1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2018, Google LLC. 4 */ 5 #ifndef SELFTEST_KVM_UTIL_H 6 #define SELFTEST_KVM_UTIL_H 7 8 #include "test_util.h" 9 10 #include <linux/compiler.h> 11 #include "linux/hashtable.h" 12 #include "linux/list.h" 13 #include <linux/kernel.h> 14 #include <linux/kvm.h> 15 #include "linux/rbtree.h" 16 #include <linux/types.h> 17 18 #include <asm/atomic.h> 19 #include <asm/kvm.h> 20 21 #include <sys/ioctl.h> 22 23 #include "kvm_util_arch.h" 24 #include "kvm_util_types.h" 25 #include "sparsebit.h" 26 27 #define KVM_DEV_PATH "/dev/kvm" 28 #define KVM_MAX_VCPUS 512 29 30 #define NSEC_PER_SEC 1000000000L 31 32 struct userspace_mem_region { 33 struct kvm_userspace_memory_region2 region; 34 struct sparsebit *unused_phy_pages; 35 struct sparsebit *protected_phy_pages; 36 int fd; 37 off_t offset; 38 enum vm_mem_backing_src_type backing_src_type; 39 void *host_mem; 40 void *host_alias; 41 void *mmap_start; 42 void *mmap_alias; 43 size_t mmap_size; 44 struct rb_node gpa_node; 45 struct rb_node hva_node; 46 struct hlist_node slot_node; 47 }; 48 49 struct kvm_binary_stats { 50 int fd; 51 struct kvm_stats_header header; 52 struct kvm_stats_desc *desc; 53 }; 54 55 struct kvm_vcpu { 56 struct list_head list; 57 uint32_t id; 58 int fd; 59 struct kvm_vm *vm; 60 struct kvm_run *run; 61 #ifdef __x86_64__ 62 struct kvm_cpuid2 *cpuid; 63 #endif 64 struct kvm_binary_stats stats; 65 struct kvm_dirty_gfn *dirty_gfns; 66 uint32_t fetch_index; 67 uint32_t dirty_gfns_count; 68 }; 69 70 struct userspace_mem_regions { 71 struct rb_root gpa_tree; 72 struct rb_root hva_tree; 73 DECLARE_HASHTABLE(slot_hash, 9); 74 }; 75 76 enum kvm_mem_region_type { 77 MEM_REGION_CODE, 78 MEM_REGION_DATA, 79 MEM_REGION_PT, 80 MEM_REGION_TEST_DATA, 81 NR_MEM_REGIONS, 82 }; 83 84 struct kvm_vm { 85 int mode; 86 unsigned long type; 87 int kvm_fd; 88 int fd; 89 unsigned int pgtable_levels; 90 unsigned int page_size; 91 unsigned int page_shift; 92 unsigned int pa_bits; 93 unsigned int va_bits; 94 uint64_t max_gfn; 95 struct list_head vcpus; 96 struct userspace_mem_regions regions; 97 struct sparsebit *vpages_valid; 98 struct sparsebit *vpages_mapped; 99 bool has_irqchip; 100 bool pgd_created; 101 vm_paddr_t ucall_mmio_addr; 102 vm_paddr_t pgd; 103 vm_vaddr_t handlers; 104 uint32_t dirty_ring_size; 105 uint64_t gpa_tag_mask; 106 107 struct kvm_vm_arch arch; 108 109 struct kvm_binary_stats stats; 110 111 /* 112 * KVM region slots. These are the default memslots used by page 113 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE] 114 * memslot. 115 */ 116 uint32_t memslots[NR_MEM_REGIONS]; 117 }; 118 119 struct vcpu_reg_sublist { 120 const char *name; 121 long capability; 122 int feature; 123 int feature_type; 124 bool finalize; 125 __u64 *regs; 126 __u64 regs_n; 127 __u64 *rejects_set; 128 __u64 rejects_set_n; 129 __u64 *skips_set; 130 __u64 skips_set_n; 131 }; 132 133 struct vcpu_reg_list { 134 char *name; 135 struct vcpu_reg_sublist sublists[]; 136 }; 137 138 #define for_each_sublist(c, s) \ 139 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s)) 140 141 #define kvm_for_each_vcpu(vm, i, vcpu) \ 142 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \ 143 if (!((vcpu) = vm->vcpus[i])) \ 144 continue; \ 145 else 146 147 struct userspace_mem_region * 148 memslot2region(struct kvm_vm *vm, uint32_t memslot); 149 150 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm, 151 enum kvm_mem_region_type type) 152 { 153 assert(type < NR_MEM_REGIONS); 154 return memslot2region(vm, vm->memslots[type]); 155 } 156 157 /* Minimum allocated guest virtual and physical addresses */ 158 #define KVM_UTIL_MIN_VADDR 0x2000 159 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 160 161 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 162 #define DEFAULT_STACK_PGS 5 163 164 enum vm_guest_mode { 165 VM_MODE_P52V48_4K, 166 VM_MODE_P52V48_16K, 167 VM_MODE_P52V48_64K, 168 VM_MODE_P48V48_4K, 169 VM_MODE_P48V48_16K, 170 VM_MODE_P48V48_64K, 171 VM_MODE_P40V48_4K, 172 VM_MODE_P40V48_16K, 173 VM_MODE_P40V48_64K, 174 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */ 175 VM_MODE_P47V64_4K, 176 VM_MODE_P44V64_4K, 177 VM_MODE_P36V48_4K, 178 VM_MODE_P36V48_16K, 179 VM_MODE_P36V48_64K, 180 VM_MODE_P36V47_16K, 181 NUM_VM_MODES, 182 }; 183 184 struct vm_shape { 185 uint32_t type; 186 uint8_t mode; 187 uint8_t pad0; 188 uint16_t pad1; 189 }; 190 191 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t)); 192 193 #define VM_TYPE_DEFAULT 0 194 195 #define VM_SHAPE(__mode) \ 196 ({ \ 197 struct vm_shape shape = { \ 198 .mode = (__mode), \ 199 .type = VM_TYPE_DEFAULT \ 200 }; \ 201 \ 202 shape; \ 203 }) 204 205 #if defined(__aarch64__) 206 207 extern enum vm_guest_mode vm_mode_default; 208 209 #define VM_MODE_DEFAULT vm_mode_default 210 #define MIN_PAGE_SHIFT 12U 211 #define ptes_per_page(page_size) ((page_size) / 8) 212 213 #elif defined(__x86_64__) 214 215 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K 216 #define MIN_PAGE_SHIFT 12U 217 #define ptes_per_page(page_size) ((page_size) / 8) 218 219 #elif defined(__s390x__) 220 221 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K 222 #define MIN_PAGE_SHIFT 12U 223 #define ptes_per_page(page_size) ((page_size) / 16) 224 225 #elif defined(__riscv) 226 227 #if __riscv_xlen == 32 228 #error "RISC-V 32-bit kvm selftests not supported" 229 #endif 230 231 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K 232 #define MIN_PAGE_SHIFT 12U 233 #define ptes_per_page(page_size) ((page_size) / 8) 234 235 #endif 236 237 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT) 238 239 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT) 240 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE) 241 242 struct vm_guest_mode_params { 243 unsigned int pa_bits; 244 unsigned int va_bits; 245 unsigned int page_size; 246 unsigned int page_shift; 247 }; 248 extern const struct vm_guest_mode_params vm_guest_mode_params[]; 249 250 int open_path_or_exit(const char *path, int flags); 251 int open_kvm_dev_path_or_exit(void); 252 253 bool get_kvm_param_bool(const char *param); 254 bool get_kvm_intel_param_bool(const char *param); 255 bool get_kvm_amd_param_bool(const char *param); 256 257 int get_kvm_param_integer(const char *param); 258 int get_kvm_intel_param_integer(const char *param); 259 int get_kvm_amd_param_integer(const char *param); 260 261 unsigned int kvm_check_cap(long cap); 262 263 static inline bool kvm_has_cap(long cap) 264 { 265 return kvm_check_cap(cap); 266 } 267 268 #define __KVM_SYSCALL_ERROR(_name, _ret) \ 269 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno) 270 271 /* 272 * Use the "inner", double-underscore macro when reporting errors from within 273 * other macros so that the name of ioctl() and not its literal numeric value 274 * is printed on error. The "outer" macro is strongly preferred when reporting 275 * errors "directly", i.e. without an additional layer of macros, as it reduces 276 * the probability of passing in the wrong string. 277 */ 278 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret) 279 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret) 280 281 #define kvm_do_ioctl(fd, cmd, arg) \ 282 ({ \ 283 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \ 284 ioctl(fd, cmd, arg); \ 285 }) 286 287 #define __kvm_ioctl(kvm_fd, cmd, arg) \ 288 kvm_do_ioctl(kvm_fd, cmd, arg) 289 290 #define kvm_ioctl(kvm_fd, cmd, arg) \ 291 ({ \ 292 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \ 293 \ 294 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \ 295 }) 296 297 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { } 298 299 #define __vm_ioctl(vm, cmd, arg) \ 300 ({ \ 301 static_assert_is_vm(vm); \ 302 kvm_do_ioctl((vm)->fd, cmd, arg); \ 303 }) 304 305 /* 306 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if 307 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM, 308 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before 309 * selftests existed and (b) should never outright fail, i.e. is supposed to 310 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the 311 * VM and its vCPUs, including KVM_CHECK_EXTENSION. 312 */ 313 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \ 314 do { \ 315 int __errno = errno; \ 316 \ 317 static_assert_is_vm(vm); \ 318 \ 319 if (cond) \ 320 break; \ 321 \ 322 if (errno == EIO && \ 323 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \ 324 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \ 325 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \ 326 } \ 327 errno = __errno; \ 328 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \ 329 } while (0) 330 331 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \ 332 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm) 333 334 #define vm_ioctl(vm, cmd, arg) \ 335 ({ \ 336 int ret = __vm_ioctl(vm, cmd, arg); \ 337 \ 338 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \ 339 }) 340 341 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { } 342 343 #define __vcpu_ioctl(vcpu, cmd, arg) \ 344 ({ \ 345 static_assert_is_vcpu(vcpu); \ 346 kvm_do_ioctl((vcpu)->fd, cmd, arg); \ 347 }) 348 349 #define vcpu_ioctl(vcpu, cmd, arg) \ 350 ({ \ 351 int ret = __vcpu_ioctl(vcpu, cmd, arg); \ 352 \ 353 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \ 354 }) 355 356 /* 357 * Looks up and returns the value corresponding to the capability 358 * (KVM_CAP_*) given by cap. 359 */ 360 static inline int vm_check_cap(struct kvm_vm *vm, long cap) 361 { 362 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap); 363 364 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm); 365 return ret; 366 } 367 368 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 369 { 370 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 371 372 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 373 } 374 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 375 { 376 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 377 378 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 379 } 380 381 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa, 382 uint64_t size, uint64_t attributes) 383 { 384 struct kvm_memory_attributes attr = { 385 .attributes = attributes, 386 .address = gpa, 387 .size = size, 388 .flags = 0, 389 }; 390 391 /* 392 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows 393 * need significant enhancements to support multiple attributes. 394 */ 395 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE, 396 "Update me to support multiple attributes!"); 397 398 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr); 399 } 400 401 402 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa, 403 uint64_t size) 404 { 405 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 406 } 407 408 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa, 409 uint64_t size) 410 { 411 vm_set_memory_attributes(vm, gpa, size, 0); 412 } 413 414 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size, 415 bool punch_hole); 416 417 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa, 418 uint64_t size) 419 { 420 vm_guest_mem_fallocate(vm, gpa, size, true); 421 } 422 423 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa, 424 uint64_t size) 425 { 426 vm_guest_mem_fallocate(vm, gpa, size, false); 427 } 428 429 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size); 430 const char *vm_guest_mode_string(uint32_t i); 431 432 void kvm_vm_free(struct kvm_vm *vmp); 433 void kvm_vm_restart(struct kvm_vm *vmp); 434 void kvm_vm_release(struct kvm_vm *vmp); 435 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename); 436 int kvm_memfd_alloc(size_t size, bool hugepages); 437 438 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 439 440 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 441 { 442 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 443 444 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args); 445 } 446 447 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 448 uint64_t first_page, uint32_t num_pages) 449 { 450 struct kvm_clear_dirty_log args = { 451 .dirty_bitmap = log, 452 .slot = slot, 453 .first_page = first_page, 454 .num_pages = num_pages 455 }; 456 457 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args); 458 } 459 460 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 461 { 462 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL); 463 } 464 465 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm, 466 uint64_t address, 467 uint64_t size, bool pio) 468 { 469 struct kvm_coalesced_mmio_zone zone = { 470 .addr = address, 471 .size = size, 472 .pio = pio, 473 }; 474 475 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone); 476 } 477 478 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm, 479 uint64_t address, 480 uint64_t size, bool pio) 481 { 482 struct kvm_coalesced_mmio_zone zone = { 483 .addr = address, 484 .size = size, 485 .pio = pio, 486 }; 487 488 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone); 489 } 490 491 static inline int vm_get_stats_fd(struct kvm_vm *vm) 492 { 493 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL); 494 495 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm); 496 return fd; 497 } 498 499 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header) 500 { 501 ssize_t ret; 502 503 ret = pread(stats_fd, header, sizeof(*header), 0); 504 TEST_ASSERT(ret == sizeof(*header), 505 "Failed to read '%lu' header bytes, ret = '%ld'", 506 sizeof(*header), ret); 507 } 508 509 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 510 struct kvm_stats_header *header); 511 512 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header) 513 { 514 /* 515 * The base size of the descriptor is defined by KVM's ABI, but the 516 * size of the name field is variable, as far as KVM's ABI is 517 * concerned. For a given instance of KVM, the name field is the same 518 * size for all stats and is provided in the overall stats header. 519 */ 520 return sizeof(struct kvm_stats_desc) + header->name_size; 521 } 522 523 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats, 524 int index, 525 struct kvm_stats_header *header) 526 { 527 /* 528 * Note, size_desc includes the size of the name field, which is 529 * variable. i.e. this is NOT equivalent to &stats_desc[i]. 530 */ 531 return (void *)stats + index * get_stats_descriptor_size(header); 532 } 533 534 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 535 struct kvm_stats_desc *desc, uint64_t *data, 536 size_t max_elements); 537 538 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 539 uint64_t *data, size_t max_elements); 540 541 #define __get_stat(stats, stat) \ 542 ({ \ 543 uint64_t data; \ 544 \ 545 kvm_get_stat(stats, #stat, &data, 1); \ 546 data; \ 547 }) 548 549 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat) 550 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat) 551 552 static inline bool read_smt_control(char *buf, size_t buf_size) 553 { 554 FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r"); 555 bool ret; 556 557 if (!f) 558 return false; 559 560 ret = fread(buf, sizeof(*buf), buf_size, f) > 0; 561 fclose(f); 562 563 return ret; 564 } 565 566 static inline bool is_smt_possible(void) 567 { 568 char buf[16]; 569 570 if (read_smt_control(buf, sizeof(buf)) && 571 (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12))) 572 return false; 573 574 return true; 575 } 576 577 static inline bool is_smt_on(void) 578 { 579 char buf[16]; 580 581 if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2)) 582 return true; 583 584 return false; 585 } 586 587 void vm_create_irqchip(struct kvm_vm *vm); 588 589 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 590 uint64_t flags) 591 { 592 struct kvm_create_guest_memfd guest_memfd = { 593 .size = size, 594 .flags = flags, 595 }; 596 597 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 598 } 599 600 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 601 uint64_t flags) 602 { 603 int fd = __vm_create_guest_memfd(vm, size, flags); 604 605 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd)); 606 return fd; 607 } 608 609 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 610 uint64_t gpa, uint64_t size, void *hva); 611 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 612 uint64_t gpa, uint64_t size, void *hva); 613 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 614 uint64_t gpa, uint64_t size, void *hva, 615 uint32_t guest_memfd, uint64_t guest_memfd_offset); 616 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 617 uint64_t gpa, uint64_t size, void *hva, 618 uint32_t guest_memfd, uint64_t guest_memfd_offset); 619 620 void vm_userspace_mem_region_add(struct kvm_vm *vm, 621 enum vm_mem_backing_src_type src_type, 622 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 623 uint32_t flags); 624 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 625 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 626 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset); 627 628 #ifndef vm_arch_has_protected_memory 629 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm) 630 { 631 return false; 632 } 633 #endif 634 635 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); 636 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa); 637 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot); 638 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 639 void vm_populate_vaddr_bitmap(struct kvm_vm *vm); 640 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 641 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 642 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 643 enum kvm_mem_region_type type); 644 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 645 vm_vaddr_t vaddr_min, 646 enum kvm_mem_region_type type); 647 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); 648 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, 649 enum kvm_mem_region_type type); 650 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm); 651 652 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 653 unsigned int npages); 654 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); 655 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); 656 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); 657 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa); 658 659 #ifndef vcpu_arch_put_guest 660 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0) 661 #endif 662 663 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa) 664 { 665 return gpa & ~vm->gpa_tag_mask; 666 } 667 668 void vcpu_run(struct kvm_vcpu *vcpu); 669 int _vcpu_run(struct kvm_vcpu *vcpu); 670 671 static inline int __vcpu_run(struct kvm_vcpu *vcpu) 672 { 673 return __vcpu_ioctl(vcpu, KVM_RUN, NULL); 674 } 675 676 void vcpu_run_complete_io(struct kvm_vcpu *vcpu); 677 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu); 678 679 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap, 680 uint64_t arg0) 681 { 682 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 683 684 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap); 685 } 686 687 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu, 688 struct kvm_guest_debug *debug) 689 { 690 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug); 691 } 692 693 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu, 694 struct kvm_mp_state *mp_state) 695 { 696 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state); 697 } 698 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu, 699 struct kvm_mp_state *mp_state) 700 { 701 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state); 702 } 703 704 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 705 { 706 vcpu_ioctl(vcpu, KVM_GET_REGS, regs); 707 } 708 709 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 710 { 711 vcpu_ioctl(vcpu, KVM_SET_REGS, regs); 712 } 713 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 714 { 715 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs); 716 717 } 718 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 719 { 720 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 721 } 722 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 723 { 724 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 725 } 726 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 727 { 728 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu); 729 } 730 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 731 { 732 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu); 733 } 734 735 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 736 { 737 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 738 739 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 740 } 741 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 742 { 743 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 744 745 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 746 } 747 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id) 748 { 749 uint64_t val; 750 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 751 752 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 753 754 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 755 return val; 756 } 757 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 758 { 759 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 760 761 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 762 763 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 764 } 765 766 #ifdef __KVM_HAVE_VCPU_EVENTS 767 static inline void vcpu_events_get(struct kvm_vcpu *vcpu, 768 struct kvm_vcpu_events *events) 769 { 770 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events); 771 } 772 static inline void vcpu_events_set(struct kvm_vcpu *vcpu, 773 struct kvm_vcpu_events *events) 774 { 775 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events); 776 } 777 #endif 778 #ifdef __x86_64__ 779 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu, 780 struct kvm_nested_state *state) 781 { 782 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state); 783 } 784 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu, 785 struct kvm_nested_state *state) 786 { 787 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 788 } 789 790 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu, 791 struct kvm_nested_state *state) 792 { 793 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 794 } 795 #endif 796 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu) 797 { 798 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL); 799 800 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm); 801 return fd; 802 } 803 804 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr); 805 806 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 807 { 808 int ret = __kvm_has_device_attr(dev_fd, group, attr); 809 810 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 811 } 812 813 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val); 814 815 static inline void kvm_device_attr_get(int dev_fd, uint32_t group, 816 uint64_t attr, void *val) 817 { 818 int ret = __kvm_device_attr_get(dev_fd, group, attr, val); 819 820 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret)); 821 } 822 823 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val); 824 825 static inline void kvm_device_attr_set(int dev_fd, uint32_t group, 826 uint64_t attr, void *val) 827 { 828 int ret = __kvm_device_attr_set(dev_fd, group, attr, val); 829 830 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret)); 831 } 832 833 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 834 uint64_t attr) 835 { 836 return __kvm_has_device_attr(vcpu->fd, group, attr); 837 } 838 839 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 840 uint64_t attr) 841 { 842 kvm_has_device_attr(vcpu->fd, group, attr); 843 } 844 845 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 846 uint64_t attr, void *val) 847 { 848 return __kvm_device_attr_get(vcpu->fd, group, attr, val); 849 } 850 851 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 852 uint64_t attr, void *val) 853 { 854 kvm_device_attr_get(vcpu->fd, group, attr, val); 855 } 856 857 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 858 uint64_t attr, void *val) 859 { 860 return __kvm_device_attr_set(vcpu->fd, group, attr, val); 861 } 862 863 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 864 uint64_t attr, void *val) 865 { 866 kvm_device_attr_set(vcpu->fd, group, attr, val); 867 } 868 869 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type); 870 int __kvm_create_device(struct kvm_vm *vm, uint64_t type); 871 872 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type) 873 { 874 int fd = __kvm_create_device(vm, type); 875 876 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd)); 877 return fd; 878 } 879 880 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu); 881 882 /* 883 * VM VCPU Args Set 884 * 885 * Input Args: 886 * vm - Virtual Machine 887 * num - number of arguments 888 * ... - arguments, each of type uint64_t 889 * 890 * Output Args: None 891 * 892 * Return: None 893 * 894 * Sets the first @num input parameters for the function at @vcpu's entry point, 895 * per the C calling convention of the architecture, to the values given as 896 * variable args. Each of the variable args is expected to be of type uint64_t. 897 * The maximum @num can be is specific to the architecture. 898 */ 899 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...); 900 901 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 902 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 903 904 #define KVM_MAX_IRQ_ROUTES 4096 905 906 struct kvm_irq_routing *kvm_gsi_routing_create(void); 907 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 908 uint32_t gsi, uint32_t pin); 909 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 910 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 911 912 const char *exit_reason_str(unsigned int exit_reason); 913 914 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 915 uint32_t memslot); 916 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 917 vm_paddr_t paddr_min, uint32_t memslot, 918 bool protected); 919 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm); 920 921 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 922 vm_paddr_t paddr_min, uint32_t memslot) 923 { 924 /* 925 * By default, allocate memory as protected for VMs that support 926 * protected memory, as the majority of memory for such VMs is 927 * protected, i.e. using shared memory is effectively opt-in. 928 */ 929 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot, 930 vm_arch_has_protected_memory(vm)); 931 } 932 933 /* 934 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also 935 * loads the test binary into guest memory and creates an IRQ chip (x86 only). 936 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to 937 * calculate the amount of memory needed for per-vCPU data, e.g. stacks. 938 */ 939 struct kvm_vm *____vm_create(struct vm_shape shape); 940 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 941 uint64_t nr_extra_pages); 942 943 static inline struct kvm_vm *vm_create_barebones(void) 944 { 945 return ____vm_create(VM_SHAPE_DEFAULT); 946 } 947 948 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type) 949 { 950 const struct vm_shape shape = { 951 .mode = VM_MODE_DEFAULT, 952 .type = type, 953 }; 954 955 return ____vm_create(shape); 956 } 957 958 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus) 959 { 960 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0); 961 } 962 963 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 964 uint64_t extra_mem_pages, 965 void *guest_code, struct kvm_vcpu *vcpus[]); 966 967 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus, 968 void *guest_code, 969 struct kvm_vcpu *vcpus[]) 970 { 971 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0, 972 guest_code, vcpus); 973 } 974 975 976 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 977 struct kvm_vcpu **vcpu, 978 uint64_t extra_mem_pages, 979 void *guest_code); 980 981 /* 982 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages 983 * additional pages of guest memory. Returns the VM and vCPU (via out param). 984 */ 985 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 986 uint64_t extra_mem_pages, 987 void *guest_code) 988 { 989 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu, 990 extra_mem_pages, guest_code); 991 } 992 993 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 994 void *guest_code) 995 { 996 return __vm_create_with_one_vcpu(vcpu, 0, guest_code); 997 } 998 999 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape, 1000 struct kvm_vcpu **vcpu, 1001 void *guest_code) 1002 { 1003 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code); 1004 } 1005 1006 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm); 1007 1008 void kvm_set_files_rlimit(uint32_t nr_vcpus); 1009 1010 void kvm_pin_this_task_to_pcpu(uint32_t pcpu); 1011 void kvm_print_vcpu_pinning_help(void); 1012 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 1013 int nr_vcpus); 1014 1015 unsigned long vm_compute_max_gfn(struct kvm_vm *vm); 1016 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size); 1017 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages); 1018 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages); 1019 static inline unsigned int 1020 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 1021 { 1022 unsigned int n; 1023 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages)); 1024 #ifdef __s390x__ 1025 /* s390 requires 1M aligned guest sizes */ 1026 n = (n + 255) & ~255; 1027 #endif 1028 return n; 1029 } 1030 1031 #define sync_global_to_guest(vm, g) ({ \ 1032 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1033 memcpy(_p, &(g), sizeof(g)); \ 1034 }) 1035 1036 #define sync_global_from_guest(vm, g) ({ \ 1037 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1038 memcpy(&(g), _p, sizeof(g)); \ 1039 }) 1040 1041 /* 1042 * Write a global value, but only in the VM's (guest's) domain. Primarily used 1043 * for "globals" that hold per-VM values (VMs always duplicate code and global 1044 * data into their own region of physical memory), but can be used anytime it's 1045 * undesirable to change the host's copy of the global. 1046 */ 1047 #define write_guest_global(vm, g, val) ({ \ 1048 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1049 typeof(g) _val = val; \ 1050 \ 1051 memcpy(_p, &(_val), sizeof(g)); \ 1052 }) 1053 1054 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu); 1055 1056 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, 1057 uint8_t indent); 1058 1059 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu, 1060 uint8_t indent) 1061 { 1062 vcpu_arch_dump(stream, vcpu, indent); 1063 } 1064 1065 /* 1066 * Adds a vCPU with reasonable defaults (e.g. a stack) 1067 * 1068 * Input Args: 1069 * vm - Virtual Machine 1070 * vcpu_id - The id of the VCPU to add to the VM. 1071 */ 1072 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 1073 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code); 1074 1075 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 1076 void *guest_code) 1077 { 1078 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id); 1079 1080 vcpu_arch_set_entry_point(vcpu, guest_code); 1081 1082 return vcpu; 1083 } 1084 1085 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */ 1086 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id); 1087 1088 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm, 1089 uint32_t vcpu_id) 1090 { 1091 return vm_arch_vcpu_recreate(vm, vcpu_id); 1092 } 1093 1094 void vcpu_arch_free(struct kvm_vcpu *vcpu); 1095 1096 void virt_arch_pgd_alloc(struct kvm_vm *vm); 1097 1098 static inline void virt_pgd_alloc(struct kvm_vm *vm) 1099 { 1100 virt_arch_pgd_alloc(vm); 1101 } 1102 1103 /* 1104 * VM Virtual Page Map 1105 * 1106 * Input Args: 1107 * vm - Virtual Machine 1108 * vaddr - VM Virtual Address 1109 * paddr - VM Physical Address 1110 * memslot - Memory region slot for new virtual translation tables 1111 * 1112 * Output Args: None 1113 * 1114 * Return: None 1115 * 1116 * Within @vm, creates a virtual translation for the page starting 1117 * at @vaddr to the page starting at @paddr. 1118 */ 1119 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr); 1120 1121 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 1122 { 1123 virt_arch_pg_map(vm, vaddr, paddr); 1124 } 1125 1126 1127 /* 1128 * Address Guest Virtual to Guest Physical 1129 * 1130 * Input Args: 1131 * vm - Virtual Machine 1132 * gva - VM virtual address 1133 * 1134 * Output Args: None 1135 * 1136 * Return: 1137 * Equivalent VM physical address 1138 * 1139 * Returns the VM physical address of the translated VM virtual 1140 * address given by @gva. 1141 */ 1142 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); 1143 1144 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 1145 { 1146 return addr_arch_gva2gpa(vm, gva); 1147 } 1148 1149 /* 1150 * Virtual Translation Tables Dump 1151 * 1152 * Input Args: 1153 * stream - Output FILE stream 1154 * vm - Virtual Machine 1155 * indent - Left margin indent amount 1156 * 1157 * Output Args: None 1158 * 1159 * Return: None 1160 * 1161 * Dumps to the FILE stream given by @stream, the contents of all the 1162 * virtual translation tables for the VM given by @vm. 1163 */ 1164 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 1165 1166 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1167 { 1168 virt_arch_dump(stream, vm, indent); 1169 } 1170 1171 1172 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm) 1173 { 1174 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0); 1175 } 1176 1177 /* 1178 * Arch hook that is invoked via a constructor, i.e. before exeucting main(), 1179 * to allow for arch-specific setup that is common to all tests, e.g. computing 1180 * the default guest "mode". 1181 */ 1182 void kvm_selftest_arch_init(void); 1183 1184 void kvm_arch_vm_post_create(struct kvm_vm *vm); 1185 1186 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr); 1187 1188 uint32_t guest_get_vcpuid(void); 1189 1190 #endif /* SELFTEST_KVM_UTIL_H */ 1191