1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * tools/testing/selftests/kvm/include/x86_64/processor.h 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #ifndef SELFTEST_KVM_PROCESSOR_H 9 #define SELFTEST_KVM_PROCESSOR_H 10 11 #include <assert.h> 12 #include <stdint.h> 13 #include <syscall.h> 14 15 #include <asm/msr-index.h> 16 #include <asm/prctl.h> 17 18 #include <linux/kvm_para.h> 19 #include <linux/stringify.h> 20 21 #include "kvm_util.h" 22 #include "ucall_common.h" 23 24 extern bool host_cpu_is_intel; 25 extern bool host_cpu_is_amd; 26 extern uint64_t guest_tsc_khz; 27 28 /* Forced emulation prefix, used to invoke the emulator unconditionally. */ 29 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';" 30 31 #define NMI_VECTOR 0x02 32 33 #define X86_EFLAGS_FIXED (1u << 1) 34 35 #define X86_CR4_VME (1ul << 0) 36 #define X86_CR4_PVI (1ul << 1) 37 #define X86_CR4_TSD (1ul << 2) 38 #define X86_CR4_DE (1ul << 3) 39 #define X86_CR4_PSE (1ul << 4) 40 #define X86_CR4_PAE (1ul << 5) 41 #define X86_CR4_MCE (1ul << 6) 42 #define X86_CR4_PGE (1ul << 7) 43 #define X86_CR4_PCE (1ul << 8) 44 #define X86_CR4_OSFXSR (1ul << 9) 45 #define X86_CR4_OSXMMEXCPT (1ul << 10) 46 #define X86_CR4_UMIP (1ul << 11) 47 #define X86_CR4_LA57 (1ul << 12) 48 #define X86_CR4_VMXE (1ul << 13) 49 #define X86_CR4_SMXE (1ul << 14) 50 #define X86_CR4_FSGSBASE (1ul << 16) 51 #define X86_CR4_PCIDE (1ul << 17) 52 #define X86_CR4_OSXSAVE (1ul << 18) 53 #define X86_CR4_SMEP (1ul << 20) 54 #define X86_CR4_SMAP (1ul << 21) 55 #define X86_CR4_PKE (1ul << 22) 56 57 struct xstate_header { 58 u64 xstate_bv; 59 u64 xcomp_bv; 60 u64 reserved[6]; 61 } __attribute__((packed)); 62 63 struct xstate { 64 u8 i387[512]; 65 struct xstate_header header; 66 u8 extended_state_area[0]; 67 } __attribute__ ((packed, aligned (64))); 68 69 #define XFEATURE_MASK_FP BIT_ULL(0) 70 #define XFEATURE_MASK_SSE BIT_ULL(1) 71 #define XFEATURE_MASK_YMM BIT_ULL(2) 72 #define XFEATURE_MASK_BNDREGS BIT_ULL(3) 73 #define XFEATURE_MASK_BNDCSR BIT_ULL(4) 74 #define XFEATURE_MASK_OPMASK BIT_ULL(5) 75 #define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) 76 #define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) 77 #define XFEATURE_MASK_PT BIT_ULL(8) 78 #define XFEATURE_MASK_PKRU BIT_ULL(9) 79 #define XFEATURE_MASK_PASID BIT_ULL(10) 80 #define XFEATURE_MASK_CET_USER BIT_ULL(11) 81 #define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) 82 #define XFEATURE_MASK_LBR BIT_ULL(15) 83 #define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) 84 #define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) 85 86 #define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ 87 XFEATURE_MASK_ZMM_Hi256 | \ 88 XFEATURE_MASK_Hi16_ZMM) 89 #define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ 90 XFEATURE_MASK_XTILE_CFG) 91 92 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ 93 enum cpuid_output_regs { 94 KVM_CPUID_EAX, 95 KVM_CPUID_EBX, 96 KVM_CPUID_ECX, 97 KVM_CPUID_EDX 98 }; 99 100 /* 101 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be 102 * passed by value with no overhead. 103 */ 104 struct kvm_x86_cpu_feature { 105 u32 function; 106 u16 index; 107 u8 reg; 108 u8 bit; 109 }; 110 #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ 111 ({ \ 112 struct kvm_x86_cpu_feature feature = { \ 113 .function = fn, \ 114 .index = idx, \ 115 .reg = KVM_CPUID_##gpr, \ 116 .bit = __bit, \ 117 }; \ 118 \ 119 kvm_static_assert((fn & 0xc0000000) == 0 || \ 120 (fn & 0xc0000000) == 0x40000000 || \ 121 (fn & 0xc0000000) == 0x80000000 || \ 122 (fn & 0xc0000000) == 0xc0000000); \ 123 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ 124 feature; \ 125 }) 126 127 /* 128 * Basic Leafs, a.k.a. Intel defined 129 */ 130 #define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) 131 #define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) 132 #define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) 133 #define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) 134 #define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) 135 #define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) 136 #define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) 137 #define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) 138 #define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) 139 #define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) 140 #define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) 141 #define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) 142 #define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) 143 #define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) 144 #define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) 145 #define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) 146 #define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) 147 #define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) 148 #define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) 149 #define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) 150 #define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) 151 #define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) 152 #define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) 153 #define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) 154 #define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) 155 #define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) 156 #define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) 157 #define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) 158 #define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) 159 #define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) 160 #define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) 161 #define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) 162 #define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4) 163 #define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) 164 #define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) 165 #define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) 166 #define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) 167 #define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) 168 #define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) 169 #define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) 170 #define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) 171 #define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) 172 #define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) 173 #define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) 174 #define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) 175 #define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) 176 #define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) 177 178 /* 179 * Extended Leafs, a.k.a. AMD defined 180 */ 181 #define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) 182 #define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) 183 #define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) 184 #define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) 185 #define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) 186 #define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) 187 #define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) 188 #define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) 189 #define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) 190 #define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) 191 #define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) 192 #define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) 193 #define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) 194 #define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) 195 #define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) 196 #define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) 197 #define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) 198 199 /* 200 * KVM defined paravirt features. 201 */ 202 #define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) 203 #define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) 204 #define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) 205 #define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) 206 #define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) 207 #define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) 208 #define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) 209 #define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) 210 /* Bit 8 apparently isn't used?!?! */ 211 #define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) 212 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) 213 #define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) 214 #define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) 215 #define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) 216 #define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) 217 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) 218 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) 219 #define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) 220 221 /* 222 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit 223 * value/property as opposed to a single-bit feature. Again, pack the info 224 * into a 64-bit value to pass by value with no overhead. 225 */ 226 struct kvm_x86_cpu_property { 227 u32 function; 228 u8 index; 229 u8 reg; 230 u8 lo_bit; 231 u8 hi_bit; 232 }; 233 #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ 234 ({ \ 235 struct kvm_x86_cpu_property property = { \ 236 .function = fn, \ 237 .index = idx, \ 238 .reg = KVM_CPUID_##gpr, \ 239 .lo_bit = low_bit, \ 240 .hi_bit = high_bit, \ 241 }; \ 242 \ 243 kvm_static_assert(low_bit < high_bit); \ 244 kvm_static_assert((fn & 0xc0000000) == 0 || \ 245 (fn & 0xc0000000) == 0x40000000 || \ 246 (fn & 0xc0000000) == 0x80000000 || \ 247 (fn & 0xc0000000) == 0xc0000000); \ 248 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ 249 property; \ 250 }) 251 252 #define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) 253 #define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) 254 #define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) 255 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) 256 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) 257 #define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) 258 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) 259 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) 260 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) 261 262 #define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) 263 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) 264 #define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) 265 #define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) 266 267 #define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) 268 #define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) 269 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) 270 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) 271 #define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) 272 #define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) 273 #define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) 274 #define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) 275 276 #define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) 277 278 #define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) 279 #define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) 280 #define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) 281 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23) 282 #define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5) 283 #define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) 284 285 #define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) 286 287 /* 288 * Intel's architectural PMU events are bizarre. They have a "feature" bit 289 * that indicates the feature is _not_ supported, and a property that states 290 * the length of the bit mask of unsupported features. A feature is supported 291 * if the size of the bit mask is larger than the "unavailable" bit, and said 292 * bit is not set. Fixed counters also bizarre enumeration, but inverted from 293 * arch events for general purpose counters. Fixed counters are supported if a 294 * feature flag is set **OR** the total number of fixed counters is greater 295 * than index of the counter. 296 * 297 * Wrap the events for general purpose and fixed counters to simplify checking 298 * whether or not a given architectural event is supported. 299 */ 300 struct kvm_x86_pmu_feature { 301 struct kvm_x86_cpu_feature f; 302 }; 303 #define KVM_X86_PMU_FEATURE(__reg, __bit) \ 304 ({ \ 305 struct kvm_x86_pmu_feature feature = { \ 306 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \ 307 }; \ 308 \ 309 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \ 310 KVM_CPUID_##__reg == KVM_CPUID_ECX); \ 311 feature; \ 312 }) 313 314 #define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0) 315 #define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1) 316 #define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2) 317 #define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3) 318 #define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4) 319 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5) 320 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6) 321 #define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7) 322 323 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0) 324 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1) 325 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2) 326 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3) 327 328 static inline unsigned int x86_family(unsigned int eax) 329 { 330 unsigned int x86; 331 332 x86 = (eax >> 8) & 0xf; 333 334 if (x86 == 0xf) 335 x86 += (eax >> 20) & 0xff; 336 337 return x86; 338 } 339 340 static inline unsigned int x86_model(unsigned int eax) 341 { 342 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); 343 } 344 345 /* Page table bitfield declarations */ 346 #define PTE_PRESENT_MASK BIT_ULL(0) 347 #define PTE_WRITABLE_MASK BIT_ULL(1) 348 #define PTE_USER_MASK BIT_ULL(2) 349 #define PTE_ACCESSED_MASK BIT_ULL(5) 350 #define PTE_DIRTY_MASK BIT_ULL(6) 351 #define PTE_LARGE_MASK BIT_ULL(7) 352 #define PTE_GLOBAL_MASK BIT_ULL(8) 353 #define PTE_NX_MASK BIT_ULL(63) 354 355 #define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) 356 357 #define PAGE_SHIFT 12 358 #define PAGE_SIZE (1ULL << PAGE_SHIFT) 359 #define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) 360 361 #define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) 362 #define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) 363 #define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) 364 365 #define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) 366 #define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) 367 368 /* General Registers in 64-Bit Mode */ 369 struct gpr64_regs { 370 u64 rax; 371 u64 rcx; 372 u64 rdx; 373 u64 rbx; 374 u64 rsp; 375 u64 rbp; 376 u64 rsi; 377 u64 rdi; 378 u64 r8; 379 u64 r9; 380 u64 r10; 381 u64 r11; 382 u64 r12; 383 u64 r13; 384 u64 r14; 385 u64 r15; 386 }; 387 388 struct desc64 { 389 uint16_t limit0; 390 uint16_t base0; 391 unsigned base1:8, type:4, s:1, dpl:2, p:1; 392 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; 393 uint32_t base3; 394 uint32_t zero1; 395 } __attribute__((packed)); 396 397 struct desc_ptr { 398 uint16_t size; 399 uint64_t address; 400 } __attribute__((packed)); 401 402 struct kvm_x86_state { 403 struct kvm_xsave *xsave; 404 struct kvm_vcpu_events events; 405 struct kvm_mp_state mp_state; 406 struct kvm_regs regs; 407 struct kvm_xcrs xcrs; 408 struct kvm_sregs sregs; 409 struct kvm_debugregs debugregs; 410 union { 411 struct kvm_nested_state nested; 412 char nested_[16384]; 413 }; 414 struct kvm_msrs msrs; 415 }; 416 417 static inline uint64_t get_desc64_base(const struct desc64 *desc) 418 { 419 return ((uint64_t)desc->base3 << 32) | 420 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); 421 } 422 423 static inline uint64_t rdtsc(void) 424 { 425 uint32_t eax, edx; 426 uint64_t tsc_val; 427 /* 428 * The lfence is to wait (on Intel CPUs) until all previous 429 * instructions have been executed. If software requires RDTSC to be 430 * executed prior to execution of any subsequent instruction, it can 431 * execute LFENCE immediately after RDTSC 432 */ 433 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 434 tsc_val = ((uint64_t)edx) << 32 | eax; 435 return tsc_val; 436 } 437 438 static inline uint64_t rdtscp(uint32_t *aux) 439 { 440 uint32_t eax, edx; 441 442 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); 443 return ((uint64_t)edx) << 32 | eax; 444 } 445 446 static inline uint64_t rdmsr(uint32_t msr) 447 { 448 uint32_t a, d; 449 450 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); 451 452 return a | ((uint64_t) d << 32); 453 } 454 455 static inline void wrmsr(uint32_t msr, uint64_t value) 456 { 457 uint32_t a = value; 458 uint32_t d = value >> 32; 459 460 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); 461 } 462 463 464 static inline uint16_t inw(uint16_t port) 465 { 466 uint16_t tmp; 467 468 __asm__ __volatile__("in %%dx, %%ax" 469 : /* output */ "=a" (tmp) 470 : /* input */ "d" (port)); 471 472 return tmp; 473 } 474 475 static inline uint16_t get_es(void) 476 { 477 uint16_t es; 478 479 __asm__ __volatile__("mov %%es, %[es]" 480 : /* output */ [es]"=rm"(es)); 481 return es; 482 } 483 484 static inline uint16_t get_cs(void) 485 { 486 uint16_t cs; 487 488 __asm__ __volatile__("mov %%cs, %[cs]" 489 : /* output */ [cs]"=rm"(cs)); 490 return cs; 491 } 492 493 static inline uint16_t get_ss(void) 494 { 495 uint16_t ss; 496 497 __asm__ __volatile__("mov %%ss, %[ss]" 498 : /* output */ [ss]"=rm"(ss)); 499 return ss; 500 } 501 502 static inline uint16_t get_ds(void) 503 { 504 uint16_t ds; 505 506 __asm__ __volatile__("mov %%ds, %[ds]" 507 : /* output */ [ds]"=rm"(ds)); 508 return ds; 509 } 510 511 static inline uint16_t get_fs(void) 512 { 513 uint16_t fs; 514 515 __asm__ __volatile__("mov %%fs, %[fs]" 516 : /* output */ [fs]"=rm"(fs)); 517 return fs; 518 } 519 520 static inline uint16_t get_gs(void) 521 { 522 uint16_t gs; 523 524 __asm__ __volatile__("mov %%gs, %[gs]" 525 : /* output */ [gs]"=rm"(gs)); 526 return gs; 527 } 528 529 static inline uint16_t get_tr(void) 530 { 531 uint16_t tr; 532 533 __asm__ __volatile__("str %[tr]" 534 : /* output */ [tr]"=rm"(tr)); 535 return tr; 536 } 537 538 static inline uint64_t get_cr0(void) 539 { 540 uint64_t cr0; 541 542 __asm__ __volatile__("mov %%cr0, %[cr0]" 543 : /* output */ [cr0]"=r"(cr0)); 544 return cr0; 545 } 546 547 static inline uint64_t get_cr3(void) 548 { 549 uint64_t cr3; 550 551 __asm__ __volatile__("mov %%cr3, %[cr3]" 552 : /* output */ [cr3]"=r"(cr3)); 553 return cr3; 554 } 555 556 static inline uint64_t get_cr4(void) 557 { 558 uint64_t cr4; 559 560 __asm__ __volatile__("mov %%cr4, %[cr4]" 561 : /* output */ [cr4]"=r"(cr4)); 562 return cr4; 563 } 564 565 static inline void set_cr4(uint64_t val) 566 { 567 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); 568 } 569 570 static inline u64 xgetbv(u32 index) 571 { 572 u32 eax, edx; 573 574 __asm__ __volatile__("xgetbv;" 575 : "=a" (eax), "=d" (edx) 576 : "c" (index)); 577 return eax | ((u64)edx << 32); 578 } 579 580 static inline void xsetbv(u32 index, u64 value) 581 { 582 u32 eax = value; 583 u32 edx = value >> 32; 584 585 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); 586 } 587 588 static inline void wrpkru(u32 pkru) 589 { 590 /* Note, ECX and EDX are architecturally required to be '0'. */ 591 asm volatile(".byte 0x0f,0x01,0xef\n\t" 592 : : "a" (pkru), "c"(0), "d"(0)); 593 } 594 595 static inline struct desc_ptr get_gdt(void) 596 { 597 struct desc_ptr gdt; 598 __asm__ __volatile__("sgdt %[gdt]" 599 : /* output */ [gdt]"=m"(gdt)); 600 return gdt; 601 } 602 603 static inline struct desc_ptr get_idt(void) 604 { 605 struct desc_ptr idt; 606 __asm__ __volatile__("sidt %[idt]" 607 : /* output */ [idt]"=m"(idt)); 608 return idt; 609 } 610 611 static inline void outl(uint16_t port, uint32_t value) 612 { 613 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); 614 } 615 616 static inline void __cpuid(uint32_t function, uint32_t index, 617 uint32_t *eax, uint32_t *ebx, 618 uint32_t *ecx, uint32_t *edx) 619 { 620 *eax = function; 621 *ecx = index; 622 623 asm volatile("cpuid" 624 : "=a" (*eax), 625 "=b" (*ebx), 626 "=c" (*ecx), 627 "=d" (*edx) 628 : "0" (*eax), "2" (*ecx) 629 : "memory"); 630 } 631 632 static inline void cpuid(uint32_t function, 633 uint32_t *eax, uint32_t *ebx, 634 uint32_t *ecx, uint32_t *edx) 635 { 636 return __cpuid(function, 0, eax, ebx, ecx, edx); 637 } 638 639 static inline uint32_t this_cpu_fms(void) 640 { 641 uint32_t eax, ebx, ecx, edx; 642 643 cpuid(1, &eax, &ebx, &ecx, &edx); 644 return eax; 645 } 646 647 static inline uint32_t this_cpu_family(void) 648 { 649 return x86_family(this_cpu_fms()); 650 } 651 652 static inline uint32_t this_cpu_model(void) 653 { 654 return x86_model(this_cpu_fms()); 655 } 656 657 static inline bool this_cpu_vendor_string_is(const char *vendor) 658 { 659 const uint32_t *chunk = (const uint32_t *)vendor; 660 uint32_t eax, ebx, ecx, edx; 661 662 cpuid(0, &eax, &ebx, &ecx, &edx); 663 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 664 } 665 666 static inline bool this_cpu_is_intel(void) 667 { 668 return this_cpu_vendor_string_is("GenuineIntel"); 669 } 670 671 /* 672 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 673 */ 674 static inline bool this_cpu_is_amd(void) 675 { 676 return this_cpu_vendor_string_is("AuthenticAMD"); 677 } 678 679 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, 680 uint8_t reg, uint8_t lo, uint8_t hi) 681 { 682 uint32_t gprs[4]; 683 684 __cpuid(function, index, 685 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], 686 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); 687 688 return (gprs[reg] & GENMASK(hi, lo)) >> lo; 689 } 690 691 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) 692 { 693 return __this_cpu_has(feature.function, feature.index, 694 feature.reg, feature.bit, feature.bit); 695 } 696 697 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) 698 { 699 return __this_cpu_has(property.function, property.index, 700 property.reg, property.lo_bit, property.hi_bit); 701 } 702 703 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) 704 { 705 uint32_t max_leaf; 706 707 switch (property.function & 0xc0000000) { 708 case 0: 709 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 710 break; 711 case 0x40000000: 712 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 713 break; 714 case 0x80000000: 715 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 716 break; 717 case 0xc0000000: 718 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 719 } 720 return max_leaf >= property.function; 721 } 722 723 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) 724 { 725 uint32_t nr_bits; 726 727 if (feature.f.reg == KVM_CPUID_EBX) { 728 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 729 return nr_bits > feature.f.bit && !this_cpu_has(feature.f); 730 } 731 732 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX); 733 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 734 return nr_bits > feature.f.bit || this_cpu_has(feature.f); 735 } 736 737 static __always_inline uint64_t this_cpu_supported_xcr0(void) 738 { 739 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 740 return 0; 741 742 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 743 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 744 } 745 746 typedef u32 __attribute__((vector_size(16))) sse128_t; 747 #define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } 748 #define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) 749 #define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) 750 751 static inline void read_sse_reg(int reg, sse128_t *data) 752 { 753 switch (reg) { 754 case 0: 755 asm("movdqa %%xmm0, %0" : "=m"(*data)); 756 break; 757 case 1: 758 asm("movdqa %%xmm1, %0" : "=m"(*data)); 759 break; 760 case 2: 761 asm("movdqa %%xmm2, %0" : "=m"(*data)); 762 break; 763 case 3: 764 asm("movdqa %%xmm3, %0" : "=m"(*data)); 765 break; 766 case 4: 767 asm("movdqa %%xmm4, %0" : "=m"(*data)); 768 break; 769 case 5: 770 asm("movdqa %%xmm5, %0" : "=m"(*data)); 771 break; 772 case 6: 773 asm("movdqa %%xmm6, %0" : "=m"(*data)); 774 break; 775 case 7: 776 asm("movdqa %%xmm7, %0" : "=m"(*data)); 777 break; 778 default: 779 BUG(); 780 } 781 } 782 783 static inline void write_sse_reg(int reg, const sse128_t *data) 784 { 785 switch (reg) { 786 case 0: 787 asm("movdqa %0, %%xmm0" : : "m"(*data)); 788 break; 789 case 1: 790 asm("movdqa %0, %%xmm1" : : "m"(*data)); 791 break; 792 case 2: 793 asm("movdqa %0, %%xmm2" : : "m"(*data)); 794 break; 795 case 3: 796 asm("movdqa %0, %%xmm3" : : "m"(*data)); 797 break; 798 case 4: 799 asm("movdqa %0, %%xmm4" : : "m"(*data)); 800 break; 801 case 5: 802 asm("movdqa %0, %%xmm5" : : "m"(*data)); 803 break; 804 case 6: 805 asm("movdqa %0, %%xmm6" : : "m"(*data)); 806 break; 807 case 7: 808 asm("movdqa %0, %%xmm7" : : "m"(*data)); 809 break; 810 default: 811 BUG(); 812 } 813 } 814 815 static inline void cpu_relax(void) 816 { 817 asm volatile("rep; nop" ::: "memory"); 818 } 819 820 static inline void udelay(unsigned long usec) 821 { 822 uint64_t start, now, cycles; 823 824 GUEST_ASSERT(guest_tsc_khz); 825 cycles = guest_tsc_khz / 1000 * usec; 826 827 /* 828 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is 829 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits. 830 */ 831 start = rdtsc(); 832 do { 833 now = rdtsc(); 834 } while (now - start < cycles); 835 } 836 837 #define ud2() \ 838 __asm__ __volatile__( \ 839 "ud2\n" \ 840 ) 841 842 #define hlt() \ 843 __asm__ __volatile__( \ 844 "hlt\n" \ 845 ) 846 847 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); 848 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); 849 void kvm_x86_state_cleanup(struct kvm_x86_state *state); 850 851 const struct kvm_msr_list *kvm_get_msr_index_list(void); 852 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); 853 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); 854 uint64_t kvm_get_feature_msr(uint64_t msr_index); 855 856 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, 857 struct kvm_msrs *msrs) 858 { 859 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); 860 861 TEST_ASSERT(r == msrs->nmsrs, 862 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", 863 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 864 } 865 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) 866 { 867 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); 868 869 TEST_ASSERT(r == msrs->nmsrs, 870 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", 871 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 872 } 873 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, 874 struct kvm_debugregs *debugregs) 875 { 876 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); 877 } 878 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, 879 struct kvm_debugregs *debugregs) 880 { 881 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); 882 } 883 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, 884 struct kvm_xsave *xsave) 885 { 886 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); 887 } 888 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, 889 struct kvm_xsave *xsave) 890 { 891 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); 892 } 893 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, 894 struct kvm_xsave *xsave) 895 { 896 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); 897 } 898 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, 899 struct kvm_xcrs *xcrs) 900 { 901 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); 902 } 903 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) 904 { 905 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); 906 } 907 908 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 909 uint32_t function, uint32_t index); 910 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); 911 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void); 912 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu); 913 914 static inline uint32_t kvm_cpu_fms(void) 915 { 916 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; 917 } 918 919 static inline uint32_t kvm_cpu_family(void) 920 { 921 return x86_family(kvm_cpu_fms()); 922 } 923 924 static inline uint32_t kvm_cpu_model(void) 925 { 926 return x86_model(kvm_cpu_fms()); 927 } 928 929 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 930 struct kvm_x86_cpu_feature feature); 931 932 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) 933 { 934 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); 935 } 936 937 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 938 struct kvm_x86_cpu_property property); 939 940 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) 941 { 942 return kvm_cpuid_property(kvm_get_supported_cpuid(), property); 943 } 944 945 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) 946 { 947 uint32_t max_leaf; 948 949 switch (property.function & 0xc0000000) { 950 case 0: 951 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 952 break; 953 case 0x40000000: 954 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 955 break; 956 case 0x80000000: 957 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 958 break; 959 case 0xc0000000: 960 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 961 } 962 return max_leaf >= property.function; 963 } 964 965 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) 966 { 967 uint32_t nr_bits; 968 969 if (feature.f.reg == KVM_CPUID_EBX) { 970 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 971 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f); 972 } 973 974 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX); 975 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 976 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f); 977 } 978 979 static __always_inline uint64_t kvm_cpu_supported_xcr0(void) 980 { 981 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 982 return 0; 983 984 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 985 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 986 } 987 988 static inline size_t kvm_cpuid2_size(int nr_entries) 989 { 990 return sizeof(struct kvm_cpuid2) + 991 sizeof(struct kvm_cpuid_entry2) * nr_entries; 992 } 993 994 /* 995 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of 996 * entries sized to hold @nr_entries. The caller is responsible for freeing 997 * the struct. 998 */ 999 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) 1000 { 1001 struct kvm_cpuid2 *cpuid; 1002 1003 cpuid = malloc(kvm_cpuid2_size(nr_entries)); 1004 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); 1005 1006 cpuid->nent = nr_entries; 1007 1008 return cpuid; 1009 } 1010 1011 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); 1012 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu); 1013 1014 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 1015 uint32_t function, 1016 uint32_t index) 1017 { 1018 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, 1019 function, index); 1020 } 1021 1022 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 1023 uint32_t function) 1024 { 1025 return __vcpu_get_cpuid_entry(vcpu, function, 0); 1026 } 1027 1028 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1029 { 1030 int r; 1031 1032 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1033 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1034 if (r) 1035 return r; 1036 1037 /* On success, refresh the cache to pick up adjustments made by KVM. */ 1038 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 1039 return 0; 1040 } 1041 1042 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1043 { 1044 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1045 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1046 1047 /* Refresh the cache to pick up adjustments made by KVM. */ 1048 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 1049 } 1050 1051 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, 1052 struct kvm_x86_cpu_property property, 1053 uint32_t value); 1054 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); 1055 1056 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); 1057 1058 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu, 1059 struct kvm_x86_cpu_feature feature) 1060 { 1061 struct kvm_cpuid_entry2 *entry; 1062 1063 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 1064 return *((&entry->eax) + feature.reg) & BIT(feature.bit); 1065 } 1066 1067 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1068 struct kvm_x86_cpu_feature feature, 1069 bool set); 1070 1071 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, 1072 struct kvm_x86_cpu_feature feature) 1073 { 1074 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); 1075 1076 } 1077 1078 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1079 struct kvm_x86_cpu_feature feature) 1080 { 1081 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); 1082 } 1083 1084 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); 1085 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); 1086 1087 /* 1088 * Assert on an MSR access(es) and pretty print the MSR name when possible. 1089 * Note, the caller provides the stringified name so that the name of macro is 1090 * printed, not the value the macro resolves to (due to macro expansion). 1091 */ 1092 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ 1093 do { \ 1094 if (__builtin_constant_p(msr)) { \ 1095 TEST_ASSERT(cond, fmt, str, args); \ 1096 } else if (!(cond)) { \ 1097 char buf[16]; \ 1098 \ 1099 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ 1100 TEST_ASSERT(cond, fmt, buf, args); \ 1101 } \ 1102 } while (0) 1103 1104 /* 1105 * Returns true if KVM should return the last written value when reading an MSR 1106 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that 1107 * is changing, etc. This is NOT an exhaustive list! The intent is to filter 1108 * out MSRs that are not durable _and_ that a selftest wants to write. 1109 */ 1110 static inline bool is_durable_msr(uint32_t msr) 1111 { 1112 return msr != MSR_IA32_TSC; 1113 } 1114 1115 #define vcpu_set_msr(vcpu, msr, val) \ 1116 do { \ 1117 uint64_t r, v = val; \ 1118 \ 1119 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ 1120 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ 1121 if (!is_durable_msr(msr)) \ 1122 break; \ 1123 r = vcpu_get_msr(vcpu, msr); \ 1124 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ 1125 } while (0) 1126 1127 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); 1128 void kvm_init_vm_address_properties(struct kvm_vm *vm); 1129 bool vm_is_unrestricted_guest(struct kvm_vm *vm); 1130 1131 struct ex_regs { 1132 uint64_t rax, rcx, rdx, rbx; 1133 uint64_t rbp, rsi, rdi; 1134 uint64_t r8, r9, r10, r11; 1135 uint64_t r12, r13, r14, r15; 1136 uint64_t vector; 1137 uint64_t error_code; 1138 uint64_t rip; 1139 uint64_t cs; 1140 uint64_t rflags; 1141 }; 1142 1143 struct idt_entry { 1144 uint16_t offset0; 1145 uint16_t selector; 1146 uint16_t ist : 3; 1147 uint16_t : 5; 1148 uint16_t type : 4; 1149 uint16_t : 1; 1150 uint16_t dpl : 2; 1151 uint16_t p : 1; 1152 uint16_t offset1; 1153 uint32_t offset2; uint32_t reserved; 1154 }; 1155 1156 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1157 void (*handler)(struct ex_regs *)); 1158 1159 /* If a toddler were to say "abracadabra". */ 1160 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL 1161 1162 /* 1163 * KVM selftest exception fixup uses registers to coordinate with the exception 1164 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory 1165 * per-CPU data. Using only registers avoids having to map memory into the 1166 * guest, doesn't require a valid, stable GS.base, and reduces the risk of 1167 * for recursive faults when accessing memory in the handler. The downside to 1168 * using registers is that it restricts what registers can be used by the actual 1169 * instruction. But, selftests are 64-bit only, making register* pressure a 1170 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved 1171 * by the callee, and except for r11 are not implicit parameters to any 1172 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit 1173 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V 1174 * is higher priority than testing non-faulting SYSCALL/SYSRET. 1175 * 1176 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector 1177 * is guaranteed to be non-zero on fault. 1178 * 1179 * REGISTER INPUTS: 1180 * r9 = MAGIC 1181 * r10 = RIP 1182 * r11 = new RIP on fault 1183 * 1184 * REGISTER OUTPUTS: 1185 * r9 = exception vector (non-zero) 1186 * r10 = error code 1187 */ 1188 #define __KVM_ASM_SAFE(insn, fep) \ 1189 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ 1190 "lea 1f(%%rip), %%r10\n\t" \ 1191 "lea 2f(%%rip), %%r11\n\t" \ 1192 fep "1: " insn "\n\t" \ 1193 "xor %%r9, %%r9\n\t" \ 1194 "2:\n\t" \ 1195 "mov %%r9b, %[vector]\n\t" \ 1196 "mov %%r10, %[error_code]\n\t" 1197 1198 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "") 1199 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP) 1200 1201 #define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) 1202 #define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" 1203 1204 #define kvm_asm_safe(insn, inputs...) \ 1205 ({ \ 1206 uint64_t ign_error_code; \ 1207 uint8_t vector; \ 1208 \ 1209 asm volatile(KVM_ASM_SAFE(insn) \ 1210 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1211 : inputs \ 1212 : KVM_ASM_SAFE_CLOBBERS); \ 1213 vector; \ 1214 }) 1215 1216 #define kvm_asm_safe_ec(insn, error_code, inputs...) \ 1217 ({ \ 1218 uint8_t vector; \ 1219 \ 1220 asm volatile(KVM_ASM_SAFE(insn) \ 1221 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1222 : inputs \ 1223 : KVM_ASM_SAFE_CLOBBERS); \ 1224 vector; \ 1225 }) 1226 1227 #define kvm_asm_safe_fep(insn, inputs...) \ 1228 ({ \ 1229 uint64_t ign_error_code; \ 1230 uint8_t vector; \ 1231 \ 1232 asm volatile(KVM_ASM_SAFE(insn) \ 1233 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1234 : inputs \ 1235 : KVM_ASM_SAFE_CLOBBERS); \ 1236 vector; \ 1237 }) 1238 1239 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \ 1240 ({ \ 1241 uint8_t vector; \ 1242 \ 1243 asm volatile(KVM_ASM_SAFE_FEP(insn) \ 1244 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1245 : inputs \ 1246 : KVM_ASM_SAFE_CLOBBERS); \ 1247 vector; \ 1248 }) 1249 1250 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1251 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \ 1252 { \ 1253 uint64_t error_code; \ 1254 uint8_t vector; \ 1255 uint32_t a, d; \ 1256 \ 1257 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \ 1258 : "=a"(a), "=d"(d), \ 1259 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1260 : "c"(idx) \ 1261 : KVM_ASM_SAFE_CLOBBERS); \ 1262 \ 1263 *val = (uint64_t)a | ((uint64_t)d << 32); \ 1264 return vector; \ 1265 } 1266 1267 /* 1268 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that 1269 * use ECX as in input index, and EDX:EAX as a 64-bit output. 1270 */ 1271 #define BUILD_READ_U64_SAFE_HELPERS(insn) \ 1272 BUILD_READ_U64_SAFE_HELPER(insn, , ) \ 1273 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1274 1275 BUILD_READ_U64_SAFE_HELPERS(rdmsr) 1276 BUILD_READ_U64_SAFE_HELPERS(rdpmc) 1277 BUILD_READ_U64_SAFE_HELPERS(xgetbv) 1278 1279 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) 1280 { 1281 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); 1282 } 1283 1284 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) 1285 { 1286 u32 eax = value; 1287 u32 edx = value >> 32; 1288 1289 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); 1290 } 1291 1292 bool kvm_is_tdp_enabled(void); 1293 1294 static inline bool kvm_is_pmu_enabled(void) 1295 { 1296 return get_kvm_param_bool("enable_pmu"); 1297 } 1298 1299 static inline bool kvm_is_forced_emulation_enabled(void) 1300 { 1301 return !!get_kvm_param_integer("force_emulation_prefix"); 1302 } 1303 1304 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 1305 int *level); 1306 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); 1307 1308 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1309 uint64_t a3); 1310 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1311 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1312 1313 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa, 1314 uint64_t size, uint64_t flags) 1315 { 1316 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0); 1317 } 1318 1319 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, 1320 uint64_t flags) 1321 { 1322 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags); 1323 1324 GUEST_ASSERT(!ret); 1325 } 1326 1327 void __vm_xsave_require_permission(uint64_t xfeature, const char *name); 1328 1329 #define vm_xsave_require_permission(xfeature) \ 1330 __vm_xsave_require_permission(xfeature, #xfeature) 1331 1332 enum pg_level { 1333 PG_LEVEL_NONE, 1334 PG_LEVEL_4K, 1335 PG_LEVEL_2M, 1336 PG_LEVEL_1G, 1337 PG_LEVEL_512G, 1338 PG_LEVEL_NUM 1339 }; 1340 1341 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) 1342 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) 1343 1344 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) 1345 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) 1346 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) 1347 1348 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); 1349 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1350 uint64_t nr_bytes, int level); 1351 1352 /* 1353 * Basic CPU control in CR0 1354 */ 1355 #define X86_CR0_PE (1UL<<0) /* Protection Enable */ 1356 #define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ 1357 #define X86_CR0_EM (1UL<<2) /* Emulation */ 1358 #define X86_CR0_TS (1UL<<3) /* Task Switched */ 1359 #define X86_CR0_ET (1UL<<4) /* Extension Type */ 1360 #define X86_CR0_NE (1UL<<5) /* Numeric Error */ 1361 #define X86_CR0_WP (1UL<<16) /* Write Protect */ 1362 #define X86_CR0_AM (1UL<<18) /* Alignment Mask */ 1363 #define X86_CR0_NW (1UL<<29) /* Not Write-through */ 1364 #define X86_CR0_CD (1UL<<30) /* Cache Disable */ 1365 #define X86_CR0_PG (1UL<<31) /* Paging */ 1366 1367 #define PFERR_PRESENT_BIT 0 1368 #define PFERR_WRITE_BIT 1 1369 #define PFERR_USER_BIT 2 1370 #define PFERR_RSVD_BIT 3 1371 #define PFERR_FETCH_BIT 4 1372 #define PFERR_PK_BIT 5 1373 #define PFERR_SGX_BIT 15 1374 #define PFERR_GUEST_FINAL_BIT 32 1375 #define PFERR_GUEST_PAGE_BIT 33 1376 #define PFERR_IMPLICIT_ACCESS_BIT 48 1377 1378 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 1379 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 1380 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 1381 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 1382 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 1383 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 1384 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 1385 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 1386 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 1387 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 1388 1389 bool sys_clocksource_is_based_on_tsc(void); 1390 1391 #endif /* SELFTEST_KVM_PROCESSOR_H */ 1392