu) 599 { 600 601 } 602 603 /* 604 * VM VCPU Remove 605 * 606 * Input Args: 607 * vcpu - VCPU to remove 608 * 609 * Output Args: None 610 * 611 * Return: None, TEST_ASSERT failures for all error conditions 612 * 613 * Removes a vCPU from a VM and frees its resources. 614 */ 615 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 616 { 617 int ret; 618 619 if (vcpu->dirty_gfns) { 620 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 621 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 622 vcpu->dirty_gfns = NULL; 623 } 624 625 ret = munmap(vcpu->run, vcpu_mmap_sz()); 626 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 627 628 ret = close(vcpu->fd); 629 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 630 631 list_del(&vcpu->list); 632 633 vcpu_arch_free(vcpu); 634 free(vcpu); 635 } 636 637 void kvm_vm_release(struct kvm_vm *vmp) 638 { 639 struct kvm_vcpu *vcpu, *tmp; 640 int ret; 641 642 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 643 vm_vcpu_rm(vmp, vcpu); 644 645 ret = close(vmp->fd); 646 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 647 648 ret = close(vmp->kvm_fd); 649 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret)); 650 } 651 652 static void __vm_mem_region_delete(struct kvm_vm *vm, 653 struct userspace_mem_region *region, 654 bool unlink) 655 { 656 int ret; 657 658 if (unlink) { 659 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 660 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 661 hash_del(®ion->slot_node); 662 } 663 664 region->region.memory_size = 0; 665 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 666 667 sparsebit_free(®ion->unused_phy_pages); 668 ret = munmap(region->mmap_start, region->mmap_size); 669 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 670 if (region->fd >= 0) { 671 /* There's an extra map when using shared memory. */ 672 ret = munmap(region->mmap_alias, region->mmap_size); 673 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret)); 674 close(region->fd); 675 } 676 if (region->region.guest_memfd >= 0) 677 close(region->region.guest_memfd); 678 679 free(region); 680 } 681 682 /* 683 * Destroys and frees the VM pointed to by vmp. 684 */ 685 void kvm_vm_free(struct kvm_vm *vmp) 686 { 687 int ctr; 688 struct hlist_node *node; 689 struct userspace_mem_region *region; 690 691 if (vmp == NULL) 692 return; 693 694 /* Free cached stats metadata and close FD */ 695 if (vmp->stats_fd) { 696 free(vmp->stats_desc); 697 close(vmp->stats_fd); 698 } 699 700 /* Free userspace_mem_regions. */ 701 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 702 __vm_mem_region_delete(vmp, region, false); 703 704 /* Free sparsebit arrays. */ 705 sparsebit_free(&vmp->vpages_valid); 706 sparsebit_free(&vmp->vpages_mapped); 707 708 kvm_vm_release(vmp); 709 710 /* Free the structure describing the VM. */ 711 free(vmp); 712 } 713 714 int kvm_memfd_alloc(size_t size, bool hugepages) 715 { 716 int memfd_flags = MFD_CLOEXEC; 717 int fd, r; 718 719 if (hugepages) 720 memfd_flags |= MFD_HUGETLB; 721 722 fd = memfd_create("kvm_selftest", memfd_flags); 723 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd)); 724 725 r = ftruncate(fd, size); 726 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r)); 727 728 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size); 729 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); 730 731 return fd; 732 } 733 734 /* 735 * Memory Compare, host virtual to guest virtual 736 * 737 * Input Args: 738 * hva - Starting host virtual address 739 * vm - Virtual Machine 740 * gva - Starting guest virtual address 741 * len - number of bytes to compare 742 * 743 * Output Args: None 744 * 745 * Input/Output Args: None 746 * 747 * Return: 748 * Returns 0 if the bytes starting at hva for a length of len 749 * are equal the guest virtual bytes starting at gva. Returns 750 * a value < 0, if bytes at hva are less than those at gva. 751 * Otherwise a value > 0 is returned. 752 * 753 * Compares the bytes starting at the host virtual address hva, for 754 * a length of len, to the guest bytes starting at the guest virtual 755 * address given by gva. 756 */ 757 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 758 { 759 size_t amt; 760 761 /* 762 * Compare a batch of bytes until either a match is found 763 * or all the bytes have been compared. 764 */ 765 for (uintptr_t offset = 0; offset < len; offset += amt) { 766 uintptr_t ptr1 = (uintptr_t)hva + offset; 767 768 /* 769 * Determine host address for guest virtual address 770 * at offset. 771 */ 772 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 773 774 /* 775 * Determine amount to compare on this pass. 776 * Don't allow the comparsion to cross a page boundary. 777 */ 778 amt = len - offset; 779 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 780 amt = vm->page_size - (ptr1 % vm->page_size); 781 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 782 amt = vm->page_size - (ptr2 % vm->page_size); 783 784 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 785 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 786 787 /* 788 * Perform the comparison. If there is a difference 789 * return that result to the caller, otherwise need 790 * to continue on looking for a mismatch. 791 */ 792 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 793 if (ret != 0) 794 return ret; 795 } 796 797 /* 798 * No mismatch found. Let the caller know the two memory 799 * areas are equal. 800 */ 801 return 0; 802 } 803 804 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 805 struct userspace_mem_region *region) 806 { 807 struct rb_node **cur, *parent; 808 809 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 810 struct userspace_mem_region *cregion; 811 812 cregion = container_of(*cur, typeof(*cregion), gpa_node); 813 parent = *cur; 814 if (region->region.guest_phys_addr < 815 cregion->region.guest_phys_addr) 816 cur = &(*cur)->rb_left; 817 else { 818 TEST_ASSERT(region->region.guest_phys_addr != 819 cregion->region.guest_phys_addr, 820 "Duplicate GPA in region tree"); 821 822 cur = &(*cur)->rb_right; 823 } 824 } 825 826 rb_link_node(®ion->gpa_node, parent, cur); 827 rb_insert_color(®ion->gpa_node, gpa_tree); 828 } 829 830 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 831 struct userspace_mem_region *region) 832 { 833 struct rb_node **cur, *parent; 834 835 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 836 struct userspace_mem_region *cregion; 837 838 cregion = container_of(*cur, typeof(*cregion), hva_node); 839 parent = *cur; 840 if (region->host_mem < cregion->host_mem) 841 cur = &(*cur)->rb_left; 842 else { 843 TEST_ASSERT(region->host_mem != 844 cregion->host_mem, 845 "Duplicate HVA in region tree"); 846 847 cur = &(*cur)->rb_right; 848 } 849 } 850 851 rb_link_node(®ion->hva_node, parent, cur); 852 rb_insert_color(®ion->hva_node, hva_tree); 853 } 854 855 856 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 857 uint64_t gpa, uint64_t size, void *hva) 858 { 859 struct kvm_userspace_memory_region region = { 860 .slot = slot, 861 .flags = flags, 862 .guest_phys_addr = gpa, 863 .memory_size = size, 864 .userspace_addr = (uintptr_t)hva, 865 }; 866 867 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion); 868 } 869 870 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 871 uint64_t gpa, uint64_t size, void *hva) 872 { 873 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva); 874 875 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)", 876 errno, strerror(errno)); 877 } 878 879 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 880 uint64_t gpa, uint64_t size, void *hva, 881 uint32_t guest_memfd, uint64_t guest_memfd_offset) 882 { 883 struct kvm_userspace_memory_region2 region = { 884 .slot = slot, 885 .flags = flags, 886 .guest_phys_addr = gpa, 887 .memory_size = size, 888 .userspace_addr = (uintptr_t)hva, 889 .guest_memfd = guest_memfd, 890 .guest_memfd_offset = guest_memfd_offset, 891 }; 892 893 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, ®ion); 894 } 895 896 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 897 uint64_t gpa, uint64_t size, void *hva, 898 uint32_t guest_memfd, uint64_t guest_memfd_offset) 899 { 900 int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva, 901 guest_memfd, guest_memfd_offset); 902 903 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)", 904 errno, strerror(errno)); 905 } 906 907 908 /* FIXME: This thing needs to be ripped apart and rewritten. */ 909 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 910 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 911 uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset) 912 { 913 int ret; 914 struct userspace_mem_region *region; 915 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 916 size_t mem_size = npages * vm->page_size; 917 size_t alignment; 918 919 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 920 "Number of guest pages is not compatible with the host. " 921 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 922 923 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 924 "address not on a page boundary.\n" 925 " guest_paddr: 0x%lx vm->page_size: 0x%x", 926 guest_paddr, vm->page_size); 927 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 928 <= vm->max_gfn, "Physical range beyond maximum " 929 "supported physical address,\n" 930 " guest_paddr: 0x%lx npages: 0x%lx\n" 931 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 932 guest_paddr, npages, vm->max_gfn, vm->page_size); 933 934 /* 935 * Confirm a mem region with an overlapping address doesn't 936 * already exist. 937 */ 938 region = (struct userspace_mem_region *) userspace_mem_region_find( 939 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 940 if (region != NULL) 941 TEST_FAIL("overlapping userspace_mem_region already " 942 "exists\n" 943 " requested guest_paddr: 0x%lx npages: 0x%lx " 944 "page_size: 0x%x\n" 945 " existing guest_paddr: 0x%lx size: 0x%lx", 946 guest_paddr, npages, vm->page_size, 947 (uint64_t) region->region.guest_phys_addr, 948 (uint64_t) region->region.memory_size); 949 950 /* Confirm no region with the requested slot already exists. */ 951 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 952 slot) { 953 if (region->region.slot != slot) 954 continue; 955 956 TEST_FAIL("A mem region with the requested slot " 957 "already exists.\n" 958 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 959 " existing slot: %u paddr: 0x%lx size: 0x%lx", 960 slot, guest_paddr, npages, 961 region->region.slot, 962 (uint64_t) region->region.guest_phys_addr, 963 (uint64_t) region->region.memory_size); 964 } 965 966 /* Allocate and initialize new mem region structure. */ 967 region = calloc(1, sizeof(*region)); 968 TEST_ASSERT(region != NULL, "Insufficient Memory"); 969 region->mmap_size = mem_size; 970 971 #ifdef __s390x__ 972 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 973 alignment = 0x100000; 974 #else 975 alignment = 1; 976 #endif 977 978 /* 979 * When using THP mmap is not guaranteed to returned a hugepage aligned 980 * address so we have to pad the mmap. Padding is not needed for HugeTLB 981 * because mmap will always return an address aligned to the HugeTLB 982 * page size. 983 */ 984 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 985 alignment = max(backing_src_pagesz, alignment); 986 987 TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 988 989 /* Add enough memory to align up if necessary */ 990 if (alignment > 1) 991 region->mmap_size += alignment; 992 993 region->fd = -1; 994 if (backing_src_is_shared(src_type)) 995 region->fd = kvm_memfd_alloc(region->mmap_size, 996 src_type == VM_MEM_SRC_SHARED_HUGETLB); 997 998 region->mmap_start = mmap(NULL, region->mmap_size, 999 PROT_READ | PROT_WRITE, 1000 vm_mem_backing_src_alias(src_type)->flag, 1001 region->fd, 0); 1002 TEST_ASSERT(region->mmap_start != MAP_FAILED, 1003 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1004 1005 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 1006 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 1007 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 1008 region->mmap_start, backing_src_pagesz); 1009 1010 /* Align host address */ 1011 region->host_mem = align_ptr_up(region->mmap_start, alignment); 1012 1013 /* As needed perform madvise */ 1014 if ((src_type == VM_MEM_SRC_ANONYMOUS || 1015 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 1016 ret = madvise(region->host_mem, mem_size, 1017 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 1018 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 1019 region->host_mem, mem_size, 1020 vm_mem_backing_src_alias(src_type)->name); 1021 } 1022 1023 region->backing_src_type = src_type; 1024 1025 if (flags & KVM_MEM_GUEST_MEMFD) { 1026 if (guest_memfd < 0) { 1027 uint32_t guest_memfd_flags = 0; 1028 TEST_ASSERT(!guest_memfd_offset, 1029 "Offset must be zero when creating new guest_memfd"); 1030 guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags); 1031 } else { 1032 /* 1033 * Install a unique fd for each memslot so that the fd 1034 * can be closed when the region is deleted without 1035 * needing to track if the fd is owned by the framework 1036 * or by the caller. 1037 */ 1038 guest_memfd = dup(guest_memfd); 1039 TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd)); 1040 } 1041 1042 region->region.guest_memfd = guest_memfd; 1043 region->region.guest_memfd_offset = guest_memfd_offset; 1044 } else { 1045 region->region.guest_memfd = -1; 1046 } 1047 1048 region->unused_phy_pages = sparsebit_alloc(); 1049 sparsebit_set_num(region->unused_phy_pages, 1050 guest_paddr >> vm->page_shift, npages); 1051 region->region.slot = slot; 1052 region->region.flags = flags; 1053 region->region.guest_phys_addr = guest_paddr; 1054 region->region.memory_size = npages * vm->page_size; 1055 region->region.userspace_addr = (uintptr_t) region->host_mem; 1056 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1057 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1058 " rc: %i errno: %i\n" 1059 " slot: %u flags: 0x%x\n" 1060 " guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d\n", 1061 ret, errno, slot, flags, 1062 guest_paddr, (uint64_t) region->region.memory_size, 1063 region->region.guest_memfd); 1064 1065 /* Add to quick lookup data structures */ 1066 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1067 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1068 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1069 1070 /* If shared memory, create an alias. */ 1071 if (region->fd >= 0) { 1072 region->mmap_alias = mmap(NULL, region->mmap_size, 1073 PROT_READ | PROT_WRITE, 1074 vm_mem_backing_src_alias(src_type)->flag, 1075 region->fd, 0); 1076 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1077 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1078 1079 /* Align host alias address */ 1080 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1081 } 1082 } 1083 1084 void vm_userspace_mem_region_add(struct kvm_vm *vm, 1085 enum vm_mem_backing_src_type src_type, 1086 uint64_t guest_paddr, uint32_t slot, 1087 uint64_t npages, uint32_t flags) 1088 { 1089 vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0); 1090 } 1091 1092 /* 1093 * Memslot to region 1094 * 1095 * Input Args: 1096 * vm - Virtual Machine 1097 * memslot - KVM memory slot ID 1098 * 1099 * Output Args: None 1100 * 1101 * Return: 1102 * Pointer to memory region structure that describe memory region 1103 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1104 * on error (e.g. currently no memory region using memslot as a KVM 1105 * memory slot ID). 1106 */ 1107 struct userspace_mem_region * 1108 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1109 { 1110 struct userspace_mem_region *region; 1111 1112 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1113 memslot) 1114 if (region->region.slot == memslot) 1115 return region; 1116 1117 fprintf(stderr, "No mem region with the requested slot found,\n" 1118 " requested slot: %u\n", memslot); 1119 fputs("---- vm dump ----\n", stderr); 1120 vm_dump(stderr, vm, 2); 1121 TEST_FAIL("Mem region not found"); 1122 return NULL; 1123 } 1124 1125 /* 1126 * VM Memory Region Flags Set 1127 * 1128 * Input Args: 1129 * vm - Virtual Machine 1130 * flags - Starting guest physical address 1131 * 1132 * Output Args: None 1133 * 1134 * Return: None 1135 * 1136 * Sets the flags of the memory region specified by the value of slot, 1137 * to the values given by flags. 1138 */ 1139 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1140 { 1141 int ret; 1142 struct userspace_mem_region *region; 1143 1144 region = memslot2region(vm, slot); 1145 1146 region->region.flags = flags; 1147 1148 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1149 1150 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n" 1151 " rc: %i errno: %i slot: %u flags: 0x%x", 1152 ret, errno, slot, flags); 1153 } 1154 1155 /* 1156 * VM Memory Region Move 1157 * 1158 * Input Args: 1159 * vm - Virtual Machine 1160 * slot - Slot of the memory region to move 1161 * new_gpa - Starting guest physical address 1162 * 1163 * Output Args: None 1164 * 1165 * Return: None 1166 * 1167 * Change the gpa of a memory region. 1168 */ 1169 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1170 { 1171 struct userspace_mem_region *region; 1172 int ret; 1173 1174 region = memslot2region(vm, slot); 1175 1176 region->region.guest_phys_addr = new_gpa; 1177 1178 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, ®ion->region); 1179 1180 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n" 1181 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1182 ret, errno, slot, new_gpa); 1183 } 1184 1185 /* 1186 * VM Memory Region Delete 1187 * 1188 * Input Args: 1189 * vm - Virtual Machine 1190 * slot - Slot of the memory region to delete 1191 * 1192 * Output Args: None 1193 * 1194 * Return: None 1195 * 1196 * Delete a memory region. 1197 */ 1198 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1199 { 1200 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1201 } 1202 1203 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size, 1204 bool punch_hole) 1205 { 1206 const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0); 1207 struct userspace_mem_region *region; 1208 uint64_t end = base + size; 1209 uint64_t gpa, len; 1210 off_t fd_offset; 1211 int ret; 1212 1213 for (gpa = base; gpa < end; gpa += len) { 1214 uint64_t offset; 1215 1216 region = userspace_mem_region_find(vm, gpa, gpa); 1217 TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD, 1218 "Private memory region not found for GPA 0x%lx", gpa); 1219 1220 offset = gpa - region->region.guest_phys_addr; 1221 fd_offset = region->region.guest_memfd_offset + offset; 1222 len = min_t(uint64_t, end - gpa, region->region.memory_size - offset); 1223 1224 ret = fallocate(region->region.guest_memfd, mode, fd_offset, len); 1225 TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx\n", 1226 punch_hole ? "punch hole" : "allocate", gpa, len, 1227 region->region.guest_memfd, mode, fd_offset); 1228 } 1229 } 1230 1231 /* Returns the size of a vCPU's kvm_run structure. */ 1232 static int vcpu_mmap_sz(void) 1233 { 1234 int dev_fd, ret; 1235 1236 dev_fd = open_kvm_dev_path_or_exit(); 1237 1238 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1239 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1240 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret)); 1241 1242 close(dev_fd); 1243 1244 return ret; 1245 } 1246 1247 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id) 1248 { 1249 struct kvm_vcpu *vcpu; 1250 1251 list_for_each_entry(vcpu, &vm->vcpus, list) { 1252 if (vcpu->id == vcpu_id) 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 /* 1260 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id. 1261 * No additional vCPU setup is done. Returns the vCPU. 1262 */ 1263 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id) 1264 { 1265 struct kvm_vcpu *vcpu; 1266 1267 /* Confirm a vcpu with the specified id doesn't already exist. */ 1268 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id); 1269 1270 /* Allocate and initialize new vcpu structure. */ 1271 vcpu = calloc(1, sizeof(*vcpu)); 1272 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1273 1274 vcpu->vm = vm; 1275 vcpu->id = vcpu_id; 1276 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id); 1277 TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm); 1278 1279 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size " 1280 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1281 vcpu_mmap_sz(), sizeof(*vcpu->run)); 1282 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1283 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1284 TEST_ASSERT(vcpu->run != MAP_FAILED, 1285 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED)); 1286 1287 /* Add to linked-list of VCPUs. */ 1288 list_add(&vcpu->list, &vm->vcpus); 1289 1290 return vcpu; 1291 } 1292 1293 /* 1294 * VM Virtual Address Unused Gap 1295 * 1296 * Input Args: 1297 * vm - Virtual Machine 1298 * sz - Size (bytes) 1299 * vaddr_min - Minimum Virtual Address 1300 * 1301 * Output Args: None 1302 * 1303 * Return: 1304 * Lowest virtual address at or below vaddr_min, with at least 1305 * sz unused bytes. TEST_ASSERT failure if no area of at least 1306 * size sz is available. 1307 * 1308 * Within the VM specified by vm, locates the lowest starting virtual 1309 * address >= vaddr_min, that has at least sz unallocated bytes. A 1310 * TEST_ASSERT failure occurs for invalid input or no area of at least 1311 * sz unallocated bytes >= vaddr_min is available. 1312 */ 1313 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1314 vm_vaddr_t vaddr_min) 1315 { 1316 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1317 1318 /* Determine lowest permitted virtual page index. */ 1319 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1320 if ((pgidx_start * vm->page_size) < vaddr_min) 1321 goto no_va_found; 1322 1323 /* Loop over section with enough valid virtual page indexes. */ 1324 if (!sparsebit_is_set_num(vm->vpages_valid, 1325 pgidx_start, pages)) 1326 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1327 pgidx_start, pages); 1328 do { 1329 /* 1330 * Are there enough unused virtual pages available at 1331 * the currently proposed starting virtual page index. 1332 * If not, adjust proposed starting index to next 1333 * possible. 1334 */ 1335 if (sparsebit_is_clear_num(vm->vpages_mapped, 1336 pgidx_start, pages)) 1337 goto va_found; 1338 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1339 pgidx_start, pages); 1340 if (pgidx_start == 0) 1341 goto no_va_found; 1342 1343 /* 1344 * If needed, adjust proposed starting virtual address, 1345 * to next range of valid virtual addresses. 1346 */ 1347 if (!sparsebit_is_set_num(vm->vpages_valid, 1348 pgidx_start, pages)) { 1349 pgidx_start = sparsebit_next_set_num( 1350 vm->vpages_valid, pgidx_start, pages); 1351 if (pgidx_start == 0) 1352 goto no_va_found; 1353 } 1354 } while (pgidx_start != 0); 1355 1356 no_va_found: 1357 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1358 1359 /* NOT REACHED */ 1360 return -1; 1361 1362 va_found: 1363 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1364 pgidx_start, pages), 1365 "Unexpected, invalid virtual page index range,\n" 1366 " pgidx_start: 0x%lx\n" 1367 " pages: 0x%lx", 1368 pgidx_start, pages); 1369 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1370 pgidx_start, pages), 1371 "Unexpected, pages already mapped,\n" 1372 " pgidx_start: 0x%lx\n" 1373 " pages: 0x%lx", 1374 pgidx_start, pages); 1375 1376 return pgidx_start * vm->page_size; 1377 } 1378 1379 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1380 enum kvm_mem_region_type type) 1381 { 1382 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1383 1384 virt_pgd_alloc(vm); 1385 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1386 KVM_UTIL_MIN_PFN * vm->page_size, 1387 vm->memslots[type]); 1388 1389 /* 1390 * Find an unused range of virtual page addresses of at least 1391 * pages in length. 1392 */ 1393 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1394 1395 /* Map the virtual pages. */ 1396 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1397 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1398 1399 virt_pg_map(vm, vaddr, paddr); 1400 1401 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1402 } 1403 1404 return vaddr_start; 1405 } 1406 1407 /* 1408 * VM Virtual Address Allocate 1409 * 1410 * Input Args: 1411 * vm - Virtual Machine 1412 * sz - Size in bytes 1413 * vaddr_min - Minimum starting virtual address 1414 * 1415 * Output Args: None 1416 * 1417 * Return: 1418 * Starting guest virtual address 1419 * 1420 * Allocates at least sz bytes within the virtual address space of the vm 1421 * given by vm. The allocated bytes are mapped to a virtual address >= 1422 * the address given by vaddr_min. Note that each allocation uses a 1423 * a unique set of pages, with the minimum real allocation being at least 1424 * a page. The allocated physical space comes from the TEST_DATA memory region. 1425 */ 1426 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1427 { 1428 return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA); 1429 } 1430 1431 /* 1432 * VM Virtual Address Allocate Pages 1433 * 1434 * Input Args: 1435 * vm - Virtual Machine 1436 * 1437 * Output Args: None 1438 * 1439 * Return: 1440 * Starting guest virtual address 1441 * 1442 * Allocates at least N system pages worth of bytes within the virtual address 1443 * space of the vm. 1444 */ 1445 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1446 { 1447 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1448 } 1449 1450 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type) 1451 { 1452 return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type); 1453 } 1454 1455 /* 1456 * VM Virtual Address Allocate Page 1457 * 1458 * Input Args: 1459 * vm - Virtual Machine 1460 * 1461 * Output Args: None 1462 * 1463 * Return: 1464 * Starting guest virtual address 1465 * 1466 * Allocates at least one system page worth of bytes within the virtual address 1467 * space of the vm. 1468 */ 1469 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1470 { 1471 return vm_vaddr_alloc_pages(vm, 1); 1472 } 1473 1474 /* 1475 * Map a range of VM virtual address to the VM's physical address 1476 * 1477 * Input Args: 1478 * vm - Virtual Machine 1479 * vaddr - Virtuall address to map 1480 * paddr - VM Physical Address 1481 * npages - The number of pages to map 1482 * 1483 * Output Args: None 1484 * 1485 * Return: None 1486 * 1487 * Within the VM given by @vm, creates a virtual translation for 1488 * @npages starting at @vaddr to the page range starting at @paddr. 1489 */ 1490 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1491 unsigned int npages) 1492 { 1493 size_t page_size = vm->page_size; 1494 size_t size = npages * page_size; 1495 1496 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1497 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1498 1499 while (npages--) { 1500 virt_pg_map(vm, vaddr, paddr); 1501 sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift); 1502 1503 vaddr += page_size; 1504 paddr += page_size; 1505 } 1506 } 1507 1508 /* 1509 * Address VM Physical to Host Virtual 1510 * 1511 * Input Args: 1512 * vm - Virtual Machine 1513 * gpa - VM physical address 1514 * 1515 * Output Args: None 1516 * 1517 * Return: 1518 * Equivalent host virtual address 1519 * 1520 * Locates the memory region containing the VM physical address given 1521 * by gpa, within the VM given by vm. When found, the host virtual 1522 * address providing the memory to the vm physical address is returned. 1523 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1524 */ 1525 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1526 { 1527 struct userspace_mem_region *region; 1528 1529 region = userspace_mem_region_find(vm, gpa, gpa); 1530 if (!region) { 1531 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1532 return NULL; 1533 } 1534 1535 return (void *)((uintptr_t)region->host_mem 1536 + (gpa - region->region.guest_phys_addr)); 1537 } 1538 1539 /* 1540 * Address Host Virtual to VM Physical 1541 * 1542 * Input Args: 1543 * vm - Virtual Machine 1544 * hva - Host virtual address 1545 * 1546 * Output Args: None 1547 * 1548 * Return: 1549 * Equivalent VM physical address 1550 * 1551 * Locates the memory region containing the host virtual address given 1552 * by hva, within the VM given by vm. When found, the equivalent 1553 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1554 * region containing hva exists. 1555 */ 1556 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1557 { 1558 struct rb_node *node; 1559 1560 for (node = vm->regions.hva_tree.rb_node; node; ) { 1561 struct userspace_mem_region *region = 1562 container_of(node, struct userspace_mem_region, hva_node); 1563 1564 if (hva >= region->host_mem) { 1565 if (hva <= (region->host_mem 1566 + region->region.memory_size - 1)) 1567 return (vm_paddr_t)((uintptr_t) 1568 region->region.guest_phys_addr 1569 + (hva - (uintptr_t)region->host_mem)); 1570 1571 node = node->rb_right; 1572 } else 1573 node = node->rb_left; 1574 } 1575 1576 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1577 return -1; 1578 } 1579 1580 /* 1581 * Address VM physical to Host Virtual *alias*. 1582 * 1583 * Input Args: 1584 * vm - Virtual Machine 1585 * gpa - VM physical address 1586 * 1587 * Output Args: None 1588 * 1589 * Return: 1590 * Equivalent address within the host virtual *alias* area, or NULL 1591 * (without failing the test) if the guest memory is not shared (so 1592 * no alias exists). 1593 * 1594 * Create a writable, shared virtual=>physical alias for the specific GPA. 1595 * The primary use case is to allow the host selftest to manipulate guest 1596 * memory without mapping said memory in the guest's address space. And, for 1597 * userfaultfd-based demand paging, to do so without triggering userfaults. 1598 */ 1599 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1600 { 1601 struct userspace_mem_region *region; 1602 uintptr_t offset; 1603 1604 region = userspace_mem_region_find(vm, gpa, gpa); 1605 if (!region) 1606 return NULL; 1607 1608 if (!region->host_alias) 1609 return NULL; 1610 1611 offset = gpa - region->region.guest_phys_addr; 1612 return (void *) ((uintptr_t) region->host_alias + offset); 1613 } 1614 1615 /* Create an interrupt controller chip for the specified VM. */ 1616 void vm_create_irqchip(struct kvm_vm *vm) 1617 { 1618 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL); 1619 1620 vm->has_irqchip = true; 1621 } 1622 1623 int _vcpu_run(struct kvm_vcpu *vcpu) 1624 { 1625 int rc; 1626 1627 do { 1628 rc = __vcpu_run(vcpu); 1629 } while (rc == -1 && errno == EINTR); 1630 1631 assert_on_unhandled_exception(vcpu); 1632 1633 return rc; 1634 } 1635 1636 /* 1637 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR. 1638 * Assert if the KVM returns an error (other than -EINTR). 1639 */ 1640 void vcpu_run(struct kvm_vcpu *vcpu) 1641 { 1642 int ret = _vcpu_run(vcpu); 1643 1644 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret)); 1645 } 1646 1647 void vcpu_run_complete_io(struct kvm_vcpu *vcpu) 1648 { 1649 int ret; 1650 1651 vcpu->run->immediate_exit = 1; 1652 ret = __vcpu_run(vcpu); 1653 vcpu->run->immediate_exit = 0; 1654 1655 TEST_ASSERT(ret == -1 && errno == EINTR, 1656 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1657 ret, errno); 1658 } 1659 1660 /* 1661 * Get the list of guest registers which are supported for 1662 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer, 1663 * it is the caller's responsibility to free the list. 1664 */ 1665 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu) 1666 { 1667 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1668 int ret; 1669 1670 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n); 1671 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1672 1673 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1674 reg_list->n = reg_list_n.n; 1675 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list); 1676 return reg_list; 1677 } 1678 1679 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu) 1680 { 1681 uint32_t page_size = getpagesize(); 1682 uint32_t size = vcpu->vm->dirty_ring_size; 1683 1684 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1685 1686 if (!vcpu->dirty_gfns) { 1687 void *addr; 1688 1689 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd, 1690 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1691 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1692 1693 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd, 1694 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1695 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1696 1697 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 1698 page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1699 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1700 1701 vcpu->dirty_gfns = addr; 1702 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1703 } 1704 1705 return vcpu->dirty_gfns; 1706 } 1707 1708 /* 1709 * Device Ioctl 1710 */ 1711 1712 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 1713 { 1714 struct kvm_device_attr attribute = { 1715 .group = group, 1716 .attr = attr, 1717 .flags = 0, 1718 }; 1719 1720 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1721 } 1722 1723 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type) 1724 { 1725 struct kvm_create_device create_dev = { 1726 .type = type, 1727 .flags = KVM_CREATE_DEVICE_TEST, 1728 }; 1729 1730 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1731 } 1732 1733 int __kvm_create_device(struct kvm_vm *vm, uint64_t type) 1734 { 1735 struct kvm_create_device create_dev = { 1736 .type = type, 1737 .fd = -1, 1738 .flags = 0, 1739 }; 1740 int err; 1741 1742 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev); 1743 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value"); 1744 return err ? : create_dev.fd; 1745 } 1746 1747 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) 1748 { 1749 struct kvm_device_attr kvmattr = { 1750 .group = group, 1751 .attr = attr, 1752 .flags = 0, 1753 .addr = (uintptr_t)val, 1754 }; 1755 1756 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr); 1757 } 1758 1759 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) 1760 { 1761 struct kvm_device_attr kvmattr = { 1762 .group = group, 1763 .attr = attr, 1764 .flags = 0, 1765 .addr = (uintptr_t)val, 1766 }; 1767 1768 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr); 1769 } 1770 1771 /* 1772 * IRQ related functions. 1773 */ 1774 1775 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1776 { 1777 struct kvm_irq_level irq_level = { 1778 .irq = irq, 1779 .level = level, 1780 }; 1781 1782 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 1783 } 1784 1785 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 1786 { 1787 int ret = _kvm_irq_line(vm, irq, level); 1788 1789 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret)); 1790 } 1791 1792 struct kvm_irq_routing *kvm_gsi_routing_create(void) 1793 { 1794 struct kvm_irq_routing *routing; 1795 size_t size; 1796 1797 size = sizeof(struct kvm_irq_routing); 1798 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 1799 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 1800 routing = calloc(1, size); 1801 assert(routing); 1802 1803 return routing; 1804 } 1805 1806 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 1807 uint32_t gsi, uint32_t pin) 1808 { 1809 int i; 1810 1811 assert(routing); 1812 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 1813 1814 i = routing->nr; 1815 routing->entries[i].gsi = gsi; 1816 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 1817 routing->entries[i].flags = 0; 1818 routing->entries[i].u.irqchip.irqchip = 0; 1819 routing->entries[i].u.irqchip.pin = pin; 1820 routing->nr++; 1821 } 1822 1823 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1824 { 1825 int ret; 1826 1827 assert(routing); 1828 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing); 1829 free(routing); 1830 1831 return ret; 1832 } 1833 1834 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 1835 { 1836 int ret; 1837 1838 ret = _kvm_gsi_routing_write(vm, routing); 1839 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret)); 1840 } 1841 1842 /* 1843 * VM Dump 1844 * 1845 * Input Args: 1846 * vm - Virtual Machine 1847 * indent - Left margin indent amount 1848 * 1849 * Output Args: 1850 * stream - Output FILE stream 1851 * 1852 * Return: None 1853 * 1854 * Dumps the current state of the VM given by vm, to the FILE stream 1855 * given by stream. 1856 */ 1857 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1858 { 1859 int ctr; 1860 struct userspace_mem_region *region; 1861 struct kvm_vcpu *vcpu; 1862 1863 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1864 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1865 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1866 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1867 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1868 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1869 "host_virt: %p\n", indent + 2, "", 1870 (uint64_t) region->region.guest_phys_addr, 1871 (uint64_t) region->region.memory_size, 1872 region->host_mem); 1873 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 1874 sparsebit_dump(stream, region->unused_phy_pages, 0); 1875 } 1876 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 1877 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 1878 fprintf(stream, "%*spgd_created: %u\n", indent, "", 1879 vm->pgd_created); 1880 if (vm->pgd_created) { 1881 fprintf(stream, "%*sVirtual Translation Tables:\n", 1882 indent + 2, ""); 1883 virt_dump(stream, vm, indent + 4); 1884 } 1885 fprintf(stream, "%*sVCPUs:\n", indent, ""); 1886 1887 list_for_each_entry(vcpu, &vm->vcpus, list) 1888 vcpu_dump(stream, vcpu, indent + 2); 1889 } 1890 1891 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x} 1892 1893 /* Known KVM exit reasons */ 1894 static struct exit_reason { 1895 unsigned int reason; 1896 const char *name; 1897 } exit_reasons_known[] = { 1898 KVM_EXIT_STRING(UNKNOWN), 1899 KVM_EXIT_STRING(EXCEPTION), 1900 KVM_EXIT_STRING(IO), 1901 KVM_EXIT_STRING(HYPERCALL), 1902 KVM_EXIT_STRING(DEBUG), 1903 KVM_EXIT_STRING(HLT), 1904 KVM_EXIT_STRING(MMIO), 1905 KVM_EXIT_STRING(IRQ_WINDOW_OPEN), 1906 KVM_EXIT_STRING(SHUTDOWN), 1907 KVM_EXIT_STRING(FAIL_ENTRY), 1908 KVM_EXIT_STRING(INTR), 1909 KVM_EXIT_STRING(SET_TPR), 1910 KVM_EXIT_STRING(TPR_ACCESS), 1911 KVM_EXIT_STRING(S390_SIEIC), 1912 KVM_EXIT_STRING(S390_RESET), 1913 KVM_EXIT_STRING(DCR), 1914 KVM_EXIT_STRING(NMI), 1915 KVM_EXIT_STRING(INTERNAL_ERROR), 1916 KVM_EXIT_STRING(OSI), 1917 KVM_EXIT_STRING(PAPR_HCALL), 1918 KVM_EXIT_STRING(S390_UCONTROL), 1919 KVM_EXIT_STRING(WATCHDOG), 1920 KVM_EXIT_STRING(S390_TSCH), 1921 KVM_EXIT_STRING(EPR), 1922 KVM_EXIT_STRING(SYSTEM_EVENT), 1923 KVM_EXIT_STRING(S390_STSI), 1924 KVM_EXIT_STRING(IOAPIC_EOI), 1925 KVM_EXIT_STRING(HYPERV), 1926 KVM_EXIT_STRING(ARM_NISV), 1927 KVM_EXIT_STRING(X86_RDMSR), 1928 KVM_EXIT_STRING(X86_WRMSR), 1929 KVM_EXIT_STRING(DIRTY_RING_FULL), 1930 KVM_EXIT_STRING(AP_RESET_HOLD), 1931 KVM_EXIT_STRING(X86_BUS_LOCK), 1932 KVM_EXIT_STRING(XEN), 1933 KVM_EXIT_STRING(RISCV_SBI), 1934 KVM_EXIT_STRING(RISCV_CSR), 1935 KVM_EXIT_STRING(NOTIFY), 1936 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 1937 KVM_EXIT_STRING(MEMORY_NOT_PRESENT), 1938 #endif 1939 }; 1940 1941 /* 1942 * Exit Reason String 1943 * 1944 * Input Args: 1945 * exit_reason - Exit reason 1946 * 1947 * Output Args: None 1948 * 1949 * Return: 1950 * Constant string pointer describing the exit reason. 1951 * 1952 * Locates and returns a constant string that describes the KVM exit 1953 * reason given by exit_reason. If no such string is found, a constant 1954 * string of "Unknown" is returned. 1955 */ 1956 const char *exit_reason_str(unsigned int exit_reason) 1957 { 1958 unsigned int n1; 1959 1960 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 1961 if (exit_reason == exit_reasons_known[n1].reason) 1962 return exit_reasons_known[n1].name; 1963 } 1964 1965 return "Unknown"; 1966 } 1967 1968 /* 1969 * Physical Contiguous Page Allocator 1970 * 1971 * Input Args: 1972 * vm - Virtual Machine 1973 * num - number of pages 1974 * paddr_min - Physical address minimum 1975 * memslot - Memory region to allocate page from 1976 * 1977 * Output Args: None 1978 * 1979 * Return: 1980 * Starting physical address 1981 * 1982 * Within the VM specified by vm, locates a range of available physical 1983 * pages at or above paddr_min. If found, the pages are marked as in use 1984 * and their base address is returned. A TEST_ASSERT failure occurs if 1985 * not enough pages are available at or above paddr_min. 1986 */ 1987 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 1988 vm_paddr_t paddr_min, uint32_t memslot) 1989 { 1990 struct userspace_mem_region *region; 1991 sparsebit_idx_t pg, base; 1992 1993 TEST_ASSERT(num > 0, "Must allocate at least one page"); 1994 1995 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 1996 "not divisible by page size.\n" 1997 " paddr_min: 0x%lx page_size: 0x%x", 1998 paddr_min, vm->page_size); 1999 2000 region = memslot2region(vm, memslot); 2001 base = pg = paddr_min >> vm->page_shift; 2002 2003 do { 2004 for (; pg < base + num; ++pg) { 2005 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2006 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2007 break; 2008 } 2009 } 2010 } while (pg && pg != base + num); 2011 2012 if (pg == 0) { 2013 fprintf(stderr, "No guest physical page available, " 2014 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2015 paddr_min, vm->page_size, memslot); 2016 fputs("---- vm dump ----\n", stderr); 2017 vm_dump(stderr, vm, 2); 2018 abort(); 2019 } 2020 2021 for (pg = base; pg < base + num; ++pg) 2022 sparsebit_clear(region->unused_phy_pages, pg); 2023 2024 return base * vm->page_size; 2025 } 2026 2027 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2028 uint32_t memslot) 2029 { 2030 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2031 } 2032 2033 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2034 { 2035 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 2036 vm->memslots[MEM_REGION_PT]); 2037 } 2038 2039 /* 2040 * Address Guest Virtual to Host Virtual 2041 * 2042 * Input Args: 2043 * vm - Virtual Machine 2044 * gva - VM virtual address 2045 * 2046 * Output Args: None 2047 * 2048 * Return: 2049 * Equivalent host virtual address 2050 */ 2051 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2052 { 2053 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2054 } 2055 2056 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm) 2057 { 2058 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2059 } 2060 2061 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2062 unsigned int page_shift, 2063 unsigned int new_page_shift, 2064 bool ceil) 2065 { 2066 unsigned int n = 1 << (new_page_shift - page_shift); 2067 2068 if (page_shift >= new_page_shift) 2069 return num_pages * (1 << (page_shift - new_page_shift)); 2070 2071 return num_pages / n + !!(ceil && num_pages % n); 2072 } 2073 2074 static inline int getpageshift(void) 2075 { 2076 return __builtin_ffs(getpagesize()) - 1; 2077 } 2078 2079 unsigned int 2080 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2081 { 2082 return vm_calc_num_pages(num_guest_pages, 2083 vm_guest_mode_params[mode].page_shift, 2084 getpageshift(), true); 2085 } 2086 2087 unsigned int 2088 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2089 { 2090 return vm_calc_num_pages(num_host_pages, getpageshift(), 2091 vm_guest_mode_params[mode].page_shift, false); 2092 } 2093 2094 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2095 { 2096 unsigned int n; 2097 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2098 return vm_adjust_num_guest_pages(mode, n); 2099 } 2100 2101 /* 2102 * Read binary stats descriptors 2103 * 2104 * Input Args: 2105 * stats_fd - the file descriptor for the binary stats file from which to read 2106 * header - the binary stats metadata header corresponding to the given FD 2107 * 2108 * Output Args: None 2109 * 2110 * Return: 2111 * A pointer to a newly allocated series of stat descriptors. 2112 * Caller is responsible for freeing the returned kvm_stats_desc. 2113 * 2114 * Read the stats descriptors from the binary stats interface. 2115 */ 2116 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 2117 struct kvm_stats_header *header) 2118 { 2119 struct kvm_stats_desc *stats_desc; 2120 ssize_t desc_size, total_size, ret; 2121 2122 desc_size = get_stats_descriptor_size(header); 2123 total_size = header->num_desc * desc_size; 2124 2125 stats_desc = calloc(header->num_desc, desc_size); 2126 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors"); 2127 2128 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset); 2129 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors"); 2130 2131 return stats_desc; 2132 } 2133 2134 /* 2135 * Read stat data for a particular stat 2136 * 2137 * Input Args: 2138 * stats_fd - the file descriptor for the binary stats file from which to read 2139 * header - the binary stats metadata header corresponding to the given FD 2140 * desc - the binary stat metadata for the particular stat to be read 2141 * max_elements - the maximum number of 8-byte values to read into data 2142 * 2143 * Output Args: 2144 * data - the buffer into which stat data should be read 2145 * 2146 * Read the data values of a specified stat from the binary stats interface. 2147 */ 2148 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 2149 struct kvm_stats_desc *desc, uint64_t *data, 2150 size_t max_elements) 2151 { 2152 size_t nr_elements = min_t(ssize_t, desc->size, max_elements); 2153 size_t size = nr_elements * sizeof(*data); 2154 ssize_t ret; 2155 2156 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name); 2157 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name); 2158 2159 ret = pread(stats_fd, data, size, 2160 header->data_offset + desc->offset); 2161 2162 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)", 2163 desc->name, errno, strerror(errno)); 2164 TEST_ASSERT(ret == size, 2165 "pread() on stat '%s' read %ld bytes, wanted %lu bytes", 2166 desc->name, size, ret); 2167 } 2168 2169 /* 2170 * Read the data of the named stat 2171 * 2172 * Input Args: 2173 * vm - the VM for which the stat should be read 2174 * stat_name - the name of the stat to read 2175 * max_elements - the maximum number of 8-byte values to read into data 2176 * 2177 * Output Args: 2178 * data - the buffer into which stat data should be read 2179 * 2180 * Read the data values of a specified stat from the binary stats interface. 2181 */ 2182 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 2183 size_t max_elements) 2184 { 2185 struct kvm_stats_desc *desc; 2186 size_t size_desc; 2187 int i; 2188 2189 if (!vm->stats_fd) { 2190 vm->stats_fd = vm_get_stats_fd(vm); 2191 read_stats_header(vm->stats_fd, &vm->stats_header); 2192 vm->stats_desc = read_stats_descriptors(vm->stats_fd, 2193 &vm->stats_header); 2194 } 2195 2196 size_desc = get_stats_descriptor_size(&vm->stats_header); 2197 2198 for (i = 0; i < vm->stats_header.num_desc; ++i) { 2199 desc = (void *)vm->stats_desc + (i * size_desc); 2200 2201 if (strcmp(desc->name, stat_name)) 2202 continue; 2203 2204 read_stat_data(vm->stats_fd, &vm->stats_header, desc, 2205 data, max_elements); 2206 2207 break; 2208 } 2209 } 2210 2211 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm) 2212 { 2213 } 2214 2215 __weak void kvm_selftest_arch_init(void) 2216 { 2217 } 2218 2219 void __attribute((constructor)) kvm_selftest_init(void) 2220 { 2221 /* Tell stdout not to buffer its content. */ 2222 setbuf(stdout, NULL); 2223 2224 kvm_selftest_arch_init(); 2225 } 2226