1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * tools/testing/selftests/kvm/include/x86_64/processor.h 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #ifndef SELFTEST_KVM_PROCESSOR_H 9 #define SELFTEST_KVM_PROCESSOR_H 10 11 #include <assert.h> 12 #include <stdint.h> 13 #include <syscall.h> 14 15 #include <asm/msr-index.h> 16 #include <asm/prctl.h> 17 18 #include <linux/kvm_para.h> 19 #include <linux/stringify.h> 20 21 #include "../kvm_util.h" 22 23 extern bool host_cpu_is_intel; 24 extern bool host_cpu_is_amd; 25 26 enum vm_guest_x86_subtype { 27 VM_SUBTYPE_NONE = 0, 28 VM_SUBTYPE_SEV, 29 VM_SUBTYPE_SEV_ES, 30 }; 31 32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */ 33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';" 34 35 #define NMI_VECTOR 0x02 36 37 #define X86_EFLAGS_FIXED (1u << 1) 38 39 #define X86_CR4_VME (1ul << 0) 40 #define X86_CR4_PVI (1ul << 1) 41 #define X86_CR4_TSD (1ul << 2) 42 #define X86_CR4_DE (1ul << 3) 43 #define X86_CR4_PSE (1ul << 4) 44 #define X86_CR4_PAE (1ul << 5) 45 #define X86_CR4_MCE (1ul << 6) 46 #define X86_CR4_PGE (1ul << 7) 47 #define X86_CR4_PCE (1ul << 8) 48 #define X86_CR4_OSFXSR (1ul << 9) 49 #define X86_CR4_OSXMMEXCPT (1ul << 10) 50 #define X86_CR4_UMIP (1ul << 11) 51 #define X86_CR4_LA57 (1ul << 12) 52 #define X86_CR4_VMXE (1ul << 13) 53 #define X86_CR4_SMXE (1ul << 14) 54 #define X86_CR4_FSGSBASE (1ul << 16) 55 #define X86_CR4_PCIDE (1ul << 17) 56 #define X86_CR4_OSXSAVE (1ul << 18) 57 #define X86_CR4_SMEP (1ul << 20) 58 #define X86_CR4_SMAP (1ul << 21) 59 #define X86_CR4_PKE (1ul << 22) 60 61 struct xstate_header { 62 u64 xstate_bv; 63 u64 xcomp_bv; 64 u64 reserved[6]; 65 } __attribute__((packed)); 66 67 struct xstate { 68 u8 i387[512]; 69 struct xstate_header header; 70 u8 extended_state_area[0]; 71 } __attribute__ ((packed, aligned (64))); 72 73 #define XFEATURE_MASK_FP BIT_ULL(0) 74 #define XFEATURE_MASK_SSE BIT_ULL(1) 75 #define XFEATURE_MASK_YMM BIT_ULL(2) 76 #define XFEATURE_MASK_BNDREGS BIT_ULL(3) 77 #define XFEATURE_MASK_BNDCSR BIT_ULL(4) 78 #define XFEATURE_MASK_OPMASK BIT_ULL(5) 79 #define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) 80 #define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) 81 #define XFEATURE_MASK_PT BIT_ULL(8) 82 #define XFEATURE_MASK_PKRU BIT_ULL(9) 83 #define XFEATURE_MASK_PASID BIT_ULL(10) 84 #define XFEATURE_MASK_CET_USER BIT_ULL(11) 85 #define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) 86 #define XFEATURE_MASK_LBR BIT_ULL(15) 87 #define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) 88 #define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) 89 90 #define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ 91 XFEATURE_MASK_ZMM_Hi256 | \ 92 XFEATURE_MASK_Hi16_ZMM) 93 #define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ 94 XFEATURE_MASK_XTILE_CFG) 95 96 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ 97 enum cpuid_output_regs { 98 KVM_CPUID_EAX, 99 KVM_CPUID_EBX, 100 KVM_CPUID_ECX, 101 KVM_CPUID_EDX 102 }; 103 104 /* 105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be 106 * passed by value with no overhead. 107 */ 108 struct kvm_x86_cpu_feature { 109 u32 function; 110 u16 index; 111 u8 reg; 112 u8 bit; 113 }; 114 #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ 115 ({ \ 116 struct kvm_x86_cpu_feature feature = { \ 117 .function = fn, \ 118 .index = idx, \ 119 .reg = KVM_CPUID_##gpr, \ 120 .bit = __bit, \ 121 }; \ 122 \ 123 kvm_static_assert((fn & 0xc0000000) == 0 || \ 124 (fn & 0xc0000000) == 0x40000000 || \ 125 (fn & 0xc0000000) == 0x80000000 || \ 126 (fn & 0xc0000000) == 0xc0000000); \ 127 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ 128 feature; \ 129 }) 130 131 /* 132 * Basic Leafs, a.k.a. Intel defined 133 */ 134 #define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) 135 #define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) 136 #define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) 137 #define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) 138 #define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) 139 #define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) 140 #define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) 141 #define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) 142 #define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) 143 #define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) 144 #define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) 145 #define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) 146 #define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) 147 #define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) 148 #define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) 149 #define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) 150 #define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) 151 #define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) 152 #define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) 153 #define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) 154 #define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) 155 #define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) 156 #define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) 157 #define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) 158 #define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) 159 #define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) 160 #define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) 161 #define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) 162 #define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) 163 #define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) 164 #define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) 165 #define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) 166 #define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4) 167 #define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) 168 #define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) 169 #define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) 170 #define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) 171 #define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) 172 #define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) 173 #define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) 174 #define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) 175 #define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) 176 #define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) 177 #define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) 178 #define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) 179 #define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) 180 #define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) 181 182 /* 183 * Extended Leafs, a.k.a. AMD defined 184 */ 185 #define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) 186 #define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) 187 #define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) 188 #define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) 189 #define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) 190 #define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) 191 #define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) 192 #define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) 193 #define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) 194 #define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) 195 #define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) 196 #define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) 197 #define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) 198 #define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) 199 #define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) 200 #define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) 201 #define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) 202 203 /* 204 * KVM defined paravirt features. 205 */ 206 #define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) 207 #define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) 208 #define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) 209 #define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) 210 #define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) 211 #define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) 212 #define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) 213 #define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) 214 /* Bit 8 apparently isn't used?!?! */ 215 #define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) 216 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) 217 #define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) 218 #define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) 219 #define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) 220 #define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) 221 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) 222 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) 223 #define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) 224 225 /* 226 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit 227 * value/property as opposed to a single-bit feature. Again, pack the info 228 * into a 64-bit value to pass by value with no overhead. 229 */ 230 struct kvm_x86_cpu_property { 231 u32 function; 232 u8 index; 233 u8 reg; 234 u8 lo_bit; 235 u8 hi_bit; 236 }; 237 #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ 238 ({ \ 239 struct kvm_x86_cpu_property property = { \ 240 .function = fn, \ 241 .index = idx, \ 242 .reg = KVM_CPUID_##gpr, \ 243 .lo_bit = low_bit, \ 244 .hi_bit = high_bit, \ 245 }; \ 246 \ 247 kvm_static_assert(low_bit < high_bit); \ 248 kvm_static_assert((fn & 0xc0000000) == 0 || \ 249 (fn & 0xc0000000) == 0x40000000 || \ 250 (fn & 0xc0000000) == 0x80000000 || \ 251 (fn & 0xc0000000) == 0xc0000000); \ 252 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ 253 property; \ 254 }) 255 256 #define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) 257 #define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) 258 #define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) 259 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) 260 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) 261 #define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) 262 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) 263 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) 264 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) 265 266 #define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) 267 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) 268 #define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) 269 #define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) 270 271 #define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) 272 #define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) 273 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) 274 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) 275 #define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) 276 #define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) 277 #define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) 278 #define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) 279 280 #define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) 281 282 #define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) 283 #define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) 284 #define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) 285 #define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5) 286 #define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) 287 288 #define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) 289 290 /* 291 * Intel's architectural PMU events are bizarre. They have a "feature" bit 292 * that indicates the feature is _not_ supported, and a property that states 293 * the length of the bit mask of unsupported features. A feature is supported 294 * if the size of the bit mask is larger than the "unavailable" bit, and said 295 * bit is not set. Fixed counters also bizarre enumeration, but inverted from 296 * arch events for general purpose counters. Fixed counters are supported if a 297 * feature flag is set **OR** the total number of fixed counters is greater 298 * than index of the counter. 299 * 300 * Wrap the events for general purpose and fixed counters to simplify checking 301 * whether or not a given architectural event is supported. 302 */ 303 struct kvm_x86_pmu_feature { 304 struct kvm_x86_cpu_feature f; 305 }; 306 #define KVM_X86_PMU_FEATURE(__reg, __bit) \ 307 ({ \ 308 struct kvm_x86_pmu_feature feature = { \ 309 .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \ 310 }; \ 311 \ 312 kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \ 313 KVM_CPUID_##__reg == KVM_CPUID_ECX); \ 314 feature; \ 315 }) 316 317 #define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0) 318 #define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1) 319 #define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2) 320 #define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3) 321 #define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4) 322 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5) 323 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6) 324 #define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7) 325 326 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0) 327 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1) 328 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2) 329 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3) 330 331 static inline unsigned int x86_family(unsigned int eax) 332 { 333 unsigned int x86; 334 335 x86 = (eax >> 8) & 0xf; 336 337 if (x86 == 0xf) 338 x86 += (eax >> 20) & 0xff; 339 340 return x86; 341 } 342 343 static inline unsigned int x86_model(unsigned int eax) 344 { 345 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); 346 } 347 348 /* Page table bitfield declarations */ 349 #define PTE_PRESENT_MASK BIT_ULL(0) 350 #define PTE_WRITABLE_MASK BIT_ULL(1) 351 #define PTE_USER_MASK BIT_ULL(2) 352 #define PTE_ACCESSED_MASK BIT_ULL(5) 353 #define PTE_DIRTY_MASK BIT_ULL(6) 354 #define PTE_LARGE_MASK BIT_ULL(7) 355 #define PTE_GLOBAL_MASK BIT_ULL(8) 356 #define PTE_NX_MASK BIT_ULL(63) 357 358 #define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) 359 360 #define PAGE_SHIFT 12 361 #define PAGE_SIZE (1ULL << PAGE_SHIFT) 362 #define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) 363 364 #define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) 365 #define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) 366 #define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) 367 368 #define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) 369 #define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) 370 371 /* General Registers in 64-Bit Mode */ 372 struct gpr64_regs { 373 u64 rax; 374 u64 rcx; 375 u64 rdx; 376 u64 rbx; 377 u64 rsp; 378 u64 rbp; 379 u64 rsi; 380 u64 rdi; 381 u64 r8; 382 u64 r9; 383 u64 r10; 384 u64 r11; 385 u64 r12; 386 u64 r13; 387 u64 r14; 388 u64 r15; 389 }; 390 391 struct desc64 { 392 uint16_t limit0; 393 uint16_t base0; 394 unsigned base1:8, type:4, s:1, dpl:2, p:1; 395 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; 396 uint32_t base3; 397 uint32_t zero1; 398 } __attribute__((packed)); 399 400 struct desc_ptr { 401 uint16_t size; 402 uint64_t address; 403 } __attribute__((packed)); 404 405 struct kvm_x86_state { 406 struct kvm_xsave *xsave; 407 struct kvm_vcpu_events events; 408 struct kvm_mp_state mp_state; 409 struct kvm_regs regs; 410 struct kvm_xcrs xcrs; 411 struct kvm_sregs sregs; 412 struct kvm_debugregs debugregs; 413 union { 414 struct kvm_nested_state nested; 415 char nested_[16384]; 416 }; 417 struct kvm_msrs msrs; 418 }; 419 420 static inline uint64_t get_desc64_base(const struct desc64 *desc) 421 { 422 return ((uint64_t)desc->base3 << 32) | 423 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); 424 } 425 426 static inline uint64_t rdtsc(void) 427 { 428 uint32_t eax, edx; 429 uint64_t tsc_val; 430 /* 431 * The lfence is to wait (on Intel CPUs) until all previous 432 * instructions have been executed. If software requires RDTSC to be 433 * executed prior to execution of any subsequent instruction, it can 434 * execute LFENCE immediately after RDTSC 435 */ 436 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); 437 tsc_val = ((uint64_t)edx) << 32 | eax; 438 return tsc_val; 439 } 440 441 static inline uint64_t rdtscp(uint32_t *aux) 442 { 443 uint32_t eax, edx; 444 445 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); 446 return ((uint64_t)edx) << 32 | eax; 447 } 448 449 static inline uint64_t rdmsr(uint32_t msr) 450 { 451 uint32_t a, d; 452 453 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); 454 455 return a | ((uint64_t) d << 32); 456 } 457 458 static inline void wrmsr(uint32_t msr, uint64_t value) 459 { 460 uint32_t a = value; 461 uint32_t d = value >> 32; 462 463 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); 464 } 465 466 467 static inline uint16_t inw(uint16_t port) 468 { 469 uint16_t tmp; 470 471 __asm__ __volatile__("in %%dx, %%ax" 472 : /* output */ "=a" (tmp) 473 : /* input */ "d" (port)); 474 475 return tmp; 476 } 477 478 static inline uint16_t get_es(void) 479 { 480 uint16_t es; 481 482 __asm__ __volatile__("mov %%es, %[es]" 483 : /* output */ [es]"=rm"(es)); 484 return es; 485 } 486 487 static inline uint16_t get_cs(void) 488 { 489 uint16_t cs; 490 491 __asm__ __volatile__("mov %%cs, %[cs]" 492 : /* output */ [cs]"=rm"(cs)); 493 return cs; 494 } 495 496 static inline uint16_t get_ss(void) 497 { 498 uint16_t ss; 499 500 __asm__ __volatile__("mov %%ss, %[ss]" 501 : /* output */ [ss]"=rm"(ss)); 502 return ss; 503 } 504 505 static inline uint16_t get_ds(void) 506 { 507 uint16_t ds; 508 509 __asm__ __volatile__("mov %%ds, %[ds]" 510 : /* output */ [ds]"=rm"(ds)); 511 return ds; 512 } 513 514 static inline uint16_t get_fs(void) 515 { 516 uint16_t fs; 517 518 __asm__ __volatile__("mov %%fs, %[fs]" 519 : /* output */ [fs]"=rm"(fs)); 520 return fs; 521 } 522 523 static inline uint16_t get_gs(void) 524 { 525 uint16_t gs; 526 527 __asm__ __volatile__("mov %%gs, %[gs]" 528 : /* output */ [gs]"=rm"(gs)); 529 return gs; 530 } 531 532 static inline uint16_t get_tr(void) 533 { 534 uint16_t tr; 535 536 __asm__ __volatile__("str %[tr]" 537 : /* output */ [tr]"=rm"(tr)); 538 return tr; 539 } 540 541 static inline uint64_t get_cr0(void) 542 { 543 uint64_t cr0; 544 545 __asm__ __volatile__("mov %%cr0, %[cr0]" 546 : /* output */ [cr0]"=r"(cr0)); 547 return cr0; 548 } 549 550 static inline uint64_t get_cr3(void) 551 { 552 uint64_t cr3; 553 554 __asm__ __volatile__("mov %%cr3, %[cr3]" 555 : /* output */ [cr3]"=r"(cr3)); 556 return cr3; 557 } 558 559 static inline uint64_t get_cr4(void) 560 { 561 uint64_t cr4; 562 563 __asm__ __volatile__("mov %%cr4, %[cr4]" 564 : /* output */ [cr4]"=r"(cr4)); 565 return cr4; 566 } 567 568 static inline void set_cr4(uint64_t val) 569 { 570 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); 571 } 572 573 static inline u64 xgetbv(u32 index) 574 { 575 u32 eax, edx; 576 577 __asm__ __volatile__("xgetbv;" 578 : "=a" (eax), "=d" (edx) 579 : "c" (index)); 580 return eax | ((u64)edx << 32); 581 } 582 583 static inline void xsetbv(u32 index, u64 value) 584 { 585 u32 eax = value; 586 u32 edx = value >> 32; 587 588 __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); 589 } 590 591 static inline void wrpkru(u32 pkru) 592 { 593 /* Note, ECX and EDX are architecturally required to be '0'. */ 594 asm volatile(".byte 0x0f,0x01,0xef\n\t" 595 : : "a" (pkru), "c"(0), "d"(0)); 596 } 597 598 static inline struct desc_ptr get_gdt(void) 599 { 600 struct desc_ptr gdt; 601 __asm__ __volatile__("sgdt %[gdt]" 602 : /* output */ [gdt]"=m"(gdt)); 603 return gdt; 604 } 605 606 static inline struct desc_ptr get_idt(void) 607 { 608 struct desc_ptr idt; 609 __asm__ __volatile__("sidt %[idt]" 610 : /* output */ [idt]"=m"(idt)); 611 return idt; 612 } 613 614 static inline void outl(uint16_t port, uint32_t value) 615 { 616 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); 617 } 618 619 static inline void __cpuid(uint32_t function, uint32_t index, 620 uint32_t *eax, uint32_t *ebx, 621 uint32_t *ecx, uint32_t *edx) 622 { 623 *eax = function; 624 *ecx = index; 625 626 asm volatile("cpuid" 627 : "=a" (*eax), 628 "=b" (*ebx), 629 "=c" (*ecx), 630 "=d" (*edx) 631 : "0" (*eax), "2" (*ecx) 632 : "memory"); 633 } 634 635 static inline void cpuid(uint32_t function, 636 uint32_t *eax, uint32_t *ebx, 637 uint32_t *ecx, uint32_t *edx) 638 { 639 return __cpuid(function, 0, eax, ebx, ecx, edx); 640 } 641 642 static inline uint32_t this_cpu_fms(void) 643 { 644 uint32_t eax, ebx, ecx, edx; 645 646 cpuid(1, &eax, &ebx, &ecx, &edx); 647 return eax; 648 } 649 650 static inline uint32_t this_cpu_family(void) 651 { 652 return x86_family(this_cpu_fms()); 653 } 654 655 static inline uint32_t this_cpu_model(void) 656 { 657 return x86_model(this_cpu_fms()); 658 } 659 660 static inline bool this_cpu_vendor_string_is(const char *vendor) 661 { 662 const uint32_t *chunk = (const uint32_t *)vendor; 663 uint32_t eax, ebx, ecx, edx; 664 665 cpuid(0, &eax, &ebx, &ecx, &edx); 666 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 667 } 668 669 static inline bool this_cpu_is_intel(void) 670 { 671 return this_cpu_vendor_string_is("GenuineIntel"); 672 } 673 674 /* 675 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 676 */ 677 static inline bool this_cpu_is_amd(void) 678 { 679 return this_cpu_vendor_string_is("AuthenticAMD"); 680 } 681 682 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, 683 uint8_t reg, uint8_t lo, uint8_t hi) 684 { 685 uint32_t gprs[4]; 686 687 __cpuid(function, index, 688 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], 689 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); 690 691 return (gprs[reg] & GENMASK(hi, lo)) >> lo; 692 } 693 694 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) 695 { 696 return __this_cpu_has(feature.function, feature.index, 697 feature.reg, feature.bit, feature.bit); 698 } 699 700 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) 701 { 702 return __this_cpu_has(property.function, property.index, 703 property.reg, property.lo_bit, property.hi_bit); 704 } 705 706 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) 707 { 708 uint32_t max_leaf; 709 710 switch (property.function & 0xc0000000) { 711 case 0: 712 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 713 break; 714 case 0x40000000: 715 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 716 break; 717 case 0x80000000: 718 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 719 break; 720 case 0xc0000000: 721 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 722 } 723 return max_leaf >= property.function; 724 } 725 726 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) 727 { 728 uint32_t nr_bits; 729 730 if (feature.f.reg == KVM_CPUID_EBX) { 731 nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 732 return nr_bits > feature.f.bit && !this_cpu_has(feature.f); 733 } 734 735 GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX); 736 nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 737 return nr_bits > feature.f.bit || this_cpu_has(feature.f); 738 } 739 740 static __always_inline uint64_t this_cpu_supported_xcr0(void) 741 { 742 if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 743 return 0; 744 745 return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 746 ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 747 } 748 749 typedef u32 __attribute__((vector_size(16))) sse128_t; 750 #define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } 751 #define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) 752 #define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) 753 754 static inline void read_sse_reg(int reg, sse128_t *data) 755 { 756 switch (reg) { 757 case 0: 758 asm("movdqa %%xmm0, %0" : "=m"(*data)); 759 break; 760 case 1: 761 asm("movdqa %%xmm1, %0" : "=m"(*data)); 762 break; 763 case 2: 764 asm("movdqa %%xmm2, %0" : "=m"(*data)); 765 break; 766 case 3: 767 asm("movdqa %%xmm3, %0" : "=m"(*data)); 768 break; 769 case 4: 770 asm("movdqa %%xmm4, %0" : "=m"(*data)); 771 break; 772 case 5: 773 asm("movdqa %%xmm5, %0" : "=m"(*data)); 774 break; 775 case 6: 776 asm("movdqa %%xmm6, %0" : "=m"(*data)); 777 break; 778 case 7: 779 asm("movdqa %%xmm7, %0" : "=m"(*data)); 780 break; 781 default: 782 BUG(); 783 } 784 } 785 786 static inline void write_sse_reg(int reg, const sse128_t *data) 787 { 788 switch (reg) { 789 case 0: 790 asm("movdqa %0, %%xmm0" : : "m"(*data)); 791 break; 792 case 1: 793 asm("movdqa %0, %%xmm1" : : "m"(*data)); 794 break; 795 case 2: 796 asm("movdqa %0, %%xmm2" : : "m"(*data)); 797 break; 798 case 3: 799 asm("movdqa %0, %%xmm3" : : "m"(*data)); 800 break; 801 case 4: 802 asm("movdqa %0, %%xmm4" : : "m"(*data)); 803 break; 804 case 5: 805 asm("movdqa %0, %%xmm5" : : "m"(*data)); 806 break; 807 case 6: 808 asm("movdqa %0, %%xmm6" : : "m"(*data)); 809 break; 810 case 7: 811 asm("movdqa %0, %%xmm7" : : "m"(*data)); 812 break; 813 default: 814 BUG(); 815 } 816 } 817 818 static inline void cpu_relax(void) 819 { 820 asm volatile("rep; nop" ::: "memory"); 821 } 822 823 #define ud2() \ 824 __asm__ __volatile__( \ 825 "ud2\n" \ 826 ) 827 828 #define hlt() \ 829 __asm__ __volatile__( \ 830 "hlt\n" \ 831 ) 832 833 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); 834 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); 835 void kvm_x86_state_cleanup(struct kvm_x86_state *state); 836 837 const struct kvm_msr_list *kvm_get_msr_index_list(void); 838 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); 839 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); 840 uint64_t kvm_get_feature_msr(uint64_t msr_index); 841 842 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, 843 struct kvm_msrs *msrs) 844 { 845 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); 846 847 TEST_ASSERT(r == msrs->nmsrs, 848 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", 849 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 850 } 851 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) 852 { 853 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); 854 855 TEST_ASSERT(r == msrs->nmsrs, 856 "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", 857 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); 858 } 859 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, 860 struct kvm_debugregs *debugregs) 861 { 862 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); 863 } 864 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, 865 struct kvm_debugregs *debugregs) 866 { 867 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); 868 } 869 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, 870 struct kvm_xsave *xsave) 871 { 872 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); 873 } 874 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, 875 struct kvm_xsave *xsave) 876 { 877 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); 878 } 879 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, 880 struct kvm_xsave *xsave) 881 { 882 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); 883 } 884 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, 885 struct kvm_xcrs *xcrs) 886 { 887 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); 888 } 889 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) 890 { 891 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); 892 } 893 894 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 895 uint32_t function, uint32_t index); 896 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); 897 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void); 898 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu); 899 900 static inline uint32_t kvm_cpu_fms(void) 901 { 902 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; 903 } 904 905 static inline uint32_t kvm_cpu_family(void) 906 { 907 return x86_family(kvm_cpu_fms()); 908 } 909 910 static inline uint32_t kvm_cpu_model(void) 911 { 912 return x86_model(kvm_cpu_fms()); 913 } 914 915 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 916 struct kvm_x86_cpu_feature feature); 917 918 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) 919 { 920 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); 921 } 922 923 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 924 struct kvm_x86_cpu_property property); 925 926 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) 927 { 928 return kvm_cpuid_property(kvm_get_supported_cpuid(), property); 929 } 930 931 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) 932 { 933 uint32_t max_leaf; 934 935 switch (property.function & 0xc0000000) { 936 case 0: 937 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); 938 break; 939 case 0x40000000: 940 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); 941 break; 942 case 0x80000000: 943 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); 944 break; 945 case 0xc0000000: 946 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); 947 } 948 return max_leaf >= property.function; 949 } 950 951 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) 952 { 953 uint32_t nr_bits; 954 955 if (feature.f.reg == KVM_CPUID_EBX) { 956 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); 957 return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f); 958 } 959 960 TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX); 961 nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); 962 return nr_bits > feature.f.bit || kvm_cpu_has(feature.f); 963 } 964 965 static __always_inline uint64_t kvm_cpu_supported_xcr0(void) 966 { 967 if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) 968 return 0; 969 970 return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | 971 ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); 972 } 973 974 static inline size_t kvm_cpuid2_size(int nr_entries) 975 { 976 return sizeof(struct kvm_cpuid2) + 977 sizeof(struct kvm_cpuid_entry2) * nr_entries; 978 } 979 980 /* 981 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of 982 * entries sized to hold @nr_entries. The caller is responsible for freeing 983 * the struct. 984 */ 985 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) 986 { 987 struct kvm_cpuid2 *cpuid; 988 989 cpuid = malloc(kvm_cpuid2_size(nr_entries)); 990 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); 991 992 cpuid->nent = nr_entries; 993 994 return cpuid; 995 } 996 997 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); 998 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu); 999 1000 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 1001 uint32_t function, 1002 uint32_t index) 1003 { 1004 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, 1005 function, index); 1006 } 1007 1008 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, 1009 uint32_t function) 1010 { 1011 return __vcpu_get_cpuid_entry(vcpu, function, 0); 1012 } 1013 1014 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1015 { 1016 int r; 1017 1018 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1019 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1020 if (r) 1021 return r; 1022 1023 /* On success, refresh the cache to pick up adjustments made by KVM. */ 1024 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 1025 return 0; 1026 } 1027 1028 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) 1029 { 1030 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); 1031 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); 1032 1033 /* Refresh the cache to pick up adjustments made by KVM. */ 1034 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); 1035 } 1036 1037 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, 1038 struct kvm_x86_cpu_property property, 1039 uint32_t value); 1040 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); 1041 1042 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); 1043 1044 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu, 1045 struct kvm_x86_cpu_feature feature) 1046 { 1047 struct kvm_cpuid_entry2 *entry; 1048 1049 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 1050 return *((&entry->eax) + feature.reg) & BIT(feature.bit); 1051 } 1052 1053 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1054 struct kvm_x86_cpu_feature feature, 1055 bool set); 1056 1057 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, 1058 struct kvm_x86_cpu_feature feature) 1059 { 1060 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); 1061 1062 } 1063 1064 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, 1065 struct kvm_x86_cpu_feature feature) 1066 { 1067 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); 1068 } 1069 1070 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); 1071 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); 1072 1073 /* 1074 * Assert on an MSR access(es) and pretty print the MSR name when possible. 1075 * Note, the caller provides the stringified name so that the name of macro is 1076 * printed, not the value the macro resolves to (due to macro expansion). 1077 */ 1078 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ 1079 do { \ 1080 if (__builtin_constant_p(msr)) { \ 1081 TEST_ASSERT(cond, fmt, str, args); \ 1082 } else if (!(cond)) { \ 1083 char buf[16]; \ 1084 \ 1085 snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ 1086 TEST_ASSERT(cond, fmt, buf, args); \ 1087 } \ 1088 } while (0) 1089 1090 /* 1091 * Returns true if KVM should return the last written value when reading an MSR 1092 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that 1093 * is changing, etc. This is NOT an exhaustive list! The intent is to filter 1094 * out MSRs that are not durable _and_ that a selftest wants to write. 1095 */ 1096 static inline bool is_durable_msr(uint32_t msr) 1097 { 1098 return msr != MSR_IA32_TSC; 1099 } 1100 1101 #define vcpu_set_msr(vcpu, msr, val) \ 1102 do { \ 1103 uint64_t r, v = val; \ 1104 \ 1105 TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ 1106 "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ 1107 if (!is_durable_msr(msr)) \ 1108 break; \ 1109 r = vcpu_get_msr(vcpu, msr); \ 1110 TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ 1111 } while (0) 1112 1113 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); 1114 void kvm_init_vm_address_properties(struct kvm_vm *vm); 1115 bool vm_is_unrestricted_guest(struct kvm_vm *vm); 1116 1117 struct ex_regs { 1118 uint64_t rax, rcx, rdx, rbx; 1119 uint64_t rbp, rsi, rdi; 1120 uint64_t r8, r9, r10, r11; 1121 uint64_t r12, r13, r14, r15; 1122 uint64_t vector; 1123 uint64_t error_code; 1124 uint64_t rip; 1125 uint64_t cs; 1126 uint64_t rflags; 1127 }; 1128 1129 struct idt_entry { 1130 uint16_t offset0; 1131 uint16_t selector; 1132 uint16_t ist : 3; 1133 uint16_t : 5; 1134 uint16_t type : 4; 1135 uint16_t : 1; 1136 uint16_t dpl : 2; 1137 uint16_t p : 1; 1138 uint16_t offset1; 1139 uint32_t offset2; uint32_t reserved; 1140 }; 1141 1142 void vm_init_descriptor_tables(struct kvm_vm *vm); 1143 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu); 1144 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1145 void (*handler)(struct ex_regs *)); 1146 1147 /* If a toddler were to say "abracadabra". */ 1148 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL 1149 1150 /* 1151 * KVM selftest exception fixup uses registers to coordinate with the exception 1152 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory 1153 * per-CPU data. Using only registers avoids having to map memory into the 1154 * guest, doesn't require a valid, stable GS.base, and reduces the risk of 1155 * for recursive faults when accessing memory in the handler. The downside to 1156 * using registers is that it restricts what registers can be used by the actual 1157 * instruction. But, selftests are 64-bit only, making register* pressure a 1158 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved 1159 * by the callee, and except for r11 are not implicit parameters to any 1160 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit 1161 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V 1162 * is higher priority than testing non-faulting SYSCALL/SYSRET. 1163 * 1164 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector 1165 * is guaranteed to be non-zero on fault. 1166 * 1167 * REGISTER INPUTS: 1168 * r9 = MAGIC 1169 * r10 = RIP 1170 * r11 = new RIP on fault 1171 * 1172 * REGISTER OUTPUTS: 1173 * r9 = exception vector (non-zero) 1174 * r10 = error code 1175 */ 1176 #define __KVM_ASM_SAFE(insn, fep) \ 1177 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ 1178 "lea 1f(%%rip), %%r10\n\t" \ 1179 "lea 2f(%%rip), %%r11\n\t" \ 1180 fep "1: " insn "\n\t" \ 1181 "xor %%r9, %%r9\n\t" \ 1182 "2:\n\t" \ 1183 "mov %%r9b, %[vector]\n\t" \ 1184 "mov %%r10, %[error_code]\n\t" 1185 1186 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "") 1187 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP) 1188 1189 #define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) 1190 #define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" 1191 1192 #define kvm_asm_safe(insn, inputs...) \ 1193 ({ \ 1194 uint64_t ign_error_code; \ 1195 uint8_t vector; \ 1196 \ 1197 asm volatile(KVM_ASM_SAFE(insn) \ 1198 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1199 : inputs \ 1200 : KVM_ASM_SAFE_CLOBBERS); \ 1201 vector; \ 1202 }) 1203 1204 #define kvm_asm_safe_ec(insn, error_code, inputs...) \ 1205 ({ \ 1206 uint8_t vector; \ 1207 \ 1208 asm volatile(KVM_ASM_SAFE(insn) \ 1209 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1210 : inputs \ 1211 : KVM_ASM_SAFE_CLOBBERS); \ 1212 vector; \ 1213 }) 1214 1215 #define kvm_asm_safe_fep(insn, inputs...) \ 1216 ({ \ 1217 uint64_t ign_error_code; \ 1218 uint8_t vector; \ 1219 \ 1220 asm volatile(KVM_ASM_SAFE(insn) \ 1221 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ 1222 : inputs \ 1223 : KVM_ASM_SAFE_CLOBBERS); \ 1224 vector; \ 1225 }) 1226 1227 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \ 1228 ({ \ 1229 uint8_t vector; \ 1230 \ 1231 asm volatile(KVM_ASM_SAFE_FEP(insn) \ 1232 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1233 : inputs \ 1234 : KVM_ASM_SAFE_CLOBBERS); \ 1235 vector; \ 1236 }) 1237 1238 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1239 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \ 1240 { \ 1241 uint64_t error_code; \ 1242 uint8_t vector; \ 1243 uint32_t a, d; \ 1244 \ 1245 asm volatile(KVM_ASM_SAFE##_FEP(#insn) \ 1246 : "=a"(a), "=d"(d), \ 1247 KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ 1248 : "c"(idx) \ 1249 : KVM_ASM_SAFE_CLOBBERS); \ 1250 \ 1251 *val = (uint64_t)a | ((uint64_t)d << 32); \ 1252 return vector; \ 1253 } 1254 1255 /* 1256 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that 1257 * use ECX as in input index, and EDX:EAX as a 64-bit output. 1258 */ 1259 #define BUILD_READ_U64_SAFE_HELPERS(insn) \ 1260 BUILD_READ_U64_SAFE_HELPER(insn, , ) \ 1261 BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ 1262 1263 BUILD_READ_U64_SAFE_HELPERS(rdmsr) 1264 BUILD_READ_U64_SAFE_HELPERS(rdpmc) 1265 BUILD_READ_U64_SAFE_HELPERS(xgetbv) 1266 1267 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) 1268 { 1269 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); 1270 } 1271 1272 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) 1273 { 1274 u32 eax = value; 1275 u32 edx = value >> 32; 1276 1277 return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); 1278 } 1279 1280 bool kvm_is_tdp_enabled(void); 1281 1282 static inline bool kvm_is_pmu_enabled(void) 1283 { 1284 return get_kvm_param_bool("enable_pmu"); 1285 } 1286 1287 static inline bool kvm_is_forced_emulation_enabled(void) 1288 { 1289 return !!get_kvm_param_integer("force_emulation_prefix"); 1290 } 1291 1292 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 1293 int *level); 1294 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); 1295 1296 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1297 uint64_t a3); 1298 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1299 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); 1300 1301 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa, 1302 uint64_t size, uint64_t flags) 1303 { 1304 return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0); 1305 } 1306 1307 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, 1308 uint64_t flags) 1309 { 1310 uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags); 1311 1312 GUEST_ASSERT(!ret); 1313 } 1314 1315 void __vm_xsave_require_permission(uint64_t xfeature, const char *name); 1316 1317 #define vm_xsave_require_permission(xfeature) \ 1318 __vm_xsave_require_permission(xfeature, #xfeature) 1319 1320 enum pg_level { 1321 PG_LEVEL_NONE, 1322 PG_LEVEL_4K, 1323 PG_LEVEL_2M, 1324 PG_LEVEL_1G, 1325 PG_LEVEL_512G, 1326 PG_LEVEL_NUM 1327 }; 1328 1329 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) 1330 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) 1331 1332 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) 1333 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) 1334 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) 1335 1336 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); 1337 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1338 uint64_t nr_bytes, int level); 1339 1340 /* 1341 * Basic CPU control in CR0 1342 */ 1343 #define X86_CR0_PE (1UL<<0) /* Protection Enable */ 1344 #define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ 1345 #define X86_CR0_EM (1UL<<2) /* Emulation */ 1346 #define X86_CR0_TS (1UL<<3) /* Task Switched */ 1347 #define X86_CR0_ET (1UL<<4) /* Extension Type */ 1348 #define X86_CR0_NE (1UL<<5) /* Numeric Error */ 1349 #define X86_CR0_WP (1UL<<16) /* Write Protect */ 1350 #define X86_CR0_AM (1UL<<18) /* Alignment Mask */ 1351 #define X86_CR0_NW (1UL<<29) /* Not Write-through */ 1352 #define X86_CR0_CD (1UL<<30) /* Cache Disable */ 1353 #define X86_CR0_PG (1UL<<31) /* Paging */ 1354 1355 #define PFERR_PRESENT_BIT 0 1356 #define PFERR_WRITE_BIT 1 1357 #define PFERR_USER_BIT 2 1358 #define PFERR_RSVD_BIT 3 1359 #define PFERR_FETCH_BIT 4 1360 #define PFERR_PK_BIT 5 1361 #define PFERR_SGX_BIT 15 1362 #define PFERR_GUEST_FINAL_BIT 32 1363 #define PFERR_GUEST_PAGE_BIT 33 1364 #define PFERR_IMPLICIT_ACCESS_BIT 48 1365 1366 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 1367 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 1368 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 1369 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 1370 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 1371 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 1372 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 1373 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 1374 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 1375 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 1376 1377 bool sys_clocksource_is_based_on_tsc(void); 1378 1379 #endif /* SELFTEST_KVM_PROCESSOR_H */ 1380