xref: /linux/tools/testing/selftests/kvm/include/x86/processor.h (revision 62838fa5eade1b23d546e81e7aab6d4c92ec12f2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #ifndef SELFTEST_KVM_PROCESSOR_H
7 #define SELFTEST_KVM_PROCESSOR_H
8 
9 #include <assert.h>
10 #include <stdint.h>
11 #include <syscall.h>
12 
13 #include <asm/msr-index.h>
14 #include <asm/prctl.h>
15 
16 #include <linux/kvm_para.h>
17 #include <linux/stringify.h>
18 
19 #include "kvm_util.h"
20 #include "ucall_common.h"
21 
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24 extern uint64_t guest_tsc_khz;
25 
26 #ifndef MAX_NR_CPUID_ENTRIES
27 #define MAX_NR_CPUID_ENTRIES 100
28 #endif
29 
30 #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
31 
32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34 
35 #define NMI_VECTOR		0x02
36 
37 #define X86_EFLAGS_FIXED	 (1u << 1)
38 
39 #define X86_CR4_VME		(1ul << 0)
40 #define X86_CR4_PVI		(1ul << 1)
41 #define X86_CR4_TSD		(1ul << 2)
42 #define X86_CR4_DE		(1ul << 3)
43 #define X86_CR4_PSE		(1ul << 4)
44 #define X86_CR4_PAE		(1ul << 5)
45 #define X86_CR4_MCE		(1ul << 6)
46 #define X86_CR4_PGE		(1ul << 7)
47 #define X86_CR4_PCE		(1ul << 8)
48 #define X86_CR4_OSFXSR		(1ul << 9)
49 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
50 #define X86_CR4_UMIP		(1ul << 11)
51 #define X86_CR4_LA57		(1ul << 12)
52 #define X86_CR4_VMXE		(1ul << 13)
53 #define X86_CR4_SMXE		(1ul << 14)
54 #define X86_CR4_FSGSBASE	(1ul << 16)
55 #define X86_CR4_PCIDE		(1ul << 17)
56 #define X86_CR4_OSXSAVE		(1ul << 18)
57 #define X86_CR4_SMEP		(1ul << 20)
58 #define X86_CR4_SMAP		(1ul << 21)
59 #define X86_CR4_PKE		(1ul << 22)
60 
61 struct xstate_header {
62 	u64				xstate_bv;
63 	u64				xcomp_bv;
64 	u64				reserved[6];
65 } __attribute__((packed));
66 
67 struct xstate {
68 	u8				i387[512];
69 	struct xstate_header		header;
70 	u8				extended_state_area[0];
71 } __attribute__ ((packed, aligned (64)));
72 
73 #define XFEATURE_MASK_FP		BIT_ULL(0)
74 #define XFEATURE_MASK_SSE		BIT_ULL(1)
75 #define XFEATURE_MASK_YMM		BIT_ULL(2)
76 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
77 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
78 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
79 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
80 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
81 #define XFEATURE_MASK_PT		BIT_ULL(8)
82 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
83 #define XFEATURE_MASK_PASID		BIT_ULL(10)
84 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
85 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
86 #define XFEATURE_MASK_LBR		BIT_ULL(15)
87 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
88 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
89 
90 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
91 					 XFEATURE_MASK_ZMM_Hi256 | \
92 					 XFEATURE_MASK_Hi16_ZMM)
93 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
94 					 XFEATURE_MASK_XTILE_CFG)
95 
96 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
97 enum cpuid_output_regs {
98 	KVM_CPUID_EAX,
99 	KVM_CPUID_EBX,
100 	KVM_CPUID_ECX,
101 	KVM_CPUID_EDX
102 };
103 
104 /*
105  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106  * passed by value with no overhead.
107  */
108 struct kvm_x86_cpu_feature {
109 	u32	function;
110 	u16	index;
111 	u8	reg;
112 	u8	bit;
113 };
114 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
115 ({										\
116 	struct kvm_x86_cpu_feature feature = {					\
117 		.function = fn,							\
118 		.index = idx,							\
119 		.reg = KVM_CPUID_##gpr,						\
120 		.bit = __bit,							\
121 	};									\
122 										\
123 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
124 			  (fn & 0xc0000000) == 0x40000000 ||			\
125 			  (fn & 0xc0000000) == 0x80000000 ||			\
126 			  (fn & 0xc0000000) == 0xc0000000);			\
127 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
128 	feature;								\
129 })
130 
131 /*
132  * Basic Leafs, a.k.a. Intel defined
133  */
134 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181 
182 /*
183  * Extended Leafs, a.k.a. AMD defined
184  */
185 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200 #define X86_FEATURE_IDLE_HLT		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 30)
201 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
202 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
203 
204 /*
205  * KVM defined paravirt features.
206  */
207 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
208 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
209 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
210 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
211 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
212 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
213 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
214 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
215 /* Bit 8 apparently isn't used?!?! */
216 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
217 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
218 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
219 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
220 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
221 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
222 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
223 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
224 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
225 
226 /*
227  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
228  * value/property as opposed to a single-bit feature.  Again, pack the info
229  * into a 64-bit value to pass by value with no overhead.
230  */
231 struct kvm_x86_cpu_property {
232 	u32	function;
233 	u8	index;
234 	u8	reg;
235 	u8	lo_bit;
236 	u8	hi_bit;
237 };
238 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
239 ({										\
240 	struct kvm_x86_cpu_property property = {				\
241 		.function = fn,							\
242 		.index = idx,							\
243 		.reg = KVM_CPUID_##gpr,						\
244 		.lo_bit = low_bit,						\
245 		.hi_bit = high_bit,						\
246 	};									\
247 										\
248 	kvm_static_assert(low_bit < high_bit);					\
249 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
250 			  (fn & 0xc0000000) == 0x40000000 ||			\
251 			  (fn & 0xc0000000) == 0x80000000 ||			\
252 			  (fn & 0xc0000000) == 0xc0000000);			\
253 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
254 	property;								\
255 })
256 
257 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
258 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
259 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
260 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
261 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
262 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
263 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
264 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
265 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
266 
267 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
268 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
269 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
270 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
271 
272 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
273 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
274 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
275 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
276 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
277 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
278 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
279 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
280 
281 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
282 
283 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
284 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
285 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
286 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
287 #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
288 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
289 
290 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
291 
292 /*
293  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
294  * that indicates the feature is _not_ supported, and a property that states
295  * the length of the bit mask of unsupported features.  A feature is supported
296  * if the size of the bit mask is larger than the "unavailable" bit, and said
297  * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
298  * arch events for general purpose counters.  Fixed counters are supported if a
299  * feature flag is set **OR** the total number of fixed counters is greater
300  * than index of the counter.
301  *
302  * Wrap the events for general purpose and fixed counters to simplify checking
303  * whether or not a given architectural event is supported.
304  */
305 struct kvm_x86_pmu_feature {
306 	struct kvm_x86_cpu_feature f;
307 };
308 #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
309 ({									\
310 	struct kvm_x86_pmu_feature feature = {				\
311 		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
312 	};								\
313 									\
314 	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
315 			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
316 	feature;							\
317 })
318 
319 #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
320 #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
321 #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
322 #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
323 #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
324 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
325 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
326 #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
327 
328 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
329 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
330 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
331 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
332 
333 static inline unsigned int x86_family(unsigned int eax)
334 {
335 	unsigned int x86;
336 
337 	x86 = (eax >> 8) & 0xf;
338 
339 	if (x86 == 0xf)
340 		x86 += (eax >> 20) & 0xff;
341 
342 	return x86;
343 }
344 
345 static inline unsigned int x86_model(unsigned int eax)
346 {
347 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
348 }
349 
350 /* Page table bitfield declarations */
351 #define PTE_PRESENT_MASK        BIT_ULL(0)
352 #define PTE_WRITABLE_MASK       BIT_ULL(1)
353 #define PTE_USER_MASK           BIT_ULL(2)
354 #define PTE_ACCESSED_MASK       BIT_ULL(5)
355 #define PTE_DIRTY_MASK          BIT_ULL(6)
356 #define PTE_LARGE_MASK          BIT_ULL(7)
357 #define PTE_GLOBAL_MASK         BIT_ULL(8)
358 #define PTE_NX_MASK             BIT_ULL(63)
359 
360 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
361 
362 #define PAGE_SHIFT		12
363 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
364 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
365 
366 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
367 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
368 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
369 
370 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
371 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
372 
373 /* General Registers in 64-Bit Mode */
374 struct gpr64_regs {
375 	u64 rax;
376 	u64 rcx;
377 	u64 rdx;
378 	u64 rbx;
379 	u64 rsp;
380 	u64 rbp;
381 	u64 rsi;
382 	u64 rdi;
383 	u64 r8;
384 	u64 r9;
385 	u64 r10;
386 	u64 r11;
387 	u64 r12;
388 	u64 r13;
389 	u64 r14;
390 	u64 r15;
391 };
392 
393 struct desc64 {
394 	uint16_t limit0;
395 	uint16_t base0;
396 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
397 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
398 	uint32_t base3;
399 	uint32_t zero1;
400 } __attribute__((packed));
401 
402 struct desc_ptr {
403 	uint16_t size;
404 	uint64_t address;
405 } __attribute__((packed));
406 
407 struct kvm_x86_state {
408 	struct kvm_xsave *xsave;
409 	struct kvm_vcpu_events events;
410 	struct kvm_mp_state mp_state;
411 	struct kvm_regs regs;
412 	struct kvm_xcrs xcrs;
413 	struct kvm_sregs sregs;
414 	struct kvm_debugregs debugregs;
415 	union {
416 		struct kvm_nested_state nested;
417 		char nested_[16384];
418 	};
419 	struct kvm_msrs msrs;
420 };
421 
422 static inline uint64_t get_desc64_base(const struct desc64 *desc)
423 {
424 	return ((uint64_t)desc->base3 << 32) |
425 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
426 }
427 
428 static inline uint64_t rdtsc(void)
429 {
430 	uint32_t eax, edx;
431 	uint64_t tsc_val;
432 	/*
433 	 * The lfence is to wait (on Intel CPUs) until all previous
434 	 * instructions have been executed. If software requires RDTSC to be
435 	 * executed prior to execution of any subsequent instruction, it can
436 	 * execute LFENCE immediately after RDTSC
437 	 */
438 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
439 	tsc_val = ((uint64_t)edx) << 32 | eax;
440 	return tsc_val;
441 }
442 
443 static inline uint64_t rdtscp(uint32_t *aux)
444 {
445 	uint32_t eax, edx;
446 
447 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
448 	return ((uint64_t)edx) << 32 | eax;
449 }
450 
451 static inline uint64_t rdmsr(uint32_t msr)
452 {
453 	uint32_t a, d;
454 
455 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
456 
457 	return a | ((uint64_t) d << 32);
458 }
459 
460 static inline void wrmsr(uint32_t msr, uint64_t value)
461 {
462 	uint32_t a = value;
463 	uint32_t d = value >> 32;
464 
465 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
466 }
467 
468 
469 static inline uint16_t inw(uint16_t port)
470 {
471 	uint16_t tmp;
472 
473 	__asm__ __volatile__("in %%dx, %%ax"
474 		: /* output */ "=a" (tmp)
475 		: /* input */ "d" (port));
476 
477 	return tmp;
478 }
479 
480 static inline uint16_t get_es(void)
481 {
482 	uint16_t es;
483 
484 	__asm__ __volatile__("mov %%es, %[es]"
485 			     : /* output */ [es]"=rm"(es));
486 	return es;
487 }
488 
489 static inline uint16_t get_cs(void)
490 {
491 	uint16_t cs;
492 
493 	__asm__ __volatile__("mov %%cs, %[cs]"
494 			     : /* output */ [cs]"=rm"(cs));
495 	return cs;
496 }
497 
498 static inline uint16_t get_ss(void)
499 {
500 	uint16_t ss;
501 
502 	__asm__ __volatile__("mov %%ss, %[ss]"
503 			     : /* output */ [ss]"=rm"(ss));
504 	return ss;
505 }
506 
507 static inline uint16_t get_ds(void)
508 {
509 	uint16_t ds;
510 
511 	__asm__ __volatile__("mov %%ds, %[ds]"
512 			     : /* output */ [ds]"=rm"(ds));
513 	return ds;
514 }
515 
516 static inline uint16_t get_fs(void)
517 {
518 	uint16_t fs;
519 
520 	__asm__ __volatile__("mov %%fs, %[fs]"
521 			     : /* output */ [fs]"=rm"(fs));
522 	return fs;
523 }
524 
525 static inline uint16_t get_gs(void)
526 {
527 	uint16_t gs;
528 
529 	__asm__ __volatile__("mov %%gs, %[gs]"
530 			     : /* output */ [gs]"=rm"(gs));
531 	return gs;
532 }
533 
534 static inline uint16_t get_tr(void)
535 {
536 	uint16_t tr;
537 
538 	__asm__ __volatile__("str %[tr]"
539 			     : /* output */ [tr]"=rm"(tr));
540 	return tr;
541 }
542 
543 static inline uint64_t get_cr0(void)
544 {
545 	uint64_t cr0;
546 
547 	__asm__ __volatile__("mov %%cr0, %[cr0]"
548 			     : /* output */ [cr0]"=r"(cr0));
549 	return cr0;
550 }
551 
552 static inline uint64_t get_cr3(void)
553 {
554 	uint64_t cr3;
555 
556 	__asm__ __volatile__("mov %%cr3, %[cr3]"
557 			     : /* output */ [cr3]"=r"(cr3));
558 	return cr3;
559 }
560 
561 static inline uint64_t get_cr4(void)
562 {
563 	uint64_t cr4;
564 
565 	__asm__ __volatile__("mov %%cr4, %[cr4]"
566 			     : /* output */ [cr4]"=r"(cr4));
567 	return cr4;
568 }
569 
570 static inline void set_cr4(uint64_t val)
571 {
572 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
573 }
574 
575 static inline void set_idt(const struct desc_ptr *idt_desc)
576 {
577 	__asm__ __volatile__("lidt %0"::"m"(*idt_desc));
578 }
579 
580 static inline u64 xgetbv(u32 index)
581 {
582 	u32 eax, edx;
583 
584 	__asm__ __volatile__("xgetbv;"
585 		     : "=a" (eax), "=d" (edx)
586 		     : "c" (index));
587 	return eax | ((u64)edx << 32);
588 }
589 
590 static inline void xsetbv(u32 index, u64 value)
591 {
592 	u32 eax = value;
593 	u32 edx = value >> 32;
594 
595 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
596 }
597 
598 static inline void wrpkru(u32 pkru)
599 {
600 	/* Note, ECX and EDX are architecturally required to be '0'. */
601 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
602 		     : : "a" (pkru), "c"(0), "d"(0));
603 }
604 
605 static inline struct desc_ptr get_gdt(void)
606 {
607 	struct desc_ptr gdt;
608 	__asm__ __volatile__("sgdt %[gdt]"
609 			     : /* output */ [gdt]"=m"(gdt));
610 	return gdt;
611 }
612 
613 static inline struct desc_ptr get_idt(void)
614 {
615 	struct desc_ptr idt;
616 	__asm__ __volatile__("sidt %[idt]"
617 			     : /* output */ [idt]"=m"(idt));
618 	return idt;
619 }
620 
621 static inline void outl(uint16_t port, uint32_t value)
622 {
623 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
624 }
625 
626 static inline void __cpuid(uint32_t function, uint32_t index,
627 			   uint32_t *eax, uint32_t *ebx,
628 			   uint32_t *ecx, uint32_t *edx)
629 {
630 	*eax = function;
631 	*ecx = index;
632 
633 	asm volatile("cpuid"
634 	    : "=a" (*eax),
635 	      "=b" (*ebx),
636 	      "=c" (*ecx),
637 	      "=d" (*edx)
638 	    : "0" (*eax), "2" (*ecx)
639 	    : "memory");
640 }
641 
642 static inline void cpuid(uint32_t function,
643 			 uint32_t *eax, uint32_t *ebx,
644 			 uint32_t *ecx, uint32_t *edx)
645 {
646 	return __cpuid(function, 0, eax, ebx, ecx, edx);
647 }
648 
649 static inline uint32_t this_cpu_fms(void)
650 {
651 	uint32_t eax, ebx, ecx, edx;
652 
653 	cpuid(1, &eax, &ebx, &ecx, &edx);
654 	return eax;
655 }
656 
657 static inline uint32_t this_cpu_family(void)
658 {
659 	return x86_family(this_cpu_fms());
660 }
661 
662 static inline uint32_t this_cpu_model(void)
663 {
664 	return x86_model(this_cpu_fms());
665 }
666 
667 static inline bool this_cpu_vendor_string_is(const char *vendor)
668 {
669 	const uint32_t *chunk = (const uint32_t *)vendor;
670 	uint32_t eax, ebx, ecx, edx;
671 
672 	cpuid(0, &eax, &ebx, &ecx, &edx);
673 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
674 }
675 
676 static inline bool this_cpu_is_intel(void)
677 {
678 	return this_cpu_vendor_string_is("GenuineIntel");
679 }
680 
681 /*
682  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
683  */
684 static inline bool this_cpu_is_amd(void)
685 {
686 	return this_cpu_vendor_string_is("AuthenticAMD");
687 }
688 
689 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
690 				      uint8_t reg, uint8_t lo, uint8_t hi)
691 {
692 	uint32_t gprs[4];
693 
694 	__cpuid(function, index,
695 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
696 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
697 
698 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
699 }
700 
701 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
702 {
703 	return __this_cpu_has(feature.function, feature.index,
704 			      feature.reg, feature.bit, feature.bit);
705 }
706 
707 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
708 {
709 	return __this_cpu_has(property.function, property.index,
710 			      property.reg, property.lo_bit, property.hi_bit);
711 }
712 
713 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
714 {
715 	uint32_t max_leaf;
716 
717 	switch (property.function & 0xc0000000) {
718 	case 0:
719 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
720 		break;
721 	case 0x40000000:
722 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
723 		break;
724 	case 0x80000000:
725 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
726 		break;
727 	case 0xc0000000:
728 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
729 	}
730 	return max_leaf >= property.function;
731 }
732 
733 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
734 {
735 	uint32_t nr_bits;
736 
737 	if (feature.f.reg == KVM_CPUID_EBX) {
738 		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
739 		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
740 	}
741 
742 	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
743 	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
744 	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
745 }
746 
747 static __always_inline uint64_t this_cpu_supported_xcr0(void)
748 {
749 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
750 		return 0;
751 
752 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
753 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
754 }
755 
756 typedef u32		__attribute__((vector_size(16))) sse128_t;
757 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
758 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
759 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
760 
761 static inline void read_sse_reg(int reg, sse128_t *data)
762 {
763 	switch (reg) {
764 	case 0:
765 		asm("movdqa %%xmm0, %0" : "=m"(*data));
766 		break;
767 	case 1:
768 		asm("movdqa %%xmm1, %0" : "=m"(*data));
769 		break;
770 	case 2:
771 		asm("movdqa %%xmm2, %0" : "=m"(*data));
772 		break;
773 	case 3:
774 		asm("movdqa %%xmm3, %0" : "=m"(*data));
775 		break;
776 	case 4:
777 		asm("movdqa %%xmm4, %0" : "=m"(*data));
778 		break;
779 	case 5:
780 		asm("movdqa %%xmm5, %0" : "=m"(*data));
781 		break;
782 	case 6:
783 		asm("movdqa %%xmm6, %0" : "=m"(*data));
784 		break;
785 	case 7:
786 		asm("movdqa %%xmm7, %0" : "=m"(*data));
787 		break;
788 	default:
789 		BUG();
790 	}
791 }
792 
793 static inline void write_sse_reg(int reg, const sse128_t *data)
794 {
795 	switch (reg) {
796 	case 0:
797 		asm("movdqa %0, %%xmm0" : : "m"(*data));
798 		break;
799 	case 1:
800 		asm("movdqa %0, %%xmm1" : : "m"(*data));
801 		break;
802 	case 2:
803 		asm("movdqa %0, %%xmm2" : : "m"(*data));
804 		break;
805 	case 3:
806 		asm("movdqa %0, %%xmm3" : : "m"(*data));
807 		break;
808 	case 4:
809 		asm("movdqa %0, %%xmm4" : : "m"(*data));
810 		break;
811 	case 5:
812 		asm("movdqa %0, %%xmm5" : : "m"(*data));
813 		break;
814 	case 6:
815 		asm("movdqa %0, %%xmm6" : : "m"(*data));
816 		break;
817 	case 7:
818 		asm("movdqa %0, %%xmm7" : : "m"(*data));
819 		break;
820 	default:
821 		BUG();
822 	}
823 }
824 
825 static inline void cpu_relax(void)
826 {
827 	asm volatile("rep; nop" ::: "memory");
828 }
829 
830 static inline void udelay(unsigned long usec)
831 {
832 	uint64_t start, now, cycles;
833 
834 	GUEST_ASSERT(guest_tsc_khz);
835 	cycles = guest_tsc_khz / 1000 * usec;
836 
837 	/*
838 	 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
839 	 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
840 	 */
841 	start = rdtsc();
842 	do {
843 		now = rdtsc();
844 	} while (now - start < cycles);
845 }
846 
847 #define ud2()			\
848 	__asm__ __volatile__(	\
849 		"ud2\n"	\
850 		)
851 
852 #define hlt()			\
853 	__asm__ __volatile__(	\
854 		"hlt\n"	\
855 		)
856 
857 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
858 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
859 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
860 
861 const struct kvm_msr_list *kvm_get_msr_index_list(void);
862 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
863 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
864 uint64_t kvm_get_feature_msr(uint64_t msr_index);
865 
866 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
867 				 struct kvm_msrs *msrs)
868 {
869 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
870 
871 	TEST_ASSERT(r == msrs->nmsrs,
872 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
873 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
874 }
875 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
876 {
877 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
878 
879 	TEST_ASSERT(r == msrs->nmsrs,
880 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
881 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
882 }
883 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
884 				      struct kvm_debugregs *debugregs)
885 {
886 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
887 }
888 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
889 				      struct kvm_debugregs *debugregs)
890 {
891 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
892 }
893 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
894 				  struct kvm_xsave *xsave)
895 {
896 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
897 }
898 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
899 				   struct kvm_xsave *xsave)
900 {
901 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
902 }
903 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
904 				  struct kvm_xsave *xsave)
905 {
906 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
907 }
908 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
909 				 struct kvm_xcrs *xcrs)
910 {
911 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
912 }
913 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
914 {
915 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
916 }
917 
918 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
919 					       uint32_t function, uint32_t index);
920 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
921 
922 static inline uint32_t kvm_cpu_fms(void)
923 {
924 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
925 }
926 
927 static inline uint32_t kvm_cpu_family(void)
928 {
929 	return x86_family(kvm_cpu_fms());
930 }
931 
932 static inline uint32_t kvm_cpu_model(void)
933 {
934 	return x86_model(kvm_cpu_fms());
935 }
936 
937 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
938 		   struct kvm_x86_cpu_feature feature);
939 
940 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
941 {
942 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
943 }
944 
945 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
946 			    struct kvm_x86_cpu_property property);
947 
948 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
949 {
950 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
951 }
952 
953 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
954 {
955 	uint32_t max_leaf;
956 
957 	switch (property.function & 0xc0000000) {
958 	case 0:
959 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
960 		break;
961 	case 0x40000000:
962 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
963 		break;
964 	case 0x80000000:
965 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
966 		break;
967 	case 0xc0000000:
968 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
969 	}
970 	return max_leaf >= property.function;
971 }
972 
973 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
974 {
975 	uint32_t nr_bits;
976 
977 	if (feature.f.reg == KVM_CPUID_EBX) {
978 		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
979 		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
980 	}
981 
982 	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
983 	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
984 	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
985 }
986 
987 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
988 {
989 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
990 		return 0;
991 
992 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
993 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
994 }
995 
996 static inline size_t kvm_cpuid2_size(int nr_entries)
997 {
998 	return sizeof(struct kvm_cpuid2) +
999 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
1000 }
1001 
1002 /*
1003  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
1004  * entries sized to hold @nr_entries.  The caller is responsible for freeing
1005  * the struct.
1006  */
1007 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1008 {
1009 	struct kvm_cpuid2 *cpuid;
1010 
1011 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
1012 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1013 
1014 	cpuid->nent = nr_entries;
1015 
1016 	return cpuid;
1017 }
1018 
1019 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1020 
1021 static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu)
1022 {
1023 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1024 }
1025 
1026 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1027 							      uint32_t function,
1028 							      uint32_t index)
1029 {
1030 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)");
1031 
1032 	vcpu_get_cpuid(vcpu);
1033 
1034 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1035 							  function, index);
1036 }
1037 
1038 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1039 							    uint32_t function)
1040 {
1041 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1042 }
1043 
1044 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1045 {
1046 	int r;
1047 
1048 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1049 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1050 	if (r)
1051 		return r;
1052 
1053 	/* On success, refresh the cache to pick up adjustments made by KVM. */
1054 	vcpu_get_cpuid(vcpu);
1055 	return 0;
1056 }
1057 
1058 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1059 {
1060 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1061 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1062 
1063 	/* Refresh the cache to pick up adjustments made by KVM. */
1064 	vcpu_get_cpuid(vcpu);
1065 }
1066 
1067 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1068 			     struct kvm_x86_cpu_property property,
1069 			     uint32_t value);
1070 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1071 
1072 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1073 
1074 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1075 				  struct kvm_x86_cpu_feature feature)
1076 {
1077 	struct kvm_cpuid_entry2 *entry;
1078 
1079 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1080 	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1081 }
1082 
1083 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1084 				     struct kvm_x86_cpu_feature feature,
1085 				     bool set);
1086 
1087 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1088 					  struct kvm_x86_cpu_feature feature)
1089 {
1090 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1091 
1092 }
1093 
1094 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1095 					    struct kvm_x86_cpu_feature feature)
1096 {
1097 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1098 }
1099 
1100 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1101 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1102 
1103 /*
1104  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1105  * Note, the caller provides the stringified name so that the name of macro is
1106  * printed, not the value the macro resolves to (due to macro expansion).
1107  */
1108 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1109 do {										\
1110 	if (__builtin_constant_p(msr)) {					\
1111 		TEST_ASSERT(cond, fmt, str, args);				\
1112 	} else if (!(cond)) {							\
1113 		char buf[16];							\
1114 										\
1115 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1116 		TEST_ASSERT(cond, fmt, buf, args);				\
1117 	}									\
1118 } while (0)
1119 
1120 /*
1121  * Returns true if KVM should return the last written value when reading an MSR
1122  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1123  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1124  * out MSRs that are not durable _and_ that a selftest wants to write.
1125  */
1126 static inline bool is_durable_msr(uint32_t msr)
1127 {
1128 	return msr != MSR_IA32_TSC;
1129 }
1130 
1131 #define vcpu_set_msr(vcpu, msr, val)							\
1132 do {											\
1133 	uint64_t r, v = val;								\
1134 											\
1135 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1136 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1137 	if (!is_durable_msr(msr))							\
1138 		break;									\
1139 	r = vcpu_get_msr(vcpu, msr);							\
1140 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1141 } while (0)
1142 
1143 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1144 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1145 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1146 
1147 struct ex_regs {
1148 	uint64_t rax, rcx, rdx, rbx;
1149 	uint64_t rbp, rsi, rdi;
1150 	uint64_t r8, r9, r10, r11;
1151 	uint64_t r12, r13, r14, r15;
1152 	uint64_t vector;
1153 	uint64_t error_code;
1154 	uint64_t rip;
1155 	uint64_t cs;
1156 	uint64_t rflags;
1157 };
1158 
1159 struct idt_entry {
1160 	uint16_t offset0;
1161 	uint16_t selector;
1162 	uint16_t ist : 3;
1163 	uint16_t : 5;
1164 	uint16_t type : 4;
1165 	uint16_t : 1;
1166 	uint16_t dpl : 2;
1167 	uint16_t p : 1;
1168 	uint16_t offset1;
1169 	uint32_t offset2; uint32_t reserved;
1170 };
1171 
1172 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1173 			void (*handler)(struct ex_regs *));
1174 
1175 /* If a toddler were to say "abracadabra". */
1176 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1177 
1178 /*
1179  * KVM selftest exception fixup uses registers to coordinate with the exception
1180  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1181  * per-CPU data.  Using only registers avoids having to map memory into the
1182  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1183  * for recursive faults when accessing memory in the handler.  The downside to
1184  * using registers is that it restricts what registers can be used by the actual
1185  * instruction.  But, selftests are 64-bit only, making register* pressure a
1186  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1187  * by the callee, and except for r11 are not implicit parameters to any
1188  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1189  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1190  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1191  *
1192  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1193  * is guaranteed to be non-zero on fault.
1194  *
1195  * REGISTER INPUTS:
1196  * r9  = MAGIC
1197  * r10 = RIP
1198  * r11 = new RIP on fault
1199  *
1200  * REGISTER OUTPUTS:
1201  * r9  = exception vector (non-zero)
1202  * r10 = error code
1203  */
1204 #define __KVM_ASM_SAFE(insn, fep)				\
1205 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1206 	"lea 1f(%%rip), %%r10\n\t"				\
1207 	"lea 2f(%%rip), %%r11\n\t"				\
1208 	fep "1: " insn "\n\t"					\
1209 	"xor %%r9, %%r9\n\t"					\
1210 	"2:\n\t"						\
1211 	"mov  %%r9b, %[vector]\n\t"				\
1212 	"mov  %%r10, %[error_code]\n\t"
1213 
1214 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1215 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1216 
1217 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1218 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1219 
1220 #define kvm_asm_safe(insn, inputs...)					\
1221 ({									\
1222 	uint64_t ign_error_code;					\
1223 	uint8_t vector;							\
1224 									\
1225 	asm volatile(KVM_ASM_SAFE(insn)					\
1226 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1227 		     : inputs						\
1228 		     : KVM_ASM_SAFE_CLOBBERS);				\
1229 	vector;								\
1230 })
1231 
1232 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1233 ({									\
1234 	uint8_t vector;							\
1235 									\
1236 	asm volatile(KVM_ASM_SAFE(insn)					\
1237 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1238 		     : inputs						\
1239 		     : KVM_ASM_SAFE_CLOBBERS);				\
1240 	vector;								\
1241 })
1242 
1243 #define kvm_asm_safe_fep(insn, inputs...)				\
1244 ({									\
1245 	uint64_t ign_error_code;					\
1246 	uint8_t vector;							\
1247 									\
1248 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1249 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1250 		     : inputs						\
1251 		     : KVM_ASM_SAFE_CLOBBERS);				\
1252 	vector;								\
1253 })
1254 
1255 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1256 ({									\
1257 	uint8_t vector;							\
1258 									\
1259 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1260 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1261 		     : inputs						\
1262 		     : KVM_ASM_SAFE_CLOBBERS);				\
1263 	vector;								\
1264 })
1265 
1266 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1267 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1268 {									\
1269 	uint64_t error_code;						\
1270 	uint8_t vector;							\
1271 	uint32_t a, d;							\
1272 									\
1273 	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1274 		     : "=a"(a), "=d"(d),				\
1275 		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1276 		     : "c"(idx)						\
1277 		     : KVM_ASM_SAFE_CLOBBERS);				\
1278 									\
1279 	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1280 	return vector;							\
1281 }
1282 
1283 /*
1284  * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1285  * use ECX as in input index, and EDX:EAX as a 64-bit output.
1286  */
1287 #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1288 	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1289 	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1290 
1291 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1292 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1293 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1294 
1295 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1296 {
1297 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1298 }
1299 
1300 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1301 {
1302 	u32 eax = value;
1303 	u32 edx = value >> 32;
1304 
1305 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1306 }
1307 
1308 bool kvm_is_tdp_enabled(void);
1309 
1310 static inline bool kvm_is_pmu_enabled(void)
1311 {
1312 	return get_kvm_param_bool("enable_pmu");
1313 }
1314 
1315 static inline bool kvm_is_forced_emulation_enabled(void)
1316 {
1317 	return !!get_kvm_param_integer("force_emulation_prefix");
1318 }
1319 
1320 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1321 				    int *level);
1322 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1323 
1324 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1325 		       uint64_t a3);
1326 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1327 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1328 
1329 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1330 						     uint64_t size, uint64_t flags)
1331 {
1332 	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1333 }
1334 
1335 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1336 					       uint64_t flags)
1337 {
1338 	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1339 
1340 	GUEST_ASSERT(!ret);
1341 }
1342 
1343 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1344 
1345 #define vm_xsave_require_permission(xfeature)	\
1346 	__vm_xsave_require_permission(xfeature, #xfeature)
1347 
1348 enum pg_level {
1349 	PG_LEVEL_NONE,
1350 	PG_LEVEL_4K,
1351 	PG_LEVEL_2M,
1352 	PG_LEVEL_1G,
1353 	PG_LEVEL_512G,
1354 	PG_LEVEL_NUM
1355 };
1356 
1357 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1358 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1359 
1360 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1361 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1362 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1363 
1364 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1365 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1366 		    uint64_t nr_bytes, int level);
1367 
1368 /*
1369  * Basic CPU control in CR0
1370  */
1371 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1372 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1373 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1374 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1375 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1376 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1377 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1378 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1379 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1380 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1381 #define X86_CR0_PG          (1UL<<31) /* Paging */
1382 
1383 #define PFERR_PRESENT_BIT 0
1384 #define PFERR_WRITE_BIT 1
1385 #define PFERR_USER_BIT 2
1386 #define PFERR_RSVD_BIT 3
1387 #define PFERR_FETCH_BIT 4
1388 #define PFERR_PK_BIT 5
1389 #define PFERR_SGX_BIT 15
1390 #define PFERR_GUEST_FINAL_BIT 32
1391 #define PFERR_GUEST_PAGE_BIT 33
1392 #define PFERR_IMPLICIT_ACCESS_BIT 48
1393 
1394 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1395 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1396 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1397 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1398 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1399 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1400 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1401 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1402 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1403 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1404 
1405 bool sys_clocksource_is_based_on_tsc(void);
1406 
1407 #endif /* SELFTEST_KVM_PROCESSOR_H */
1408