1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2018, Google LLC. 4 */ 5 #ifndef SELFTEST_KVM_UTIL_H 6 #define SELFTEST_KVM_UTIL_H 7 8 #include "test_util.h" 9 10 #include <linux/compiler.h> 11 #include "linux/hashtable.h" 12 #include "linux/list.h" 13 #include <linux/kernel.h> 14 #include <linux/kvm.h> 15 #include "linux/rbtree.h" 16 #include <linux/types.h> 17 18 #include <asm/atomic.h> 19 #include <asm/kvm.h> 20 21 #include <sys/ioctl.h> 22 23 #include "kvm_util_arch.h" 24 #include "kvm_util_types.h" 25 #include "sparsebit.h" 26 27 #define KVM_DEV_PATH "/dev/kvm" 28 #define KVM_MAX_VCPUS 512 29 30 #define NSEC_PER_SEC 1000000000L 31 32 struct userspace_mem_region { 33 struct kvm_userspace_memory_region2 region; 34 struct sparsebit *unused_phy_pages; 35 struct sparsebit *protected_phy_pages; 36 int fd; 37 off_t offset; 38 enum vm_mem_backing_src_type backing_src_type; 39 void *host_mem; 40 void *host_alias; 41 void *mmap_start; 42 void *mmap_alias; 43 size_t mmap_size; 44 struct rb_node gpa_node; 45 struct rb_node hva_node; 46 struct hlist_node slot_node; 47 }; 48 49 struct kvm_binary_stats { 50 int fd; 51 struct kvm_stats_header header; 52 struct kvm_stats_desc *desc; 53 }; 54 55 struct kvm_vcpu { 56 struct list_head list; 57 uint32_t id; 58 int fd; 59 struct kvm_vm *vm; 60 struct kvm_run *run; 61 #ifdef __x86_64__ 62 struct kvm_cpuid2 *cpuid; 63 #endif 64 struct kvm_binary_stats stats; 65 struct kvm_dirty_gfn *dirty_gfns; 66 uint32_t fetch_index; 67 uint32_t dirty_gfns_count; 68 }; 69 70 struct userspace_mem_regions { 71 struct rb_root gpa_tree; 72 struct rb_root hva_tree; 73 DECLARE_HASHTABLE(slot_hash, 9); 74 }; 75 76 enum kvm_mem_region_type { 77 MEM_REGION_CODE, 78 MEM_REGION_DATA, 79 MEM_REGION_PT, 80 MEM_REGION_TEST_DATA, 81 NR_MEM_REGIONS, 82 }; 83 84 struct kvm_vm { 85 int mode; 86 unsigned long type; 87 int kvm_fd; 88 int fd; 89 unsigned int pgtable_levels; 90 unsigned int page_size; 91 unsigned int page_shift; 92 unsigned int pa_bits; 93 unsigned int va_bits; 94 uint64_t max_gfn; 95 struct list_head vcpus; 96 struct userspace_mem_regions regions; 97 struct sparsebit *vpages_valid; 98 struct sparsebit *vpages_mapped; 99 bool has_irqchip; 100 bool pgd_created; 101 vm_paddr_t ucall_mmio_addr; 102 vm_paddr_t pgd; 103 vm_vaddr_t handlers; 104 uint32_t dirty_ring_size; 105 uint64_t gpa_tag_mask; 106 107 struct kvm_vm_arch arch; 108 109 struct kvm_binary_stats stats; 110 111 /* 112 * KVM region slots. These are the default memslots used by page 113 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE] 114 * memslot. 115 */ 116 uint32_t memslots[NR_MEM_REGIONS]; 117 }; 118 119 struct vcpu_reg_sublist { 120 const char *name; 121 long capability; 122 int feature; 123 int feature_type; 124 bool finalize; 125 __u64 *regs; 126 __u64 regs_n; 127 __u64 *rejects_set; 128 __u64 rejects_set_n; 129 __u64 *skips_set; 130 __u64 skips_set_n; 131 }; 132 133 struct vcpu_reg_list { 134 char *name; 135 struct vcpu_reg_sublist sublists[]; 136 }; 137 138 #define for_each_sublist(c, s) \ 139 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s)) 140 141 #define kvm_for_each_vcpu(vm, i, vcpu) \ 142 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \ 143 if (!((vcpu) = vm->vcpus[i])) \ 144 continue; \ 145 else 146 147 struct userspace_mem_region * 148 memslot2region(struct kvm_vm *vm, uint32_t memslot); 149 150 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm, 151 enum kvm_mem_region_type type) 152 { 153 assert(type < NR_MEM_REGIONS); 154 return memslot2region(vm, vm->memslots[type]); 155 } 156 157 /* Minimum allocated guest virtual and physical addresses */ 158 #define KVM_UTIL_MIN_VADDR 0x2000 159 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 160 161 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 162 #define DEFAULT_STACK_PGS 5 163 164 enum vm_guest_mode { 165 VM_MODE_P52V48_4K, 166 VM_MODE_P52V48_16K, 167 VM_MODE_P52V48_64K, 168 VM_MODE_P48V48_4K, 169 VM_MODE_P48V48_16K, 170 VM_MODE_P48V48_64K, 171 VM_MODE_P40V48_4K, 172 VM_MODE_P40V48_16K, 173 VM_MODE_P40V48_64K, 174 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */ 175 VM_MODE_P47V64_4K, 176 VM_MODE_P44V64_4K, 177 VM_MODE_P36V48_4K, 178 VM_MODE_P36V48_16K, 179 VM_MODE_P36V48_64K, 180 VM_MODE_P36V47_16K, 181 NUM_VM_MODES, 182 }; 183 184 struct vm_shape { 185 uint32_t type; 186 uint8_t mode; 187 uint8_t pad0; 188 uint16_t pad1; 189 }; 190 191 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t)); 192 193 #define VM_TYPE_DEFAULT 0 194 195 #define VM_SHAPE(__mode) \ 196 ({ \ 197 struct vm_shape shape = { \ 198 .mode = (__mode), \ 199 .type = VM_TYPE_DEFAULT \ 200 }; \ 201 \ 202 shape; \ 203 }) 204 205 #if defined(__aarch64__) 206 207 extern enum vm_guest_mode vm_mode_default; 208 209 #define VM_MODE_DEFAULT vm_mode_default 210 #define MIN_PAGE_SHIFT 12U 211 #define ptes_per_page(page_size) ((page_size) / 8) 212 213 #elif defined(__x86_64__) 214 215 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K 216 #define MIN_PAGE_SHIFT 12U 217 #define ptes_per_page(page_size) ((page_size) / 8) 218 219 #elif defined(__s390x__) 220 221 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K 222 #define MIN_PAGE_SHIFT 12U 223 #define ptes_per_page(page_size) ((page_size) / 16) 224 225 #elif defined(__riscv) 226 227 #if __riscv_xlen == 32 228 #error "RISC-V 32-bit kvm selftests not supported" 229 #endif 230 231 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K 232 #define MIN_PAGE_SHIFT 12U 233 #define ptes_per_page(page_size) ((page_size) / 8) 234 235 #endif 236 237 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT) 238 239 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT) 240 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE) 241 242 struct vm_guest_mode_params { 243 unsigned int pa_bits; 244 unsigned int va_bits; 245 unsigned int page_size; 246 unsigned int page_shift; 247 }; 248 extern const struct vm_guest_mode_params vm_guest_mode_params[]; 249 250 int open_path_or_exit(const char *path, int flags); 251 int open_kvm_dev_path_or_exit(void); 252 253 bool get_kvm_param_bool(const char *param); 254 bool get_kvm_intel_param_bool(const char *param); 255 bool get_kvm_amd_param_bool(const char *param); 256 257 int get_kvm_param_integer(const char *param); 258 int get_kvm_intel_param_integer(const char *param); 259 int get_kvm_amd_param_integer(const char *param); 260 261 unsigned int kvm_check_cap(long cap); 262 263 static inline bool kvm_has_cap(long cap) 264 { 265 return kvm_check_cap(cap); 266 } 267 268 #define __KVM_SYSCALL_ERROR(_name, _ret) \ 269 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno) 270 271 /* 272 * Use the "inner", double-underscore macro when reporting errors from within 273 * other macros so that the name of ioctl() and not its literal numeric value 274 * is printed on error. The "outer" macro is strongly preferred when reporting 275 * errors "directly", i.e. without an additional layer of macros, as it reduces 276 * the probability of passing in the wrong string. 277 */ 278 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret) 279 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret) 280 281 #define kvm_do_ioctl(fd, cmd, arg) \ 282 ({ \ 283 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \ 284 ioctl(fd, cmd, arg); \ 285 }) 286 287 #define __kvm_ioctl(kvm_fd, cmd, arg) \ 288 kvm_do_ioctl(kvm_fd, cmd, arg) 289 290 #define kvm_ioctl(kvm_fd, cmd, arg) \ 291 ({ \ 292 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \ 293 \ 294 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \ 295 }) 296 297 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { } 298 299 #define __vm_ioctl(vm, cmd, arg) \ 300 ({ \ 301 static_assert_is_vm(vm); \ 302 kvm_do_ioctl((vm)->fd, cmd, arg); \ 303 }) 304 305 /* 306 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if 307 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM, 308 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before 309 * selftests existed and (b) should never outright fail, i.e. is supposed to 310 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the 311 * VM and its vCPUs, including KVM_CHECK_EXTENSION. 312 */ 313 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \ 314 do { \ 315 int __errno = errno; \ 316 \ 317 static_assert_is_vm(vm); \ 318 \ 319 if (cond) \ 320 break; \ 321 \ 322 if (errno == EIO && \ 323 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \ 324 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \ 325 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \ 326 } \ 327 errno = __errno; \ 328 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \ 329 } while (0) 330 331 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \ 332 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm) 333 334 #define vm_ioctl(vm, cmd, arg) \ 335 ({ \ 336 int ret = __vm_ioctl(vm, cmd, arg); \ 337 \ 338 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \ 339 }) 340 341 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { } 342 343 #define __vcpu_ioctl(vcpu, cmd, arg) \ 344 ({ \ 345 static_assert_is_vcpu(vcpu); \ 346 kvm_do_ioctl((vcpu)->fd, cmd, arg); \ 347 }) 348 349 #define vcpu_ioctl(vcpu, cmd, arg) \ 350 ({ \ 351 int ret = __vcpu_ioctl(vcpu, cmd, arg); \ 352 \ 353 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \ 354 }) 355 356 /* 357 * Looks up and returns the value corresponding to the capability 358 * (KVM_CAP_*) given by cap. 359 */ 360 static inline int vm_check_cap(struct kvm_vm *vm, long cap) 361 { 362 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap); 363 364 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm); 365 return ret; 366 } 367 368 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 369 { 370 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 371 372 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 373 } 374 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 375 { 376 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 377 378 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 379 } 380 381 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa, 382 uint64_t size, uint64_t attributes) 383 { 384 struct kvm_memory_attributes attr = { 385 .attributes = attributes, 386 .address = gpa, 387 .size = size, 388 .flags = 0, 389 }; 390 391 /* 392 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows 393 * need significant enhancements to support multiple attributes. 394 */ 395 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE, 396 "Update me to support multiple attributes!"); 397 398 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr); 399 } 400 401 402 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa, 403 uint64_t size) 404 { 405 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 406 } 407 408 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa, 409 uint64_t size) 410 { 411 vm_set_memory_attributes(vm, gpa, size, 0); 412 } 413 414 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size, 415 bool punch_hole); 416 417 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa, 418 uint64_t size) 419 { 420 vm_guest_mem_fallocate(vm, gpa, size, true); 421 } 422 423 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa, 424 uint64_t size) 425 { 426 vm_guest_mem_fallocate(vm, gpa, size, false); 427 } 428 429 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size); 430 const char *vm_guest_mode_string(uint32_t i); 431 432 void kvm_vm_free(struct kvm_vm *vmp); 433 void kvm_vm_restart(struct kvm_vm *vmp); 434 void kvm_vm_release(struct kvm_vm *vmp); 435 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename); 436 int kvm_memfd_alloc(size_t size, bool hugepages); 437 438 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 439 440 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 441 { 442 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 443 444 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args); 445 } 446 447 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 448 uint64_t first_page, uint32_t num_pages) 449 { 450 struct kvm_clear_dirty_log args = { 451 .dirty_bitmap = log, 452 .slot = slot, 453 .first_page = first_page, 454 .num_pages = num_pages 455 }; 456 457 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args); 458 } 459 460 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 461 { 462 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL); 463 } 464 465 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm, 466 uint64_t address, 467 uint64_t size, bool pio) 468 { 469 struct kvm_coalesced_mmio_zone zone = { 470 .addr = address, 471 .size = size, 472 .pio = pio, 473 }; 474 475 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone); 476 } 477 478 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm, 479 uint64_t address, 480 uint64_t size, bool pio) 481 { 482 struct kvm_coalesced_mmio_zone zone = { 483 .addr = address, 484 .size = size, 485 .pio = pio, 486 }; 487 488 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone); 489 } 490 491 static inline int vm_get_stats_fd(struct kvm_vm *vm) 492 { 493 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL); 494 495 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm); 496 return fd; 497 } 498 499 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header) 500 { 501 ssize_t ret; 502 503 ret = pread(stats_fd, header, sizeof(*header), 0); 504 TEST_ASSERT(ret == sizeof(*header), 505 "Failed to read '%lu' header bytes, ret = '%ld'", 506 sizeof(*header), ret); 507 } 508 509 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 510 struct kvm_stats_header *header); 511 512 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header) 513 { 514 /* 515 * The base size of the descriptor is defined by KVM's ABI, but the 516 * size of the name field is variable, as far as KVM's ABI is 517 * concerned. For a given instance of KVM, the name field is the same 518 * size for all stats and is provided in the overall stats header. 519 */ 520 return sizeof(struct kvm_stats_desc) + header->name_size; 521 } 522 523 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats, 524 int index, 525 struct kvm_stats_header *header) 526 { 527 /* 528 * Note, size_desc includes the size of the name field, which is 529 * variable. i.e. this is NOT equivalent to &stats_desc[i]. 530 */ 531 return (void *)stats + index * get_stats_descriptor_size(header); 532 } 533 534 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 535 struct kvm_stats_desc *desc, uint64_t *data, 536 size_t max_elements); 537 538 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 539 uint64_t *data, size_t max_elements); 540 541 #define __get_stat(stats, stat) \ 542 ({ \ 543 uint64_t data; \ 544 \ 545 kvm_get_stat(stats, #stat, &data, 1); \ 546 data; \ 547 }) 548 549 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat) 550 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat) 551 552 void vm_create_irqchip(struct kvm_vm *vm); 553 554 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 555 uint64_t flags) 556 { 557 struct kvm_create_guest_memfd guest_memfd = { 558 .size = size, 559 .flags = flags, 560 }; 561 562 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 563 } 564 565 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 566 uint64_t flags) 567 { 568 int fd = __vm_create_guest_memfd(vm, size, flags); 569 570 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd)); 571 return fd; 572 } 573 574 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 575 uint64_t gpa, uint64_t size, void *hva); 576 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 577 uint64_t gpa, uint64_t size, void *hva); 578 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 579 uint64_t gpa, uint64_t size, void *hva, 580 uint32_t guest_memfd, uint64_t guest_memfd_offset); 581 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 582 uint64_t gpa, uint64_t size, void *hva, 583 uint32_t guest_memfd, uint64_t guest_memfd_offset); 584 585 void vm_userspace_mem_region_add(struct kvm_vm *vm, 586 enum vm_mem_backing_src_type src_type, 587 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 588 uint32_t flags); 589 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 590 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 591 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset); 592 593 #ifndef vm_arch_has_protected_memory 594 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm) 595 { 596 return false; 597 } 598 #endif 599 600 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); 601 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa); 602 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot); 603 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 604 void vm_populate_vaddr_bitmap(struct kvm_vm *vm); 605 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 606 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 607 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 608 enum kvm_mem_region_type type); 609 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 610 vm_vaddr_t vaddr_min, 611 enum kvm_mem_region_type type); 612 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); 613 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, 614 enum kvm_mem_region_type type); 615 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm); 616 617 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 618 unsigned int npages); 619 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); 620 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); 621 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); 622 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa); 623 624 #ifndef vcpu_arch_put_guest 625 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0) 626 #endif 627 628 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa) 629 { 630 return gpa & ~vm->gpa_tag_mask; 631 } 632 633 void vcpu_run(struct kvm_vcpu *vcpu); 634 int _vcpu_run(struct kvm_vcpu *vcpu); 635 636 static inline int __vcpu_run(struct kvm_vcpu *vcpu) 637 { 638 return __vcpu_ioctl(vcpu, KVM_RUN, NULL); 639 } 640 641 void vcpu_run_complete_io(struct kvm_vcpu *vcpu); 642 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu); 643 644 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap, 645 uint64_t arg0) 646 { 647 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 648 649 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap); 650 } 651 652 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu, 653 struct kvm_guest_debug *debug) 654 { 655 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug); 656 } 657 658 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu, 659 struct kvm_mp_state *mp_state) 660 { 661 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state); 662 } 663 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu, 664 struct kvm_mp_state *mp_state) 665 { 666 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state); 667 } 668 669 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 670 { 671 vcpu_ioctl(vcpu, KVM_GET_REGS, regs); 672 } 673 674 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 675 { 676 vcpu_ioctl(vcpu, KVM_SET_REGS, regs); 677 } 678 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 679 { 680 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs); 681 682 } 683 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 684 { 685 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 686 } 687 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 688 { 689 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 690 } 691 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 692 { 693 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu); 694 } 695 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 696 { 697 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu); 698 } 699 700 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 701 { 702 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 703 704 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 705 } 706 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 707 { 708 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 709 710 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 711 } 712 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id) 713 { 714 uint64_t val; 715 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 716 717 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 718 719 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 720 return val; 721 } 722 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 723 { 724 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 725 726 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 727 728 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 729 } 730 731 #ifdef __KVM_HAVE_VCPU_EVENTS 732 static inline void vcpu_events_get(struct kvm_vcpu *vcpu, 733 struct kvm_vcpu_events *events) 734 { 735 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events); 736 } 737 static inline void vcpu_events_set(struct kvm_vcpu *vcpu, 738 struct kvm_vcpu_events *events) 739 { 740 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events); 741 } 742 #endif 743 #ifdef __x86_64__ 744 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu, 745 struct kvm_nested_state *state) 746 { 747 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state); 748 } 749 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu, 750 struct kvm_nested_state *state) 751 { 752 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 753 } 754 755 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu, 756 struct kvm_nested_state *state) 757 { 758 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 759 } 760 #endif 761 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu) 762 { 763 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL); 764 765 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm); 766 return fd; 767 } 768 769 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr); 770 771 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 772 { 773 int ret = __kvm_has_device_attr(dev_fd, group, attr); 774 775 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 776 } 777 778 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val); 779 780 static inline void kvm_device_attr_get(int dev_fd, uint32_t group, 781 uint64_t attr, void *val) 782 { 783 int ret = __kvm_device_attr_get(dev_fd, group, attr, val); 784 785 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret)); 786 } 787 788 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val); 789 790 static inline void kvm_device_attr_set(int dev_fd, uint32_t group, 791 uint64_t attr, void *val) 792 { 793 int ret = __kvm_device_attr_set(dev_fd, group, attr, val); 794 795 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret)); 796 } 797 798 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 799 uint64_t attr) 800 { 801 return __kvm_has_device_attr(vcpu->fd, group, attr); 802 } 803 804 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 805 uint64_t attr) 806 { 807 kvm_has_device_attr(vcpu->fd, group, attr); 808 } 809 810 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 811 uint64_t attr, void *val) 812 { 813 return __kvm_device_attr_get(vcpu->fd, group, attr, val); 814 } 815 816 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 817 uint64_t attr, void *val) 818 { 819 kvm_device_attr_get(vcpu->fd, group, attr, val); 820 } 821 822 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 823 uint64_t attr, void *val) 824 { 825 return __kvm_device_attr_set(vcpu->fd, group, attr, val); 826 } 827 828 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 829 uint64_t attr, void *val) 830 { 831 kvm_device_attr_set(vcpu->fd, group, attr, val); 832 } 833 834 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type); 835 int __kvm_create_device(struct kvm_vm *vm, uint64_t type); 836 837 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type) 838 { 839 int fd = __kvm_create_device(vm, type); 840 841 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd)); 842 return fd; 843 } 844 845 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu); 846 847 /* 848 * VM VCPU Args Set 849 * 850 * Input Args: 851 * vm - Virtual Machine 852 * num - number of arguments 853 * ... - arguments, each of type uint64_t 854 * 855 * Output Args: None 856 * 857 * Return: None 858 * 859 * Sets the first @num input parameters for the function at @vcpu's entry point, 860 * per the C calling convention of the architecture, to the values given as 861 * variable args. Each of the variable args is expected to be of type uint64_t. 862 * The maximum @num can be is specific to the architecture. 863 */ 864 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...); 865 866 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 867 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 868 869 #define KVM_MAX_IRQ_ROUTES 4096 870 871 struct kvm_irq_routing *kvm_gsi_routing_create(void); 872 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 873 uint32_t gsi, uint32_t pin); 874 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 875 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 876 877 const char *exit_reason_str(unsigned int exit_reason); 878 879 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 880 uint32_t memslot); 881 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 882 vm_paddr_t paddr_min, uint32_t memslot, 883 bool protected); 884 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm); 885 886 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 887 vm_paddr_t paddr_min, uint32_t memslot) 888 { 889 /* 890 * By default, allocate memory as protected for VMs that support 891 * protected memory, as the majority of memory for such VMs is 892 * protected, i.e. using shared memory is effectively opt-in. 893 */ 894 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot, 895 vm_arch_has_protected_memory(vm)); 896 } 897 898 /* 899 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also 900 * loads the test binary into guest memory and creates an IRQ chip (x86 only). 901 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to 902 * calculate the amount of memory needed for per-vCPU data, e.g. stacks. 903 */ 904 struct kvm_vm *____vm_create(struct vm_shape shape); 905 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 906 uint64_t nr_extra_pages); 907 908 static inline struct kvm_vm *vm_create_barebones(void) 909 { 910 return ____vm_create(VM_SHAPE_DEFAULT); 911 } 912 913 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type) 914 { 915 const struct vm_shape shape = { 916 .mode = VM_MODE_DEFAULT, 917 .type = type, 918 }; 919 920 return ____vm_create(shape); 921 } 922 923 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus) 924 { 925 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0); 926 } 927 928 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 929 uint64_t extra_mem_pages, 930 void *guest_code, struct kvm_vcpu *vcpus[]); 931 932 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus, 933 void *guest_code, 934 struct kvm_vcpu *vcpus[]) 935 { 936 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0, 937 guest_code, vcpus); 938 } 939 940 941 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 942 struct kvm_vcpu **vcpu, 943 uint64_t extra_mem_pages, 944 void *guest_code); 945 946 /* 947 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages 948 * additional pages of guest memory. Returns the VM and vCPU (via out param). 949 */ 950 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 951 uint64_t extra_mem_pages, 952 void *guest_code) 953 { 954 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu, 955 extra_mem_pages, guest_code); 956 } 957 958 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 959 void *guest_code) 960 { 961 return __vm_create_with_one_vcpu(vcpu, 0, guest_code); 962 } 963 964 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape, 965 struct kvm_vcpu **vcpu, 966 void *guest_code) 967 { 968 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code); 969 } 970 971 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm); 972 973 void kvm_set_files_rlimit(uint32_t nr_vcpus); 974 975 void kvm_pin_this_task_to_pcpu(uint32_t pcpu); 976 void kvm_print_vcpu_pinning_help(void); 977 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 978 int nr_vcpus); 979 980 unsigned long vm_compute_max_gfn(struct kvm_vm *vm); 981 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size); 982 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages); 983 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages); 984 static inline unsigned int 985 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 986 { 987 unsigned int n; 988 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages)); 989 #ifdef __s390x__ 990 /* s390 requires 1M aligned guest sizes */ 991 n = (n + 255) & ~255; 992 #endif 993 return n; 994 } 995 996 #define sync_global_to_guest(vm, g) ({ \ 997 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 998 memcpy(_p, &(g), sizeof(g)); \ 999 }) 1000 1001 #define sync_global_from_guest(vm, g) ({ \ 1002 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1003 memcpy(&(g), _p, sizeof(g)); \ 1004 }) 1005 1006 /* 1007 * Write a global value, but only in the VM's (guest's) domain. Primarily used 1008 * for "globals" that hold per-VM values (VMs always duplicate code and global 1009 * data into their own region of physical memory), but can be used anytime it's 1010 * undesirable to change the host's copy of the global. 1011 */ 1012 #define write_guest_global(vm, g, val) ({ \ 1013 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1014 typeof(g) _val = val; \ 1015 \ 1016 memcpy(_p, &(_val), sizeof(g)); \ 1017 }) 1018 1019 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu); 1020 1021 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, 1022 uint8_t indent); 1023 1024 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu, 1025 uint8_t indent) 1026 { 1027 vcpu_arch_dump(stream, vcpu, indent); 1028 } 1029 1030 /* 1031 * Adds a vCPU with reasonable defaults (e.g. a stack) 1032 * 1033 * Input Args: 1034 * vm - Virtual Machine 1035 * vcpu_id - The id of the VCPU to add to the VM. 1036 */ 1037 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 1038 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code); 1039 1040 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 1041 void *guest_code) 1042 { 1043 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id); 1044 1045 vcpu_arch_set_entry_point(vcpu, guest_code); 1046 1047 return vcpu; 1048 } 1049 1050 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */ 1051 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id); 1052 1053 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm, 1054 uint32_t vcpu_id) 1055 { 1056 return vm_arch_vcpu_recreate(vm, vcpu_id); 1057 } 1058 1059 void vcpu_arch_free(struct kvm_vcpu *vcpu); 1060 1061 void virt_arch_pgd_alloc(struct kvm_vm *vm); 1062 1063 static inline void virt_pgd_alloc(struct kvm_vm *vm) 1064 { 1065 virt_arch_pgd_alloc(vm); 1066 } 1067 1068 /* 1069 * VM Virtual Page Map 1070 * 1071 * Input Args: 1072 * vm - Virtual Machine 1073 * vaddr - VM Virtual Address 1074 * paddr - VM Physical Address 1075 * memslot - Memory region slot for new virtual translation tables 1076 * 1077 * Output Args: None 1078 * 1079 * Return: None 1080 * 1081 * Within @vm, creates a virtual translation for the page starting 1082 * at @vaddr to the page starting at @paddr. 1083 */ 1084 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr); 1085 1086 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 1087 { 1088 virt_arch_pg_map(vm, vaddr, paddr); 1089 } 1090 1091 1092 /* 1093 * Address Guest Virtual to Guest Physical 1094 * 1095 * Input Args: 1096 * vm - Virtual Machine 1097 * gva - VM virtual address 1098 * 1099 * Output Args: None 1100 * 1101 * Return: 1102 * Equivalent VM physical address 1103 * 1104 * Returns the VM physical address of the translated VM virtual 1105 * address given by @gva. 1106 */ 1107 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); 1108 1109 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 1110 { 1111 return addr_arch_gva2gpa(vm, gva); 1112 } 1113 1114 /* 1115 * Virtual Translation Tables Dump 1116 * 1117 * Input Args: 1118 * stream - Output FILE stream 1119 * vm - Virtual Machine 1120 * indent - Left margin indent amount 1121 * 1122 * Output Args: None 1123 * 1124 * Return: None 1125 * 1126 * Dumps to the FILE stream given by @stream, the contents of all the 1127 * virtual translation tables for the VM given by @vm. 1128 */ 1129 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 1130 1131 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1132 { 1133 virt_arch_dump(stream, vm, indent); 1134 } 1135 1136 1137 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm) 1138 { 1139 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0); 1140 } 1141 1142 /* 1143 * Arch hook that is invoked via a constructor, i.e. before exeucting main(), 1144 * to allow for arch-specific setup that is common to all tests, e.g. computing 1145 * the default guest "mode". 1146 */ 1147 void kvm_selftest_arch_init(void); 1148 1149 void kvm_arch_vm_post_create(struct kvm_vm *vm); 1150 1151 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr); 1152 1153 uint32_t guest_get_vcpuid(void); 1154 1155 #endif /* SELFTEST_KVM_UTIL_H */ 1156