xref: /linux/tools/testing/selftests/kvm/include/x86_64/processor.h (revision 2bd87951de659df3381ce083342aaf5b1ea24689)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10 
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14 
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17 
18 #include <linux/kvm_para.h>
19 #include <linux/stringify.h>
20 
21 #include "../kvm_util.h"
22 
23 extern bool host_cpu_is_intel;
24 extern bool host_cpu_is_amd;
25 
26 enum vm_guest_x86_subtype {
27 	VM_SUBTYPE_NONE = 0,
28 	VM_SUBTYPE_SEV,
29 	VM_SUBTYPE_SEV_ES,
30 };
31 
32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34 
35 #define NMI_VECTOR		0x02
36 
37 #define X86_EFLAGS_FIXED	 (1u << 1)
38 
39 #define X86_CR4_VME		(1ul << 0)
40 #define X86_CR4_PVI		(1ul << 1)
41 #define X86_CR4_TSD		(1ul << 2)
42 #define X86_CR4_DE		(1ul << 3)
43 #define X86_CR4_PSE		(1ul << 4)
44 #define X86_CR4_PAE		(1ul << 5)
45 #define X86_CR4_MCE		(1ul << 6)
46 #define X86_CR4_PGE		(1ul << 7)
47 #define X86_CR4_PCE		(1ul << 8)
48 #define X86_CR4_OSFXSR		(1ul << 9)
49 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
50 #define X86_CR4_UMIP		(1ul << 11)
51 #define X86_CR4_LA57		(1ul << 12)
52 #define X86_CR4_VMXE		(1ul << 13)
53 #define X86_CR4_SMXE		(1ul << 14)
54 #define X86_CR4_FSGSBASE	(1ul << 16)
55 #define X86_CR4_PCIDE		(1ul << 17)
56 #define X86_CR4_OSXSAVE		(1ul << 18)
57 #define X86_CR4_SMEP		(1ul << 20)
58 #define X86_CR4_SMAP		(1ul << 21)
59 #define X86_CR4_PKE		(1ul << 22)
60 
61 struct xstate_header {
62 	u64				xstate_bv;
63 	u64				xcomp_bv;
64 	u64				reserved[6];
65 } __attribute__((packed));
66 
67 struct xstate {
68 	u8				i387[512];
69 	struct xstate_header		header;
70 	u8				extended_state_area[0];
71 } __attribute__ ((packed, aligned (64)));
72 
73 #define XFEATURE_MASK_FP		BIT_ULL(0)
74 #define XFEATURE_MASK_SSE		BIT_ULL(1)
75 #define XFEATURE_MASK_YMM		BIT_ULL(2)
76 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
77 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
78 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
79 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
80 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
81 #define XFEATURE_MASK_PT		BIT_ULL(8)
82 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
83 #define XFEATURE_MASK_PASID		BIT_ULL(10)
84 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
85 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
86 #define XFEATURE_MASK_LBR		BIT_ULL(15)
87 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
88 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
89 
90 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
91 					 XFEATURE_MASK_ZMM_Hi256 | \
92 					 XFEATURE_MASK_Hi16_ZMM)
93 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
94 					 XFEATURE_MASK_XTILE_CFG)
95 
96 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
97 enum cpuid_output_regs {
98 	KVM_CPUID_EAX,
99 	KVM_CPUID_EBX,
100 	KVM_CPUID_ECX,
101 	KVM_CPUID_EDX
102 };
103 
104 /*
105  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106  * passed by value with no overhead.
107  */
108 struct kvm_x86_cpu_feature {
109 	u32	function;
110 	u16	index;
111 	u8	reg;
112 	u8	bit;
113 };
114 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
115 ({										\
116 	struct kvm_x86_cpu_feature feature = {					\
117 		.function = fn,							\
118 		.index = idx,							\
119 		.reg = KVM_CPUID_##gpr,						\
120 		.bit = __bit,							\
121 	};									\
122 										\
123 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
124 			  (fn & 0xc0000000) == 0x40000000 ||			\
125 			  (fn & 0xc0000000) == 0x80000000 ||			\
126 			  (fn & 0xc0000000) == 0xc0000000);			\
127 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
128 	feature;								\
129 })
130 
131 /*
132  * Basic Leafs, a.k.a. Intel defined
133  */
134 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181 
182 /*
183  * Extended Leafs, a.k.a. AMD defined
184  */
185 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
201 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
202 
203 /*
204  * KVM defined paravirt features.
205  */
206 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
207 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
208 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
209 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
210 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
211 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
212 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
213 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
214 /* Bit 8 apparently isn't used?!?! */
215 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
216 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
217 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
218 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
219 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
220 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
221 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
222 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
223 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
224 
225 /*
226  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
227  * value/property as opposed to a single-bit feature.  Again, pack the info
228  * into a 64-bit value to pass by value with no overhead.
229  */
230 struct kvm_x86_cpu_property {
231 	u32	function;
232 	u8	index;
233 	u8	reg;
234 	u8	lo_bit;
235 	u8	hi_bit;
236 };
237 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
238 ({										\
239 	struct kvm_x86_cpu_property property = {				\
240 		.function = fn,							\
241 		.index = idx,							\
242 		.reg = KVM_CPUID_##gpr,						\
243 		.lo_bit = low_bit,						\
244 		.hi_bit = high_bit,						\
245 	};									\
246 										\
247 	kvm_static_assert(low_bit < high_bit);					\
248 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
249 			  (fn & 0xc0000000) == 0x40000000 ||			\
250 			  (fn & 0xc0000000) == 0x80000000 ||			\
251 			  (fn & 0xc0000000) == 0xc0000000);			\
252 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
253 	property;								\
254 })
255 
256 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
257 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
258 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
259 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
260 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
261 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
262 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
263 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
264 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
265 
266 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
267 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
268 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
269 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
270 
271 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
272 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
273 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
274 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
275 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
276 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
277 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
278 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
279 
280 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
281 
282 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
283 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
284 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
285 #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
286 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
287 
288 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
289 
290 /*
291  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
292  * that indicates the feature is _not_ supported, and a property that states
293  * the length of the bit mask of unsupported features.  A feature is supported
294  * if the size of the bit mask is larger than the "unavailable" bit, and said
295  * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
296  * arch events for general purpose counters.  Fixed counters are supported if a
297  * feature flag is set **OR** the total number of fixed counters is greater
298  * than index of the counter.
299  *
300  * Wrap the events for general purpose and fixed counters to simplify checking
301  * whether or not a given architectural event is supported.
302  */
303 struct kvm_x86_pmu_feature {
304 	struct kvm_x86_cpu_feature f;
305 };
306 #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
307 ({									\
308 	struct kvm_x86_pmu_feature feature = {				\
309 		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
310 	};								\
311 									\
312 	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
313 			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
314 	feature;							\
315 })
316 
317 #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
318 #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
319 #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
320 #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
321 #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
322 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
323 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
324 #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
325 
326 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
327 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
328 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
329 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
330 
331 static inline unsigned int x86_family(unsigned int eax)
332 {
333 	unsigned int x86;
334 
335 	x86 = (eax >> 8) & 0xf;
336 
337 	if (x86 == 0xf)
338 		x86 += (eax >> 20) & 0xff;
339 
340 	return x86;
341 }
342 
343 static inline unsigned int x86_model(unsigned int eax)
344 {
345 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
346 }
347 
348 /* Page table bitfield declarations */
349 #define PTE_PRESENT_MASK        BIT_ULL(0)
350 #define PTE_WRITABLE_MASK       BIT_ULL(1)
351 #define PTE_USER_MASK           BIT_ULL(2)
352 #define PTE_ACCESSED_MASK       BIT_ULL(5)
353 #define PTE_DIRTY_MASK          BIT_ULL(6)
354 #define PTE_LARGE_MASK          BIT_ULL(7)
355 #define PTE_GLOBAL_MASK         BIT_ULL(8)
356 #define PTE_NX_MASK             BIT_ULL(63)
357 
358 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
359 
360 #define PAGE_SHIFT		12
361 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
362 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
363 
364 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
365 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
366 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
367 
368 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
369 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
370 
371 /* General Registers in 64-Bit Mode */
372 struct gpr64_regs {
373 	u64 rax;
374 	u64 rcx;
375 	u64 rdx;
376 	u64 rbx;
377 	u64 rsp;
378 	u64 rbp;
379 	u64 rsi;
380 	u64 rdi;
381 	u64 r8;
382 	u64 r9;
383 	u64 r10;
384 	u64 r11;
385 	u64 r12;
386 	u64 r13;
387 	u64 r14;
388 	u64 r15;
389 };
390 
391 struct desc64 {
392 	uint16_t limit0;
393 	uint16_t base0;
394 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
395 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
396 	uint32_t base3;
397 	uint32_t zero1;
398 } __attribute__((packed));
399 
400 struct desc_ptr {
401 	uint16_t size;
402 	uint64_t address;
403 } __attribute__((packed));
404 
405 struct kvm_x86_state {
406 	struct kvm_xsave *xsave;
407 	struct kvm_vcpu_events events;
408 	struct kvm_mp_state mp_state;
409 	struct kvm_regs regs;
410 	struct kvm_xcrs xcrs;
411 	struct kvm_sregs sregs;
412 	struct kvm_debugregs debugregs;
413 	union {
414 		struct kvm_nested_state nested;
415 		char nested_[16384];
416 	};
417 	struct kvm_msrs msrs;
418 };
419 
420 static inline uint64_t get_desc64_base(const struct desc64 *desc)
421 {
422 	return ((uint64_t)desc->base3 << 32) |
423 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
424 }
425 
426 static inline uint64_t rdtsc(void)
427 {
428 	uint32_t eax, edx;
429 	uint64_t tsc_val;
430 	/*
431 	 * The lfence is to wait (on Intel CPUs) until all previous
432 	 * instructions have been executed. If software requires RDTSC to be
433 	 * executed prior to execution of any subsequent instruction, it can
434 	 * execute LFENCE immediately after RDTSC
435 	 */
436 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
437 	tsc_val = ((uint64_t)edx) << 32 | eax;
438 	return tsc_val;
439 }
440 
441 static inline uint64_t rdtscp(uint32_t *aux)
442 {
443 	uint32_t eax, edx;
444 
445 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
446 	return ((uint64_t)edx) << 32 | eax;
447 }
448 
449 static inline uint64_t rdmsr(uint32_t msr)
450 {
451 	uint32_t a, d;
452 
453 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
454 
455 	return a | ((uint64_t) d << 32);
456 }
457 
458 static inline void wrmsr(uint32_t msr, uint64_t value)
459 {
460 	uint32_t a = value;
461 	uint32_t d = value >> 32;
462 
463 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
464 }
465 
466 
467 static inline uint16_t inw(uint16_t port)
468 {
469 	uint16_t tmp;
470 
471 	__asm__ __volatile__("in %%dx, %%ax"
472 		: /* output */ "=a" (tmp)
473 		: /* input */ "d" (port));
474 
475 	return tmp;
476 }
477 
478 static inline uint16_t get_es(void)
479 {
480 	uint16_t es;
481 
482 	__asm__ __volatile__("mov %%es, %[es]"
483 			     : /* output */ [es]"=rm"(es));
484 	return es;
485 }
486 
487 static inline uint16_t get_cs(void)
488 {
489 	uint16_t cs;
490 
491 	__asm__ __volatile__("mov %%cs, %[cs]"
492 			     : /* output */ [cs]"=rm"(cs));
493 	return cs;
494 }
495 
496 static inline uint16_t get_ss(void)
497 {
498 	uint16_t ss;
499 
500 	__asm__ __volatile__("mov %%ss, %[ss]"
501 			     : /* output */ [ss]"=rm"(ss));
502 	return ss;
503 }
504 
505 static inline uint16_t get_ds(void)
506 {
507 	uint16_t ds;
508 
509 	__asm__ __volatile__("mov %%ds, %[ds]"
510 			     : /* output */ [ds]"=rm"(ds));
511 	return ds;
512 }
513 
514 static inline uint16_t get_fs(void)
515 {
516 	uint16_t fs;
517 
518 	__asm__ __volatile__("mov %%fs, %[fs]"
519 			     : /* output */ [fs]"=rm"(fs));
520 	return fs;
521 }
522 
523 static inline uint16_t get_gs(void)
524 {
525 	uint16_t gs;
526 
527 	__asm__ __volatile__("mov %%gs, %[gs]"
528 			     : /* output */ [gs]"=rm"(gs));
529 	return gs;
530 }
531 
532 static inline uint16_t get_tr(void)
533 {
534 	uint16_t tr;
535 
536 	__asm__ __volatile__("str %[tr]"
537 			     : /* output */ [tr]"=rm"(tr));
538 	return tr;
539 }
540 
541 static inline uint64_t get_cr0(void)
542 {
543 	uint64_t cr0;
544 
545 	__asm__ __volatile__("mov %%cr0, %[cr0]"
546 			     : /* output */ [cr0]"=r"(cr0));
547 	return cr0;
548 }
549 
550 static inline uint64_t get_cr3(void)
551 {
552 	uint64_t cr3;
553 
554 	__asm__ __volatile__("mov %%cr3, %[cr3]"
555 			     : /* output */ [cr3]"=r"(cr3));
556 	return cr3;
557 }
558 
559 static inline uint64_t get_cr4(void)
560 {
561 	uint64_t cr4;
562 
563 	__asm__ __volatile__("mov %%cr4, %[cr4]"
564 			     : /* output */ [cr4]"=r"(cr4));
565 	return cr4;
566 }
567 
568 static inline void set_cr4(uint64_t val)
569 {
570 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
571 }
572 
573 static inline u64 xgetbv(u32 index)
574 {
575 	u32 eax, edx;
576 
577 	__asm__ __volatile__("xgetbv;"
578 		     : "=a" (eax), "=d" (edx)
579 		     : "c" (index));
580 	return eax | ((u64)edx << 32);
581 }
582 
583 static inline void xsetbv(u32 index, u64 value)
584 {
585 	u32 eax = value;
586 	u32 edx = value >> 32;
587 
588 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
589 }
590 
591 static inline void wrpkru(u32 pkru)
592 {
593 	/* Note, ECX and EDX are architecturally required to be '0'. */
594 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
595 		     : : "a" (pkru), "c"(0), "d"(0));
596 }
597 
598 static inline struct desc_ptr get_gdt(void)
599 {
600 	struct desc_ptr gdt;
601 	__asm__ __volatile__("sgdt %[gdt]"
602 			     : /* output */ [gdt]"=m"(gdt));
603 	return gdt;
604 }
605 
606 static inline struct desc_ptr get_idt(void)
607 {
608 	struct desc_ptr idt;
609 	__asm__ __volatile__("sidt %[idt]"
610 			     : /* output */ [idt]"=m"(idt));
611 	return idt;
612 }
613 
614 static inline void outl(uint16_t port, uint32_t value)
615 {
616 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
617 }
618 
619 static inline void __cpuid(uint32_t function, uint32_t index,
620 			   uint32_t *eax, uint32_t *ebx,
621 			   uint32_t *ecx, uint32_t *edx)
622 {
623 	*eax = function;
624 	*ecx = index;
625 
626 	asm volatile("cpuid"
627 	    : "=a" (*eax),
628 	      "=b" (*ebx),
629 	      "=c" (*ecx),
630 	      "=d" (*edx)
631 	    : "0" (*eax), "2" (*ecx)
632 	    : "memory");
633 }
634 
635 static inline void cpuid(uint32_t function,
636 			 uint32_t *eax, uint32_t *ebx,
637 			 uint32_t *ecx, uint32_t *edx)
638 {
639 	return __cpuid(function, 0, eax, ebx, ecx, edx);
640 }
641 
642 static inline uint32_t this_cpu_fms(void)
643 {
644 	uint32_t eax, ebx, ecx, edx;
645 
646 	cpuid(1, &eax, &ebx, &ecx, &edx);
647 	return eax;
648 }
649 
650 static inline uint32_t this_cpu_family(void)
651 {
652 	return x86_family(this_cpu_fms());
653 }
654 
655 static inline uint32_t this_cpu_model(void)
656 {
657 	return x86_model(this_cpu_fms());
658 }
659 
660 static inline bool this_cpu_vendor_string_is(const char *vendor)
661 {
662 	const uint32_t *chunk = (const uint32_t *)vendor;
663 	uint32_t eax, ebx, ecx, edx;
664 
665 	cpuid(0, &eax, &ebx, &ecx, &edx);
666 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
667 }
668 
669 static inline bool this_cpu_is_intel(void)
670 {
671 	return this_cpu_vendor_string_is("GenuineIntel");
672 }
673 
674 /*
675  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
676  */
677 static inline bool this_cpu_is_amd(void)
678 {
679 	return this_cpu_vendor_string_is("AuthenticAMD");
680 }
681 
682 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
683 				      uint8_t reg, uint8_t lo, uint8_t hi)
684 {
685 	uint32_t gprs[4];
686 
687 	__cpuid(function, index,
688 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
689 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
690 
691 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
692 }
693 
694 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
695 {
696 	return __this_cpu_has(feature.function, feature.index,
697 			      feature.reg, feature.bit, feature.bit);
698 }
699 
700 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
701 {
702 	return __this_cpu_has(property.function, property.index,
703 			      property.reg, property.lo_bit, property.hi_bit);
704 }
705 
706 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
707 {
708 	uint32_t max_leaf;
709 
710 	switch (property.function & 0xc0000000) {
711 	case 0:
712 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
713 		break;
714 	case 0x40000000:
715 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
716 		break;
717 	case 0x80000000:
718 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
719 		break;
720 	case 0xc0000000:
721 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
722 	}
723 	return max_leaf >= property.function;
724 }
725 
726 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
727 {
728 	uint32_t nr_bits;
729 
730 	if (feature.f.reg == KVM_CPUID_EBX) {
731 		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
732 		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
733 	}
734 
735 	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
736 	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
737 	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
738 }
739 
740 static __always_inline uint64_t this_cpu_supported_xcr0(void)
741 {
742 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
743 		return 0;
744 
745 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
746 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
747 }
748 
749 typedef u32		__attribute__((vector_size(16))) sse128_t;
750 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
751 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
752 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
753 
754 static inline void read_sse_reg(int reg, sse128_t *data)
755 {
756 	switch (reg) {
757 	case 0:
758 		asm("movdqa %%xmm0, %0" : "=m"(*data));
759 		break;
760 	case 1:
761 		asm("movdqa %%xmm1, %0" : "=m"(*data));
762 		break;
763 	case 2:
764 		asm("movdqa %%xmm2, %0" : "=m"(*data));
765 		break;
766 	case 3:
767 		asm("movdqa %%xmm3, %0" : "=m"(*data));
768 		break;
769 	case 4:
770 		asm("movdqa %%xmm4, %0" : "=m"(*data));
771 		break;
772 	case 5:
773 		asm("movdqa %%xmm5, %0" : "=m"(*data));
774 		break;
775 	case 6:
776 		asm("movdqa %%xmm6, %0" : "=m"(*data));
777 		break;
778 	case 7:
779 		asm("movdqa %%xmm7, %0" : "=m"(*data));
780 		break;
781 	default:
782 		BUG();
783 	}
784 }
785 
786 static inline void write_sse_reg(int reg, const sse128_t *data)
787 {
788 	switch (reg) {
789 	case 0:
790 		asm("movdqa %0, %%xmm0" : : "m"(*data));
791 		break;
792 	case 1:
793 		asm("movdqa %0, %%xmm1" : : "m"(*data));
794 		break;
795 	case 2:
796 		asm("movdqa %0, %%xmm2" : : "m"(*data));
797 		break;
798 	case 3:
799 		asm("movdqa %0, %%xmm3" : : "m"(*data));
800 		break;
801 	case 4:
802 		asm("movdqa %0, %%xmm4" : : "m"(*data));
803 		break;
804 	case 5:
805 		asm("movdqa %0, %%xmm5" : : "m"(*data));
806 		break;
807 	case 6:
808 		asm("movdqa %0, %%xmm6" : : "m"(*data));
809 		break;
810 	case 7:
811 		asm("movdqa %0, %%xmm7" : : "m"(*data));
812 		break;
813 	default:
814 		BUG();
815 	}
816 }
817 
818 static inline void cpu_relax(void)
819 {
820 	asm volatile("rep; nop" ::: "memory");
821 }
822 
823 #define ud2()			\
824 	__asm__ __volatile__(	\
825 		"ud2\n"	\
826 		)
827 
828 #define hlt()			\
829 	__asm__ __volatile__(	\
830 		"hlt\n"	\
831 		)
832 
833 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
834 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
835 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
836 
837 const struct kvm_msr_list *kvm_get_msr_index_list(void);
838 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
839 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
840 uint64_t kvm_get_feature_msr(uint64_t msr_index);
841 
842 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
843 				 struct kvm_msrs *msrs)
844 {
845 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
846 
847 	TEST_ASSERT(r == msrs->nmsrs,
848 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
849 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
850 }
851 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
852 {
853 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
854 
855 	TEST_ASSERT(r == msrs->nmsrs,
856 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
857 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
858 }
859 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
860 				      struct kvm_debugregs *debugregs)
861 {
862 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
863 }
864 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
865 				      struct kvm_debugregs *debugregs)
866 {
867 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
868 }
869 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
870 				  struct kvm_xsave *xsave)
871 {
872 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
873 }
874 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
875 				   struct kvm_xsave *xsave)
876 {
877 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
878 }
879 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
880 				  struct kvm_xsave *xsave)
881 {
882 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
883 }
884 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
885 				 struct kvm_xcrs *xcrs)
886 {
887 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
888 }
889 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
890 {
891 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
892 }
893 
894 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
895 					       uint32_t function, uint32_t index);
896 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
897 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
898 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
899 
900 static inline uint32_t kvm_cpu_fms(void)
901 {
902 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
903 }
904 
905 static inline uint32_t kvm_cpu_family(void)
906 {
907 	return x86_family(kvm_cpu_fms());
908 }
909 
910 static inline uint32_t kvm_cpu_model(void)
911 {
912 	return x86_model(kvm_cpu_fms());
913 }
914 
915 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
916 		   struct kvm_x86_cpu_feature feature);
917 
918 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
919 {
920 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
921 }
922 
923 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
924 			    struct kvm_x86_cpu_property property);
925 
926 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
927 {
928 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
929 }
930 
931 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
932 {
933 	uint32_t max_leaf;
934 
935 	switch (property.function & 0xc0000000) {
936 	case 0:
937 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
938 		break;
939 	case 0x40000000:
940 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
941 		break;
942 	case 0x80000000:
943 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
944 		break;
945 	case 0xc0000000:
946 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
947 	}
948 	return max_leaf >= property.function;
949 }
950 
951 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
952 {
953 	uint32_t nr_bits;
954 
955 	if (feature.f.reg == KVM_CPUID_EBX) {
956 		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
957 		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
958 	}
959 
960 	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
961 	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
962 	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
963 }
964 
965 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
966 {
967 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
968 		return 0;
969 
970 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
971 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
972 }
973 
974 static inline size_t kvm_cpuid2_size(int nr_entries)
975 {
976 	return sizeof(struct kvm_cpuid2) +
977 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
978 }
979 
980 /*
981  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
982  * entries sized to hold @nr_entries.  The caller is responsible for freeing
983  * the struct.
984  */
985 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
986 {
987 	struct kvm_cpuid2 *cpuid;
988 
989 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
990 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
991 
992 	cpuid->nent = nr_entries;
993 
994 	return cpuid;
995 }
996 
997 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
998 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
999 
1000 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1001 							      uint32_t function,
1002 							      uint32_t index)
1003 {
1004 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1005 							  function, index);
1006 }
1007 
1008 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1009 							    uint32_t function)
1010 {
1011 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1012 }
1013 
1014 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1015 {
1016 	int r;
1017 
1018 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1019 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1020 	if (r)
1021 		return r;
1022 
1023 	/* On success, refresh the cache to pick up adjustments made by KVM. */
1024 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1025 	return 0;
1026 }
1027 
1028 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1029 {
1030 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1031 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1032 
1033 	/* Refresh the cache to pick up adjustments made by KVM. */
1034 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1035 }
1036 
1037 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1038 			     struct kvm_x86_cpu_property property,
1039 			     uint32_t value);
1040 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1041 
1042 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1043 
1044 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1045 				  struct kvm_x86_cpu_feature feature)
1046 {
1047 	struct kvm_cpuid_entry2 *entry;
1048 
1049 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1050 	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1051 }
1052 
1053 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1054 				     struct kvm_x86_cpu_feature feature,
1055 				     bool set);
1056 
1057 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1058 					  struct kvm_x86_cpu_feature feature)
1059 {
1060 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1061 
1062 }
1063 
1064 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1065 					    struct kvm_x86_cpu_feature feature)
1066 {
1067 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1068 }
1069 
1070 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1071 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1072 
1073 /*
1074  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1075  * Note, the caller provides the stringified name so that the name of macro is
1076  * printed, not the value the macro resolves to (due to macro expansion).
1077  */
1078 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1079 do {										\
1080 	if (__builtin_constant_p(msr)) {					\
1081 		TEST_ASSERT(cond, fmt, str, args);				\
1082 	} else if (!(cond)) {							\
1083 		char buf[16];							\
1084 										\
1085 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1086 		TEST_ASSERT(cond, fmt, buf, args);				\
1087 	}									\
1088 } while (0)
1089 
1090 /*
1091  * Returns true if KVM should return the last written value when reading an MSR
1092  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1093  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1094  * out MSRs that are not durable _and_ that a selftest wants to write.
1095  */
1096 static inline bool is_durable_msr(uint32_t msr)
1097 {
1098 	return msr != MSR_IA32_TSC;
1099 }
1100 
1101 #define vcpu_set_msr(vcpu, msr, val)							\
1102 do {											\
1103 	uint64_t r, v = val;								\
1104 											\
1105 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1106 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1107 	if (!is_durable_msr(msr))							\
1108 		break;									\
1109 	r = vcpu_get_msr(vcpu, msr);							\
1110 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1111 } while (0)
1112 
1113 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1114 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1115 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1116 
1117 struct ex_regs {
1118 	uint64_t rax, rcx, rdx, rbx;
1119 	uint64_t rbp, rsi, rdi;
1120 	uint64_t r8, r9, r10, r11;
1121 	uint64_t r12, r13, r14, r15;
1122 	uint64_t vector;
1123 	uint64_t error_code;
1124 	uint64_t rip;
1125 	uint64_t cs;
1126 	uint64_t rflags;
1127 };
1128 
1129 struct idt_entry {
1130 	uint16_t offset0;
1131 	uint16_t selector;
1132 	uint16_t ist : 3;
1133 	uint16_t : 5;
1134 	uint16_t type : 4;
1135 	uint16_t : 1;
1136 	uint16_t dpl : 2;
1137 	uint16_t p : 1;
1138 	uint16_t offset1;
1139 	uint32_t offset2; uint32_t reserved;
1140 };
1141 
1142 void vm_init_descriptor_tables(struct kvm_vm *vm);
1143 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1144 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1145 			void (*handler)(struct ex_regs *));
1146 
1147 /* If a toddler were to say "abracadabra". */
1148 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1149 
1150 /*
1151  * KVM selftest exception fixup uses registers to coordinate with the exception
1152  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1153  * per-CPU data.  Using only registers avoids having to map memory into the
1154  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1155  * for recursive faults when accessing memory in the handler.  The downside to
1156  * using registers is that it restricts what registers can be used by the actual
1157  * instruction.  But, selftests are 64-bit only, making register* pressure a
1158  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1159  * by the callee, and except for r11 are not implicit parameters to any
1160  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1161  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1162  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1163  *
1164  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1165  * is guaranteed to be non-zero on fault.
1166  *
1167  * REGISTER INPUTS:
1168  * r9  = MAGIC
1169  * r10 = RIP
1170  * r11 = new RIP on fault
1171  *
1172  * REGISTER OUTPUTS:
1173  * r9  = exception vector (non-zero)
1174  * r10 = error code
1175  */
1176 #define __KVM_ASM_SAFE(insn, fep)				\
1177 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1178 	"lea 1f(%%rip), %%r10\n\t"				\
1179 	"lea 2f(%%rip), %%r11\n\t"				\
1180 	fep "1: " insn "\n\t"					\
1181 	"xor %%r9, %%r9\n\t"					\
1182 	"2:\n\t"						\
1183 	"mov  %%r9b, %[vector]\n\t"				\
1184 	"mov  %%r10, %[error_code]\n\t"
1185 
1186 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1187 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1188 
1189 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1190 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1191 
1192 #define kvm_asm_safe(insn, inputs...)					\
1193 ({									\
1194 	uint64_t ign_error_code;					\
1195 	uint8_t vector;							\
1196 									\
1197 	asm volatile(KVM_ASM_SAFE(insn)					\
1198 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1199 		     : inputs						\
1200 		     : KVM_ASM_SAFE_CLOBBERS);				\
1201 	vector;								\
1202 })
1203 
1204 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1205 ({									\
1206 	uint8_t vector;							\
1207 									\
1208 	asm volatile(KVM_ASM_SAFE(insn)					\
1209 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1210 		     : inputs						\
1211 		     : KVM_ASM_SAFE_CLOBBERS);				\
1212 	vector;								\
1213 })
1214 
1215 #define kvm_asm_safe_fep(insn, inputs...)				\
1216 ({									\
1217 	uint64_t ign_error_code;					\
1218 	uint8_t vector;							\
1219 									\
1220 	asm volatile(KVM_ASM_SAFE(insn)					\
1221 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1222 		     : inputs						\
1223 		     : KVM_ASM_SAFE_CLOBBERS);				\
1224 	vector;								\
1225 })
1226 
1227 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1228 ({									\
1229 	uint8_t vector;							\
1230 									\
1231 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1232 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1233 		     : inputs						\
1234 		     : KVM_ASM_SAFE_CLOBBERS);				\
1235 	vector;								\
1236 })
1237 
1238 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1239 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1240 {									\
1241 	uint64_t error_code;						\
1242 	uint8_t vector;							\
1243 	uint32_t a, d;							\
1244 									\
1245 	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1246 		     : "=a"(a), "=d"(d),				\
1247 		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1248 		     : "c"(idx)						\
1249 		     : KVM_ASM_SAFE_CLOBBERS);				\
1250 									\
1251 	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1252 	return vector;							\
1253 }
1254 
1255 /*
1256  * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1257  * use ECX as in input index, and EDX:EAX as a 64-bit output.
1258  */
1259 #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1260 	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1261 	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1262 
1263 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1264 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1265 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1266 
1267 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1268 {
1269 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1270 }
1271 
1272 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1273 {
1274 	u32 eax = value;
1275 	u32 edx = value >> 32;
1276 
1277 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1278 }
1279 
1280 bool kvm_is_tdp_enabled(void);
1281 
1282 static inline bool kvm_is_pmu_enabled(void)
1283 {
1284 	return get_kvm_param_bool("enable_pmu");
1285 }
1286 
1287 static inline bool kvm_is_forced_emulation_enabled(void)
1288 {
1289 	return !!get_kvm_param_integer("force_emulation_prefix");
1290 }
1291 
1292 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1293 				    int *level);
1294 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1295 
1296 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1297 		       uint64_t a3);
1298 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1299 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1300 
1301 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1302 						     uint64_t size, uint64_t flags)
1303 {
1304 	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1305 }
1306 
1307 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1308 					       uint64_t flags)
1309 {
1310 	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1311 
1312 	GUEST_ASSERT(!ret);
1313 }
1314 
1315 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1316 
1317 #define vm_xsave_require_permission(xfeature)	\
1318 	__vm_xsave_require_permission(xfeature, #xfeature)
1319 
1320 enum pg_level {
1321 	PG_LEVEL_NONE,
1322 	PG_LEVEL_4K,
1323 	PG_LEVEL_2M,
1324 	PG_LEVEL_1G,
1325 	PG_LEVEL_512G,
1326 	PG_LEVEL_NUM
1327 };
1328 
1329 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1330 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1331 
1332 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1333 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1334 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1335 
1336 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1337 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1338 		    uint64_t nr_bytes, int level);
1339 
1340 /*
1341  * Basic CPU control in CR0
1342  */
1343 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1344 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1345 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1346 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1347 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1348 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1349 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1350 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1351 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1352 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1353 #define X86_CR0_PG          (1UL<<31) /* Paging */
1354 
1355 #define PFERR_PRESENT_BIT 0
1356 #define PFERR_WRITE_BIT 1
1357 #define PFERR_USER_BIT 2
1358 #define PFERR_RSVD_BIT 3
1359 #define PFERR_FETCH_BIT 4
1360 #define PFERR_PK_BIT 5
1361 #define PFERR_SGX_BIT 15
1362 #define PFERR_GUEST_FINAL_BIT 32
1363 #define PFERR_GUEST_PAGE_BIT 33
1364 #define PFERR_IMPLICIT_ACCESS_BIT 48
1365 
1366 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1367 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1368 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1369 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1370 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1371 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1372 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1373 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1374 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1375 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1376 
1377 bool sys_clocksource_is_based_on_tsc(void);
1378 
1379 #endif /* SELFTEST_KVM_PROCESSOR_H */
1380