1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * tools/testing/selftests/kvm/include/x86_64/processor.h 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #ifndef SELFTEST_KVM_PROCESSOR_H 9 #define SELFTEST_KVM_PROCESSOR_H 10 11 #include <assert.h> 12 #include <stdint.h> 13 #include <syscall.h> 14 15 #include <asm/msr-index.h> 16 #include <asm/prctl.h> 17 18 #include <linux/kvm_para.h> 19 #include <linux/stringify.h> 20 21 #include "kvm_util.h" 22 #include "ucall_common.h" 23 24 extern bool host_cpu_is_intel; 25 extern bool host_cpu_is_amd; 26 27 /* Forced emulation prefix, used to invoke the emulator unconditionally. */ 28 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';" 29 30 #define NMI_VECTOR 0x02 31 32 #define X86_EFLAGS_FIXED (1u << 1) 33 34 #define X86_CR4_VME (1ul << 0) 35 #define X86_CR4_PVI (1ul << 1) 36 #define X86_CR4_TSD (1ul << 2) 37 #define X86_CR4_DE (1ul << 3) 38 #define X86_CR4_PSE (1ul << 4) 39 #define X86_CR4_PAE (1ul << 5) 40 #define X86_CR4_MCE (1ul << 6) 41 #define X86_CR4_PGE (1ul << 7) 42 #define X86_CR4_PCE (1ul << 8) 43 #define X86_CR4_OSFXSR (1ul << 9) 44 #define X86_CR4_OSXMMEXCPT (1ul << 10) 45 #define X86_CR4_UMIP (1ul << 11) 46 #define X86_CR4_LA57 (1ul << 12) 47 #define X86_CR4_VMXE (1ul << 13) 48 #define X86_CR4_SMXE (1ul << 14) 49 #define X86_CR4_FSGSBASE (1ul << 16) 50 #define X86_CR4_PCIDE (1ul << 17) 51 #define X86_CR4_OSXSAVE (1ul << 18) 52 #define X86_CR4_SMEP (1ul << 20) 53 #define X86_CR4_SMAP (1ul << 21) 54 #define X86_CR4_PKE (1ul << 22) 55 56 struct xstate_header { 57 u64 xstate_bv; 58 u64 xcomp_bv; 59 u64 reserved[6]; 60 } __attribute__((packed)); 61 62 struct xstate { 63 u8 i387[512]; 64 struct xstate_header header; 65 u8 extended_state_area[0]; 66 } __attribute__ ((packed, aligned (64))); 67 68 #define XFEATURE_MASK_FP BIT_ULL(0) 69 #define XFEATURE_MASK_SSE BIT_ULL(1) 70 #define XFEATURE_MASK_YMM BIT_ULL(2) 71 #define XFEATURE_MASK_BNDREGS BIT_ULL(3) 72 #define XFEATURE_MASK_BNDCSR BIT_ULL(4) 73 #define XFEATURE_MASK_OPMASK BIT_ULL(5) 74 #define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) 75 #define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) 76 #define XFEATURE_MASK_PT BIT_ULL(8) 77 #define XFEATURE_MASK_PKRU BIT_ULL(9) 78 #define XFEATURE_MASK_PASID BIT_ULL(10) 79 #define XFEATURE_MASK_CET_USER BIT_ULL(11) 80 #define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) 81 #define XFEATURE_MASK_LBR BIT_ULL(15) 82 #define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) 83 #define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) 84 85 #define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ 86 XFEATURE_MASK_ZMM_Hi256 | \ 87 XFEATURE_MASK_Hi16_ZMM) 88 #define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ 89 XFEATURE_MASK_XTILE_CFG) 90 91 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ 92 enum cpuid_output_regs { 93 KVM_CPUID_EAX, 94 KVM_CPUID_EBX, 95 KVM_CPUID_ECX, 96 KVM_CPUID_EDX 97 }; 98 99 /* 100 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be 101 * passed by value with no overhead. 102 */ 103 struct kvm_x86_cpu_feature { 104 u32 function; 105 u16 index; 106 u8 reg; 107 u8 bit; 108 }; 109 #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ 110 ({ \ 111 struct kvm_x86_cpu_feature feature = { \ 112 .function = fn, \ 113 .index = idx, \ 114 .reg = KVM_CPUID_##gpr, \ 115 .bit = __bit, \ 116 }; \ 117 \ 118 kvm_static_assert((fn & 0xc0000000) == 0 || \ 119 (fn & 0xc0000000) == 0x40000000 || \ 120 (fn & 0xc0000000) == 0x80000000 || \ 121 (fn & 0xc0000000) == 0xc0000000); \ 122 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ 123 feature; \ 124 }) 125 126 /* 127 * Basic Leafs, a.k.a. Intel defined 128 */ 129 #define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) 130 #define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) 131 #define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) 132 #define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) 133 #define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) 134 #define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) 135 #define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) 136 #define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) 137 #define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) 138 #define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) 139 #define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) 140 #define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) 141 #define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) 142 #define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) 143 #define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) 144 #define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) 145 #define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) 146 #define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) 147 #define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) 148 #define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) 149 #define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) 150 #define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) 151 #define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) 152 #define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) 153 #define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) 154 #define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) 155 #define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) 156 #define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) 157 #define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) 158 #define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) 159 #define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) 160 #define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) 161 #define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4) 162 #define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) 163 #define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) 164 #define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) 165 #define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) 166 #define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) 167 #define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) 168 #define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) 169 #define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) 170 #define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) 171 #define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) 172 #define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) 173 #define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) 174 #define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) 175 #define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) 176 177 /* 178 * Extended Leafs, a.k.a. AMD defined 179 */ 180 #define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) 181 #define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) 182 #define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) 183 #define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) 184 #define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) 185 #define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) 186 #define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) 187 #define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) 188 #define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) 189 #define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) 190 #define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) 191 #define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) 192 #define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) 193 #define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) 194 #define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) 195 #define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) 196 #define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) 197 198 /* 199 * KVM defined paravirt features. 200 */ 201 #define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) 202 #define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) 203 #define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) 204 #define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) 205 #define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) 206 #define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) 207 #define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) 208 #define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) 209 /* Bit 8 apparently isn't used?!?! */ 210 #define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) 211 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) 212 #define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) 213 #define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) 214 #define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) 215 #define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) 216 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) 217 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) 218 #define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) 219 220 /* 221 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit 222 * value/property as opposed to a single-bit feature. Again, pack the info 223 * into a 64-bit value to pass by value with no overhead. 224 */ 225 struct kvm_x86_cpu_property { 226 u32 function; 227 u8 index; 228 u8 reg; 229 u8 lo_bit; 230 u8 hi_bit; 231 }; 232 #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ 233 ({ \ 234 struct kvm_x86_cpu_property property = { \ 235 .function = fn, \ 236 .index = idx, \ 237 .reg = KVM_CPUID_##gpr, \ 238 .lo_bit = low_bit, \ 239 .hi_bit = high_bit, \ 240 }; \ 241 \ 242 kvm_static_assert(low_bit < high_bit); \ 243 kvm_static_assert((fn & 0xc0000000) == 0 || \ 244 (fn & 0xc0000000) == 0x40000000 || \ 245 (fn & 0xc0000000) == 0x80000000 || \ 246 (fn & 0xc0000000) == 0xc0000000); \ 247 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ 248 property; \ 249 }) 250 251 #define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) 252 #define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) 253 #define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) 254 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) 255 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) 256 #define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) 257 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) 258 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) 259 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) 260 261 #define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) 262 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) 263 #define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) 264 #define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) 265 266 #define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) 267 #define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) 268 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) 269 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) 270 #define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) 271 #define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) 272 #define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) 273 #define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) 274 275 #define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) 276 277 #define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) 278 #define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) 279 #define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) 280 #define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5) 281 #define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) 282 283 #define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) 284 285 /* 286 * Intel's architectural PMU events are bizarre. They have a "feature" bit 287 * that indicates the feature is _not_ supported, and a property that states 288 * the length of the bit mask of unsupported features. A feature is supported 289 * if the size of the bit mask is larger than the "unavailable" bit, and said 290 * bit is not set. Fixed counters also bizarre enumeration, but inverted from 291 * arch events for general purpose counters. Fixed counters are supported if a 292 * feature flag is set **OR** the total number of fixed counters is greater 293 * than index of the counter. 294 * 295 * Wrap the events for general purpose and fixed counters to simplify checking 296 * whether or not a given architectural event is supported. 297 */ 298 struct kvm_x86_pmu_feature { 299 struct kvm_x86_cpu_feature f; 300 }; 301 #define KVM_X86_PMU_FEATURE(__reg, __bit) \ 302 ({ \ 303 struct kvm_x86_pmu_feature feature = { \ 304 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \ 305 }; \ 306 \ 307 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \ 308 KVM_CPUID_##__reg == KVM_CPUID_ECX); \ 309 feature; \ 310 }) 311 312 #define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0) 313 #define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1) 314 #define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2) 315 #define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3) 316 #define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4) 317 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5) 318 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6) 319 #define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7) 320 321 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0) 322 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1) 323 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2) 324 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3) 325 326 static inline unsigned int x86_family(unsigned int eax) 327 { 328 unsigned int x86; 329 330 x86 = (eax >> 8) & 0xf; 331 332 if (x86 == 0xf) 333 x86 += (eax >> 20) & 0xff; 334 335 return x86; 336 } 337 338 static inline unsigned int x86_model(unsigned int eax) 339 { 340 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); 341 } 342 343 /* Page table bitfield declarations */ 344 #define PTE_PRESENT_MASK BIT_ULL(0) 345 #define PTE_WRITABLE_MASK BIT_ULL(1) 346 #define PTE_USER_MASK BIT_ULL(2) 347 #define PTE_ACCESSED_MASK BIT_ULL(5) 348 #define PTE_DIRTY_MASK BIT_ULL(6) 349 #define PTE_LARGE_MASK BIT_ULL(7) 350 #define PTE_GLOBAL_MASK BIT_ULL(8) 351 #define PTE_NX_MASK BIT_ULL(63) 352 353 #define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) 354 355 #define PAGE_SHIFT 12 356 #define PAGE_SIZE (1ULL << PAGE_SHIFT) 357 #define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) 358 359 #define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) 360 #define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) 361 #define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) 362 363 #define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) 364 #define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) 365 366 /* General Registers in 64-Bit Mode */ 367 struct gpr64_regs { 368 u64 rax; 369 u64 rcx; 370 u64 rdx; 371 u64 rbx; 372 u64 rsp; 373 u64 rbp; 374 u64 rsi; 375 u64 rdi; 376 u64 r8; 377 u64 r9; 378 u64 r10; 379 u64 r11; 380 u64 r12; 381 u64 r13; 382 u64 r14; 383 u64 r15; 384 }; 385 386 struct desc64 { 387 uint16_t limit0; 388 uint16_t base0; 389 unsigned base1:8, type:4, s:1, dpl:2, p:1; 390 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; 391 uint32_t base3; 392 uint32_t zero1; 393 } __attribute__((packed)); 394 395 struct desc_ptr { 396 uint16_t size; 397 uint64_t address; 398 } __attribute__((packed)); 399 400 struct kvm_x86_state { 401 struct kvm_xsave *xsave; 402 struct kvm_vcpu_events events; 403 struct kvm_mp_state mp_state; 404 struct kvm_regs regs; 405 struct kvm_xcrs xcrs; 406 struct kvm_sregs sregs; 407 struct kvm_debugregs debugregs; 408 union { 409 struct kvm_nested_state nested; 410 char nested_[16384]; 411 }; 412 struct kvm_msrs msrs; 413 }; 414 415 static inline uint64_t get_desc64_base(const struct desc64 *desc) 416 { 417 return ((uint64_t)desc->base3 << 32) | 418 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); 419 } 420 421 static inline uint64_t rdtsc(void) 422 { 423 uint32_t eax, edx; 424 uint64_t tsc_val; 425 /* 426 * The lfence is to wait (on Intel CPUs) until all previous 427 * instructions have been executed. If software requires RDTSC to be 428 * executed prior to execution of any subsequent instruction, it can 429 * execute LFENCE immediately after RDTSC 430 */ 431 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 432 tsc_val = ((uint64_t)edx) << 32 | eax; 433 return tsc_val; 434 } 435 436 static inline uint64_t rdtscp(uint32_t *aux) 437 { 438 uint32_t eax, edx; 439 440 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); 441 return ((uint64_t)edx) << 32 | eax; 442 } 443 444 static inline uint64_t rdmsr(uint32_t msr) 445 { 446 uint32_t a, d; 447 448 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); 449 450 return a | ((uint64_t) d << 32); 451 } 452 453 static inline void wrmsr(uint32_t msr, uint64_t value) 454 { 455 uint32_t a = value; 456 uint32_t d = value >> 32; 457 458 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); 459 } 460 461 462 static inline uint16_t inw(uint16_t port) 463 { 464 uint16_t tmp; 465 466 __asm__ __volatile__("in %%dx, %%ax" 467 : /* output */ "=a" (tmp) 468 : /* input */ "d" (port)); 469 470 return tmp; 471 } 472 473 static inline uint16_t get_es(void) 474 { 475 uint16_t es; 476 477 __asm__ __volatile__("mov %%es, %[es]" 478 : /* output */ [es]"=rm"(es)); 479 return es; 480 } 481 482 static inline uint16_t get_cs(void) 483 { 484 uint16_t cs; 485 486 __asm__ __volatile__("mov %%cs, %[cs]" 487 : /* output */ [cs]"=rm"(cs)); 488 return cs; 489 } 490 491 static inline uint16_t get_ss(void) 492 { 493 uint16_t ss; 494 495 __asm__ __volatile__("mov %%ss, %[ss]" 496 : /* output */ [ss]"=rm"(ss)); 497 return ss; 498 } 499 500 static inline uint16_t get_ds(void) 501 { 502 uint16_t ds; 503 504 __asm__ __volatile__("mov %%ds, %[ds]" 505 : /* output */ [ds]"=rm"(ds)); 506 return ds; 507 } 508 509 static inline uint16_t get_fs(void) 510 { 511 uint16_t fs; 512 513 __asm__ __volatile__("mov %%fs, %[fs]" 514 : /* output */ [fs]"=rm"(fs)); 515 return fs; 516 } 517 518 static inline uint16_t get_gs(void) 519 { 520 uint16_t gs; 521 522 __asm__ __volatile__("mov %%gs, %[gs]" 523 : /* output */ [gs]"=rm"(gs)); 524 return gs; 525 } 526 527 static inline uint16_t get_tr(void) 528 { 529 uint16_t tr; 530 531 __asm__ __volatile__("str %[tr]" 532 : /* output */ [tr]"=rm"(tr)); 533 return tr; 534 } 535 536 static inline uint64_t get_cr0(void) 537 { 538 uint64_t cr0; 539 540 __asm__ __volatile__("mov %%cr0, %[cr0]" 541 : /* output */ [cr0]"=r"(cr0)); 542 return cr0; 543 } 544 545 static inline uint64_t get_cr3(void) 546 { 547 uint64_t cr3; 548 549 __asm__ __volatile__("mov %%cr3, %[cr3]" 550 : /* output */ [cr3]"=r"(cr3)); 551 return cr3; 552 } 553 554 static inline uint64_t get_cr4(void) 555 { 556 uint64_t cr4; 557 558 __asm__ __volatile__("mov %%cr4, %[cr4]" 559 : /* output */ [cr4]"=r"(cr4)); 560 return cr4; 561 } 562 563 static inline void set_cr4(uint64_t val) 564 { 565 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); 566 } 567 568 static inline u64 xgetbv(u32 index) 569 { 570 u32 eax, edx; 571 572 __asm__ __volatile__("xgetbv;" 573 : "=a" (eax), "=d" (edx) 574 : "c" (index)); 575 return eax | ((u64)edx << 32); 576 } 577 578 static inline void xsetbv(u32 index, u64 value) 579 { 580 u32 eax = value; 581 u32 edx = value >> 32; 582 583 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); 584 } 585 586 static inline void wrpkru(u32 pkru) 587 { 588 /* Note, ECX and EDX are architecturally required to be '0'. */ 589 asm volatile(".byte 0x0f,0x01,0xef\n\t" 590 : : "a" (pkru), "c"(0), "d"(0)); 591 } 592 593 static inline struct desc_ptr get_gdt(void) 594 { 595 struct desc_ptr gdt; 596 __asm__ __volatile__("sgdt %[gdt]" 597 : /* output */ [gdt]"=m"(gdt)); 598 return gdt; 599 } 600 601 static inline struct desc_ptr get_idt(void) 602 { 603 struct desc_ptr idt; 604 __asm__ __volatile__("sidt %[idt]" 605 : /* output */ [idt]"=m"(idt)); 606 return idt; 607 } 608 609 static inline void outl(uint16_t port, uint32_t value) 610 { 611 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); 612 } 613 614 static inline void __cpuid(uint32_t function, uint32_t index, 615 uint32_t *eax, uint32_t *ebx, 616 uint32_t *ecx, uint32_t *edx) 617 { 618 *eax = function; 619 *ecx = index; 620 621 asm volatile("cpuid" 622 : "=a" (*eax), 623 "=b" (*ebx), 624 "=c" (*ecx), 625 "=d" (*edx) 626 : "0" (*eax), "2" (*ecx) 627 : "memory"); 628 } 629 630 static inline void cpuid(uint32_t function, 631 uint32_t *eax, uint32_t *ebx, 632 uint32_t *ecx, uint32_t *edx) 633 { 634 return __cpuid(function, 0, eax, ebx, ecx, edx); 635 } 636 637 static inline uint32_t this_cpu_fms(void) 638 { 639 uint32_t eax, ebx, ecx, edx; 640 641 cpuid(1, &eax, &ebx, &ecx, &edx); 642 return eax; 643 } 644 645 static inline uint32_t this_cpu_family(void) 646 { 647 return x86_family(this_cpu_fms()); 648 } 649 650 static inline uint32_t this_cpu_model(void) 651 { 652 return x86_model(this_cpu_fms()); 653 } 654 655 static inline bool this_cpu_vendor_string_is(const char *vendor) 656 { 657 const uint32_t *chunk = (const uint32_t *)vendor; 658 uint32_t eax, ebx, ecx, edx; 659 660 cpuid(0, &eax, &ebx, &ecx, &edx); 661 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 662 } 663 664 static inline bool this_cpu_is_intel(void) 665 { 666 return this_cpu_vendor_string_is("GenuineIntel"); 667 } 668 669 /* 670 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 671 */ 672 static inline bool this_cpu_is_amd(void) 673 { 674 return this_cpu_vendor_string_is("AuthenticAMD"); 675 } 676 677 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, 678 uint8_t reg, uint8_t lo, uint8_t hi) 679 { 680 uint32_t gprs[4]; 681 682 __cpuid(function, index, 683 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], 684 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); 685 686 return (gprs[reg] & GENMASK(hi, lo)) >> lo; 687 } 688 689 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) 690 { 691 return __this_cpu_has(feature.function, feature.index, 692 feature.reg, feature.bit, feature.bit); 693 } 694 695 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) 696 { 697 return __this_cpu_has(property.function, property.index, 698 property.reg, property.lo_bit, property.hi_bit); 699 } 700 701 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) 702 { 703 uint32_t max_leaf; 704 705 switch (property.function & 0xc0000000) { 706 case 0: 707 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 708 break; 709 case 0x40000000: 710 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 711 break; 712 case 0x80000000: 713 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 714 break; 715 case 0xc0000000: 716 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 717 } 718 return max_leaf >= property.function; 719 } 720 721 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) 722 { 723 uint32_t nr_bits; 724 725 if (feature.f.reg == KVM_CPUID_EBX) { 726 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 727 return nr_bits > feature.f.bit && !this_cpu_has(feature.f); 728 } 729 730 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX); 731 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 732 return nr_bits > feature.f.bit || this_cpu_has(feature.f); 733 } 734 735 static __always_inline uint64_t this_cpu_supported_xcr0(void) 736 { 737 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 738 return 0; 739 740 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 741 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 742 } 743 744 typedef u32 __attribute__((vector_size(16))) sse128_t; 745 #define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } 746 #define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) 747 #define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) 748 749 static inline void read_sse_reg(int reg, sse128_t *data) 750 { 751 switch (reg) { 752 case 0: 753 asm("movdqa %%xmm0, %0" : "=m"(*data)); 754 break; 755 case 1: 756 asm("movdqa %%xmm1, %0" : "=m"(*data)); 757 break; 758 case 2: 759 asm("movdqa %%xmm2, %0" : "=m"(*data)); 760 break; 761 case 3: 762 asm("movdqa %%xmm3, %0" : "=m"(*data)); 763 break; 764 case 4: 765 asm("movdqa %%xmm4, %0" : "=m"(*data)); 766 break; 767 case 5: 768 asm("movdqa %%xmm5, %0" : "=m"(*data)); 769 break; 770 case 6: 771 asm("movdqa %%xmm6, %0" : "=m"(*data)); 772 break; 773 case 7: 774 asm("movdqa %%xmm7, %0" : "=m"(*data)); 775 break; 776 default: 777 BUG(); 778 } 779 } 780 781 static inline void write_sse_reg(int reg, const sse128_t *data) 782 { 783 switch (reg) { 784 case 0: 785 asm("movdqa %0, %%xmm0" : : "m"(*data)); 786 break; 787 case 1: 788 asm("movdqa %0, %%xmm1" : : "m"(*data)); 789 break; 790 case 2: 791 asm("movdqa %0, %%xmm2" : : "m"(*data)); 792 break; 793 case 3: 794 asm("movdqa %0, %%xmm3" : : "m"(*data)); 795 break; 796 case 4: 797 asm("movdqa %0, %%xmm4" : : "m"(*data)); 798 break; 799 case 5: 800 asm("movdqa %0, %%xmm5" : : "m"(*data)); 801 break; 802 case 6: 803 asm("movdqa %0, %%xmm6" : : "m"(*data)); 804 break; 805 case 7: 806 asm("movdqa %0, %%xmm7" : : "m"(*data)); 807 break; 808 default: 809 BUG(); 810 } 811 } 812 813 static inline void cpu_relax(void) 814 { 815 asm volatile("rep; nop" ::: "memory"); 816 } 817 818 #define ud2() \ 819 __asm__ __volatile__( \ 820 "ud2\n" \ 821 ) 822 823 #define hlt() \ 824 __asm__ __volatile__( \ 825 "hlt\n" \ 826 ) 827 828 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); 829 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); 830 void kvm_x86_state_cleanup(struct kvm_x86_state *state); 831 832 const struct kvm_msr_list *kvm_get_msr_index_list(void); 833 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); 834 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); 835 uint64_t kvm_get_feature_msr(uint64_t msr_index); 836 837 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, 838 struct kvm_msrs *msrs) 839 { 840 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); 841 842 TEST_ASSERT(r == msrs->nmsrs, 843 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", 844 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 845 } 846 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) 847 { 848 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); 849 850 TEST_ASSERT(r == msrs->nmsrs, 851 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", 852 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 853 } 854 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, 855 struct kvm_debugregs *debugregs) 856 { 857 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); 858 } 859 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, 860 struct kvm_debugregs *debugregs) 861 { 862 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); 863 } 864 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, 865 struct kvm_xsave *xsave) 866 { 867 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); 868 } 869 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, 870 struct kvm_xsave *xsave) 871 { 872 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); 873 } 874 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, 875 struct kvm_xsave *xsave) 876 { 877 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); 878 } 879 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, 880 struct kvm_xcrs *xcrs) 881 { 882 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); 883 } 884 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) 885 { 886 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); 887 } 888 889 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 890 uint32_t function, uint32_t index); 891 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); 892 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void); 893 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu); 894 895 static inline uint32_t kvm_cpu_fms(void) 896 { 897 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; 898 } 899 900 static inline uint32_t kvm_cpu_family(void) 901 { 902 return x86_family(kvm_cpu_fms()); 903 } 904 905 static inline uint32_t kvm_cpu_model(void) 906 { 907 return x86_model(kvm_cpu_fms()); 908 } 909 910 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 911 struct kvm_x86_cpu_feature feature); 912 913 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) 914 { 915 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); 916 } 917 918 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 919 struct kvm_x86_cpu_property property); 920 921 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) 922 { 923 return kvm_cpuid_property(kvm_get_supported_cpuid(), property); 924 } 925 926 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) 927 { 928 uint32_t max_leaf; 929 930 switch (property.function & 0xc0000000) { 931 case 0: 932 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 933 break; 934 case 0x40000000: 935 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 936 break; 937 case 0x80000000: 938 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 939 break; 940 case 0xc0000000: 941 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 942 } 943 return max_leaf >= property.function; 944 } 945 946 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) 947 { 948 uint32_t nr_bits; 949 950 if (feature.f.reg == KVM_CPUID_EBX) { 951 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 952 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f); 953 } 954 955 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX); 956 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 957 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f); 958 } 959 960 static __always_inline uint64_t kvm_cpu_supported_xcr0(void) 961 { 962 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 963 return 0; 964 965 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 966 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 967 } 968 969 static inline size_t kvm_cpuid2_size(int nr_entries) 970 { 971 return sizeof(struct kvm_cpuid2) + 972 sizeof(struct kvm_cpuid_entry2) * nr_entries; 973 } 974 975 /* 976 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of 977 * entries sized to hold @nr_entries. The caller is responsible for freeing 978 * the struct. 979 */ 980 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) 981 { 982 struct kvm_cpuid2 *cpuid; 983 984 cpuid = malloc(kvm_cpuid2_size(nr_entries)); 985 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); 986 987 cpuid->nent = nr_entries; 988 989 return cpuid; 990 } 991 992 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); 993 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu); 994 995 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 996 uint32_t function, 997 uint32_t index) 998 { 999 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, 1000 function, index); 1001 } 1002 1003 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 1004 uint32_t function) 1005 { 1006 return __vcpu_get_cpuid_entry(vcpu, function, 0); 1007 } 1008 1009 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1010 { 1011 int r; 1012 1013 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1014 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1015 if (r) 1016 return r; 1017 1018 /* On success, refresh the cache to pick up adjustments made by KVM. */ 1019 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 1020 return 0; 1021 } 1022 1023 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1024 { 1025 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1026 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1027 1028 /* Refresh the cache to pick up adjustments made by KVM. */ 1029 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 1030 } 1031 1032 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, 1033 struct kvm_x86_cpu_property property, 1034 uint32_t value); 1035 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); 1036 1037 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); 1038 1039 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu, 1040 struct kvm_x86_cpu_feature feature) 1041 { 1042 struct kvm_cpuid_entry2 *entry; 1043 1044 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 1045 return *((&entry->eax) + feature.reg) & BIT(feature.bit); 1046 } 1047 1048 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1049 struct kvm_x86_cpu_feature feature, 1050 bool set); 1051 1052 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, 1053 struct kvm_x86_cpu_feature feature) 1054 { 1055 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); 1056 1057 } 1058 1059 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1060 struct kvm_x86_cpu_feature feature) 1061 { 1062 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); 1063 } 1064 1065 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); 1066 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); 1067 1068 /* 1069 * Assert on an MSR access(es) and pretty print the MSR name when possible. 1070 * Note, the caller provides the stringified name so that the name of macro is 1071 * printed, not the value the macro resolves to (due to macro expansion). 1072 */ 1073 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ 1074 do { \ 1075 if (__builtin_constant_p(msr)) { \ 1076 TEST_ASSERT(cond, fmt, str, args); \ 1077 } else if (!(cond)) { \ 1078 char buf[16]; \ 1079 \ 1080 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ 1081 TEST_ASSERT(cond, fmt, buf, args); \ 1082 } \ 1083 } while (0) 1084 1085 /* 1086 * Returns true if KVM should return the last written value when reading an MSR 1087 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that 1088 * is changing, etc. This is NOT an exhaustive list! The intent is to filter 1089 * out MSRs that are not durable _and_ that a selftest wants to write. 1090 */ 1091 static inline bool is_durable_msr(uint32_t msr) 1092 { 1093 return msr != MSR_IA32_TSC; 1094 } 1095 1096 #define vcpu_set_msr(vcpu, msr, val) \ 1097 do { \ 1098 uint64_t r, v = val; \ 1099 \ 1100 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ 1101 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ 1102 if (!is_durable_msr(msr)) \ 1103 break; \ 1104 r = vcpu_get_msr(vcpu, msr); \ 1105 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ 1106 } while (0) 1107 1108 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); 1109 void kvm_init_vm_address_properties(struct kvm_vm *vm); 1110 bool vm_is_unrestricted_guest(struct kvm_vm *vm); 1111 1112 struct ex_regs { 1113 uint64_t rax, rcx, rdx, rbx; 1114 uint64_t rbp, rsi, rdi; 1115 uint64_t r8, r9, r10, r11; 1116 uint64_t r12, r13, r14, r15; 1117 uint64_t vector; 1118 uint64_t error_code; 1119 uint64_t rip; 1120 uint64_t cs; 1121 uint64_t rflags; 1122 }; 1123 1124 struct idt_entry { 1125 uint16_t offset0; 1126 uint16_t selector; 1127 uint16_t ist : 3; 1128 uint16_t : 5; 1129 uint16_t type : 4; 1130 uint16_t : 1; 1131 uint16_t dpl : 2; 1132 uint16_t p : 1; 1133 uint16_t offset1; 1134 uint32_t offset2; uint32_t reserved; 1135 }; 1136 1137 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1138 void (*handler)(struct ex_regs *)); 1139 1140 /* If a toddler were to say "abracadabra". */ 1141 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL 1142 1143 /* 1144 * KVM selftest exception fixup uses registers to coordinate with the exception 1145 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory 1146 * per-CPU data. Using only registers avoids having to map memory into the 1147 * guest, doesn't require a valid, stable GS.base, and reduces the risk of 1148 * for recursive faults when accessing memory in the handler. The downside to 1149 * using registers is that it restricts what registers can be used by the actual 1150 * instruction. But, selftests are 64-bit only, making register* pressure a 1151 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved 1152 * by the callee, and except for r11 are not implicit parameters to any 1153 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit 1154 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V 1155 * is higher priority than testing non-faulting SYSCALL/SYSRET. 1156 * 1157 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector 1158 * is guaranteed to be non-zero on fault. 1159 * 1160 * REGISTER INPUTS: 1161 * r9 = MAGIC 1162 * r10 = RIP 1163 * r11 = new RIP on fault 1164 * 1165 * REGISTER OUTPUTS: 1166 * r9 = exception vector (non-zero) 1167 * r10 = error code 1168 */ 1169 #define __KVM_ASM_SAFE(insn, fep) \ 1170 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ 1171 "lea 1f(%%rip), %%r10\n\t" \ 1172 "lea 2f(%%rip), %%r11\n\t" \ 1173 fep "1: " insn "\n\t" \ 1174 "xor %%r9, %%r9\n\t" \ 1175 "2:\n\t" \ 1176 "mov %%r9b, %[vector]\n\t" \ 1177 "mov %%r10, %[error_code]\n\t" 1178 1179 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "") 1180 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP) 1181 1182 #define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) 1183 #define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" 1184 1185 #define kvm_asm_safe(insn, inputs...) \ 1186 ({ \ 1187 uint64_t ign_error_code; \ 1188 uint8_t vector; \ 1189 \ 1190 asm volatile(KVM_ASM_SAFE(insn) \ 1191 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1192 : inputs \ 1193 : KVM_ASM_SAFE_CLOBBERS); \ 1194 vector; \ 1195 }) 1196 1197 #define kvm_asm_safe_ec(insn, error_code, inputs...) \ 1198 ({ \ 1199 uint8_t vector; \ 1200 \ 1201 asm volatile(KVM_ASM_SAFE(insn) \ 1202 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1203 : inputs \ 1204 : KVM_ASM_SAFE_CLOBBERS); \ 1205 vector; \ 1206 }) 1207 1208 #define kvm_asm_safe_fep(insn, inputs...) \ 1209 ({ \ 1210 uint64_t ign_error_code; \ 1211 uint8_t vector; \ 1212 \ 1213 asm volatile(KVM_ASM_SAFE(insn) \ 1214 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1215 : inputs \ 1216 : KVM_ASM_SAFE_CLOBBERS); \ 1217 vector; \ 1218 }) 1219 1220 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \ 1221 ({ \ 1222 uint8_t vector; \ 1223 \ 1224 asm volatile(KVM_ASM_SAFE_FEP(insn) \ 1225 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1226 : inputs \ 1227 : KVM_ASM_SAFE_CLOBBERS); \ 1228 vector; \ 1229 }) 1230 1231 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1232 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \ 1233 { \ 1234 uint64_t error_code; \ 1235 uint8_t vector; \ 1236 uint32_t a, d; \ 1237 \ 1238 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \ 1239 : "=a"(a), "=d"(d), \ 1240 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1241 : "c"(idx) \ 1242 : KVM_ASM_SAFE_CLOBBERS); \ 1243 \ 1244 *val = (uint64_t)a | ((uint64_t)d << 32); \ 1245 return vector; \ 1246 } 1247 1248 /* 1249 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that 1250 * use ECX as in input index, and EDX:EAX as a 64-bit output. 1251 */ 1252 #define BUILD_READ_U64_SAFE_HELPERS(insn) \ 1253 BUILD_READ_U64_SAFE_HELPER(insn, , ) \ 1254 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1255 1256 BUILD_READ_U64_SAFE_HELPERS(rdmsr) 1257 BUILD_READ_U64_SAFE_HELPERS(rdpmc) 1258 BUILD_READ_U64_SAFE_HELPERS(xgetbv) 1259 1260 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) 1261 { 1262 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); 1263 } 1264 1265 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) 1266 { 1267 u32 eax = value; 1268 u32 edx = value >> 32; 1269 1270 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); 1271 } 1272 1273 bool kvm_is_tdp_enabled(void); 1274 1275 static inline bool kvm_is_pmu_enabled(void) 1276 { 1277 return get_kvm_param_bool("enable_pmu"); 1278 } 1279 1280 static inline bool kvm_is_forced_emulation_enabled(void) 1281 { 1282 return !!get_kvm_param_integer("force_emulation_prefix"); 1283 } 1284 1285 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 1286 int *level); 1287 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); 1288 1289 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1290 uint64_t a3); 1291 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1292 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1293 1294 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa, 1295 uint64_t size, uint64_t flags) 1296 { 1297 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0); 1298 } 1299 1300 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, 1301 uint64_t flags) 1302 { 1303 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags); 1304 1305 GUEST_ASSERT(!ret); 1306 } 1307 1308 void __vm_xsave_require_permission(uint64_t xfeature, const char *name); 1309 1310 #define vm_xsave_require_permission(xfeature) \ 1311 __vm_xsave_require_permission(xfeature, #xfeature) 1312 1313 enum pg_level { 1314 PG_LEVEL_NONE, 1315 PG_LEVEL_4K, 1316 PG_LEVEL_2M, 1317 PG_LEVEL_1G, 1318 PG_LEVEL_512G, 1319 PG_LEVEL_NUM 1320 }; 1321 1322 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) 1323 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) 1324 1325 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) 1326 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) 1327 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) 1328 1329 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); 1330 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1331 uint64_t nr_bytes, int level); 1332 1333 /* 1334 * Basic CPU control in CR0 1335 */ 1336 #define X86_CR0_PE (1UL<<0) /* Protection Enable */ 1337 #define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ 1338 #define X86_CR0_EM (1UL<<2) /* Emulation */ 1339 #define X86_CR0_TS (1UL<<3) /* Task Switched */ 1340 #define X86_CR0_ET (1UL<<4) /* Extension Type */ 1341 #define X86_CR0_NE (1UL<<5) /* Numeric Error */ 1342 #define X86_CR0_WP (1UL<<16) /* Write Protect */ 1343 #define X86_CR0_AM (1UL<<18) /* Alignment Mask */ 1344 #define X86_CR0_NW (1UL<<29) /* Not Write-through */ 1345 #define X86_CR0_CD (1UL<<30) /* Cache Disable */ 1346 #define X86_CR0_PG (1UL<<31) /* Paging */ 1347 1348 #define PFERR_PRESENT_BIT 0 1349 #define PFERR_WRITE_BIT 1 1350 #define PFERR_USER_BIT 2 1351 #define PFERR_RSVD_BIT 3 1352 #define PFERR_FETCH_BIT 4 1353 #define PFERR_PK_BIT 5 1354 #define PFERR_SGX_BIT 15 1355 #define PFERR_GUEST_FINAL_BIT 32 1356 #define PFERR_GUEST_PAGE_BIT 33 1357 #define PFERR_IMPLICIT_ACCESS_BIT 48 1358 1359 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 1360 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 1361 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 1362 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 1363 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 1364 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 1365 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 1366 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 1367 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 1368 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 1369 1370 bool sys_clocksource_is_based_on_tsc(void); 1371 1372 #endif /* SELFTEST_KVM_PROCESSOR_H */ 1373