1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2018, Google LLC. 4 */ 5 #ifndef SELFTEST_KVM_UTIL_H 6 #define SELFTEST_KVM_UTIL_H 7 8 #include "test_util.h" 9 10 #include <linux/compiler.h> 11 #include "linux/hashtable.h" 12 #include "linux/list.h" 13 #include <linux/kernel.h> 14 #include <linux/kvm.h> 15 #include "linux/rbtree.h" 16 #include <linux/types.h> 17 18 #include <asm/atomic.h> 19 #include <asm/kvm.h> 20 21 #include <sys/eventfd.h> 22 #include <sys/ioctl.h> 23 24 #include <pthread.h> 25 26 #include "kvm_util_arch.h" 27 #include "kvm_util_types.h" 28 #include "sparsebit.h" 29 30 #define KVM_DEV_PATH "/dev/kvm" 31 #define KVM_MAX_VCPUS 512 32 33 #define NSEC_PER_SEC 1000000000L 34 35 struct userspace_mem_region { 36 struct kvm_userspace_memory_region2 region; 37 struct sparsebit *unused_phy_pages; 38 struct sparsebit *protected_phy_pages; 39 int fd; 40 off_t offset; 41 enum vm_mem_backing_src_type backing_src_type; 42 void *host_mem; 43 void *host_alias; 44 void *mmap_start; 45 void *mmap_alias; 46 size_t mmap_size; 47 struct rb_node gpa_node; 48 struct rb_node hva_node; 49 struct hlist_node slot_node; 50 }; 51 52 struct kvm_binary_stats { 53 int fd; 54 struct kvm_stats_header header; 55 struct kvm_stats_desc *desc; 56 }; 57 58 struct kvm_vcpu { 59 struct list_head list; 60 uint32_t id; 61 int fd; 62 struct kvm_vm *vm; 63 struct kvm_run *run; 64 #ifdef __x86_64__ 65 struct kvm_cpuid2 *cpuid; 66 #endif 67 struct kvm_binary_stats stats; 68 struct kvm_dirty_gfn *dirty_gfns; 69 uint32_t fetch_index; 70 uint32_t dirty_gfns_count; 71 }; 72 73 struct userspace_mem_regions { 74 struct rb_root gpa_tree; 75 struct rb_root hva_tree; 76 DECLARE_HASHTABLE(slot_hash, 9); 77 }; 78 79 enum kvm_mem_region_type { 80 MEM_REGION_CODE, 81 MEM_REGION_DATA, 82 MEM_REGION_PT, 83 MEM_REGION_TEST_DATA, 84 NR_MEM_REGIONS, 85 }; 86 87 struct kvm_vm { 88 int mode; 89 unsigned long type; 90 int kvm_fd; 91 int fd; 92 unsigned int pgtable_levels; 93 unsigned int page_size; 94 unsigned int page_shift; 95 unsigned int pa_bits; 96 unsigned int va_bits; 97 uint64_t max_gfn; 98 struct list_head vcpus; 99 struct userspace_mem_regions regions; 100 struct sparsebit *vpages_valid; 101 struct sparsebit *vpages_mapped; 102 bool has_irqchip; 103 bool pgd_created; 104 vm_paddr_t ucall_mmio_addr; 105 vm_paddr_t pgd; 106 vm_vaddr_t handlers; 107 uint32_t dirty_ring_size; 108 uint64_t gpa_tag_mask; 109 110 struct kvm_vm_arch arch; 111 112 struct kvm_binary_stats stats; 113 114 /* 115 * KVM region slots. These are the default memslots used by page 116 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE] 117 * memslot. 118 */ 119 uint32_t memslots[NR_MEM_REGIONS]; 120 }; 121 122 struct vcpu_reg_sublist { 123 const char *name; 124 long capability; 125 int feature; 126 int feature_type; 127 bool finalize; 128 __u64 *regs; 129 __u64 regs_n; 130 __u64 *rejects_set; 131 __u64 rejects_set_n; 132 __u64 *skips_set; 133 __u64 skips_set_n; 134 }; 135 136 struct vcpu_reg_list { 137 char *name; 138 struct vcpu_reg_sublist sublists[]; 139 }; 140 141 #define for_each_sublist(c, s) \ 142 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s)) 143 144 #define kvm_for_each_vcpu(vm, i, vcpu) \ 145 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \ 146 if (!((vcpu) = vm->vcpus[i])) \ 147 continue; \ 148 else 149 150 struct userspace_mem_region * 151 memslot2region(struct kvm_vm *vm, uint32_t memslot); 152 153 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm, 154 enum kvm_mem_region_type type) 155 { 156 assert(type < NR_MEM_REGIONS); 157 return memslot2region(vm, vm->memslots[type]); 158 } 159 160 /* Minimum allocated guest virtual and physical addresses */ 161 #define KVM_UTIL_MIN_VADDR 0x2000 162 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 163 164 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 165 #define DEFAULT_STACK_PGS 5 166 167 enum vm_guest_mode { 168 VM_MODE_P52V48_4K, 169 VM_MODE_P52V48_16K, 170 VM_MODE_P52V48_64K, 171 VM_MODE_P48V48_4K, 172 VM_MODE_P48V48_16K, 173 VM_MODE_P48V48_64K, 174 VM_MODE_P40V48_4K, 175 VM_MODE_P40V48_16K, 176 VM_MODE_P40V48_64K, 177 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */ 178 VM_MODE_P47V64_4K, 179 VM_MODE_P44V64_4K, 180 VM_MODE_P36V48_4K, 181 VM_MODE_P36V48_16K, 182 VM_MODE_P36V48_64K, 183 VM_MODE_P47V47_16K, 184 VM_MODE_P36V47_16K, 185 NUM_VM_MODES, 186 }; 187 188 struct vm_shape { 189 uint32_t type; 190 uint8_t mode; 191 uint8_t pad0; 192 uint16_t pad1; 193 }; 194 195 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t)); 196 197 #define VM_TYPE_DEFAULT 0 198 199 #define VM_SHAPE(__mode) \ 200 ({ \ 201 struct vm_shape shape = { \ 202 .mode = (__mode), \ 203 .type = VM_TYPE_DEFAULT \ 204 }; \ 205 \ 206 shape; \ 207 }) 208 209 #if defined(__aarch64__) 210 211 extern enum vm_guest_mode vm_mode_default; 212 213 #define VM_MODE_DEFAULT vm_mode_default 214 #define MIN_PAGE_SHIFT 12U 215 #define ptes_per_page(page_size) ((page_size) / 8) 216 217 #elif defined(__x86_64__) 218 219 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K 220 #define MIN_PAGE_SHIFT 12U 221 #define ptes_per_page(page_size) ((page_size) / 8) 222 223 #elif defined(__s390x__) 224 225 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K 226 #define MIN_PAGE_SHIFT 12U 227 #define ptes_per_page(page_size) ((page_size) / 16) 228 229 #elif defined(__riscv) 230 231 #if __riscv_xlen == 32 232 #error "RISC-V 32-bit kvm selftests not supported" 233 #endif 234 235 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K 236 #define MIN_PAGE_SHIFT 12U 237 #define ptes_per_page(page_size) ((page_size) / 8) 238 239 #elif defined(__loongarch__) 240 #define VM_MODE_DEFAULT VM_MODE_P47V47_16K 241 #define MIN_PAGE_SHIFT 12U 242 #define ptes_per_page(page_size) ((page_size) / 8) 243 244 #endif 245 246 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT) 247 248 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT) 249 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE) 250 251 struct vm_guest_mode_params { 252 unsigned int pa_bits; 253 unsigned int va_bits; 254 unsigned int page_size; 255 unsigned int page_shift; 256 }; 257 extern const struct vm_guest_mode_params vm_guest_mode_params[]; 258 259 int __open_path_or_exit(const char *path, int flags, const char *enoent_help); 260 int open_path_or_exit(const char *path, int flags); 261 int open_kvm_dev_path_or_exit(void); 262 263 bool get_kvm_param_bool(const char *param); 264 bool get_kvm_intel_param_bool(const char *param); 265 bool get_kvm_amd_param_bool(const char *param); 266 267 int get_kvm_param_integer(const char *param); 268 int get_kvm_intel_param_integer(const char *param); 269 int get_kvm_amd_param_integer(const char *param); 270 271 unsigned int kvm_check_cap(long cap); 272 273 static inline bool kvm_has_cap(long cap) 274 { 275 return kvm_check_cap(cap); 276 } 277 278 #define __KVM_SYSCALL_ERROR(_name, _ret) \ 279 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno) 280 281 /* 282 * Use the "inner", double-underscore macro when reporting errors from within 283 * other macros so that the name of ioctl() and not its literal numeric value 284 * is printed on error. The "outer" macro is strongly preferred when reporting 285 * errors "directly", i.e. without an additional layer of macros, as it reduces 286 * the probability of passing in the wrong string. 287 */ 288 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret) 289 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret) 290 291 #define kvm_do_ioctl(fd, cmd, arg) \ 292 ({ \ 293 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \ 294 ioctl(fd, cmd, arg); \ 295 }) 296 297 #define __kvm_ioctl(kvm_fd, cmd, arg) \ 298 kvm_do_ioctl(kvm_fd, cmd, arg) 299 300 #define kvm_ioctl(kvm_fd, cmd, arg) \ 301 ({ \ 302 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \ 303 \ 304 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \ 305 }) 306 307 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { } 308 309 #define __vm_ioctl(vm, cmd, arg) \ 310 ({ \ 311 static_assert_is_vm(vm); \ 312 kvm_do_ioctl((vm)->fd, cmd, arg); \ 313 }) 314 315 /* 316 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if 317 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM, 318 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before 319 * selftests existed and (b) should never outright fail, i.e. is supposed to 320 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the 321 * VM and its vCPUs, including KVM_CHECK_EXTENSION. 322 */ 323 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \ 324 do { \ 325 int __errno = errno; \ 326 \ 327 static_assert_is_vm(vm); \ 328 \ 329 if (cond) \ 330 break; \ 331 \ 332 if (errno == EIO && \ 333 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \ 334 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \ 335 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \ 336 } \ 337 errno = __errno; \ 338 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \ 339 } while (0) 340 341 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \ 342 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm) 343 344 #define vm_ioctl(vm, cmd, arg) \ 345 ({ \ 346 int ret = __vm_ioctl(vm, cmd, arg); \ 347 \ 348 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \ 349 }) 350 351 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { } 352 353 #define __vcpu_ioctl(vcpu, cmd, arg) \ 354 ({ \ 355 static_assert_is_vcpu(vcpu); \ 356 kvm_do_ioctl((vcpu)->fd, cmd, arg); \ 357 }) 358 359 #define vcpu_ioctl(vcpu, cmd, arg) \ 360 ({ \ 361 int ret = __vcpu_ioctl(vcpu, cmd, arg); \ 362 \ 363 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \ 364 }) 365 366 /* 367 * Looks up and returns the value corresponding to the capability 368 * (KVM_CAP_*) given by cap. 369 */ 370 static inline int vm_check_cap(struct kvm_vm *vm, long cap) 371 { 372 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap); 373 374 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm); 375 return ret; 376 } 377 378 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 379 { 380 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 381 382 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 383 } 384 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 385 { 386 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 387 388 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 389 } 390 391 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa, 392 uint64_t size, uint64_t attributes) 393 { 394 struct kvm_memory_attributes attr = { 395 .attributes = attributes, 396 .address = gpa, 397 .size = size, 398 .flags = 0, 399 }; 400 401 /* 402 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows 403 * need significant enhancements to support multiple attributes. 404 */ 405 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE, 406 "Update me to support multiple attributes!"); 407 408 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr); 409 } 410 411 412 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa, 413 uint64_t size) 414 { 415 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 416 } 417 418 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa, 419 uint64_t size) 420 { 421 vm_set_memory_attributes(vm, gpa, size, 0); 422 } 423 424 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size, 425 bool punch_hole); 426 427 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa, 428 uint64_t size) 429 { 430 vm_guest_mem_fallocate(vm, gpa, size, true); 431 } 432 433 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa, 434 uint64_t size) 435 { 436 vm_guest_mem_fallocate(vm, gpa, size, false); 437 } 438 439 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size); 440 const char *vm_guest_mode_string(uint32_t i); 441 442 void kvm_vm_free(struct kvm_vm *vmp); 443 void kvm_vm_restart(struct kvm_vm *vmp); 444 void kvm_vm_release(struct kvm_vm *vmp); 445 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename); 446 int kvm_memfd_alloc(size_t size, bool hugepages); 447 448 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 449 450 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 451 { 452 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 453 454 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args); 455 } 456 457 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 458 uint64_t first_page, uint32_t num_pages) 459 { 460 struct kvm_clear_dirty_log args = { 461 .dirty_bitmap = log, 462 .slot = slot, 463 .first_page = first_page, 464 .num_pages = num_pages 465 }; 466 467 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args); 468 } 469 470 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 471 { 472 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL); 473 } 474 475 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm, 476 uint64_t address, 477 uint64_t size, bool pio) 478 { 479 struct kvm_coalesced_mmio_zone zone = { 480 .addr = address, 481 .size = size, 482 .pio = pio, 483 }; 484 485 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone); 486 } 487 488 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm, 489 uint64_t address, 490 uint64_t size, bool pio) 491 { 492 struct kvm_coalesced_mmio_zone zone = { 493 .addr = address, 494 .size = size, 495 .pio = pio, 496 }; 497 498 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone); 499 } 500 501 static inline int vm_get_stats_fd(struct kvm_vm *vm) 502 { 503 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL); 504 505 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm); 506 return fd; 507 } 508 509 static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd, 510 uint32_t flags) 511 { 512 struct kvm_irqfd irqfd = { 513 .fd = eventfd, 514 .gsi = gsi, 515 .flags = flags, 516 .resamplefd = -1, 517 }; 518 519 return __vm_ioctl(vm, KVM_IRQFD, &irqfd); 520 } 521 522 static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd, 523 uint32_t flags) 524 { 525 int ret = __kvm_irqfd(vm, gsi, eventfd, flags); 526 527 TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm); 528 } 529 530 static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd) 531 { 532 kvm_irqfd(vm, gsi, eventfd, 0); 533 } 534 535 static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd) 536 { 537 kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN); 538 } 539 540 static inline int kvm_new_eventfd(void) 541 { 542 int fd = eventfd(0, 0); 543 544 TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd)); 545 return fd; 546 } 547 548 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header) 549 { 550 ssize_t ret; 551 552 ret = pread(stats_fd, header, sizeof(*header), 0); 553 TEST_ASSERT(ret == sizeof(*header), 554 "Failed to read '%lu' header bytes, ret = '%ld'", 555 sizeof(*header), ret); 556 } 557 558 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 559 struct kvm_stats_header *header); 560 561 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header) 562 { 563 /* 564 * The base size of the descriptor is defined by KVM's ABI, but the 565 * size of the name field is variable, as far as KVM's ABI is 566 * concerned. For a given instance of KVM, the name field is the same 567 * size for all stats and is provided in the overall stats header. 568 */ 569 return sizeof(struct kvm_stats_desc) + header->name_size; 570 } 571 572 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats, 573 int index, 574 struct kvm_stats_header *header) 575 { 576 /* 577 * Note, size_desc includes the size of the name field, which is 578 * variable. i.e. this is NOT equivalent to &stats_desc[i]. 579 */ 580 return (void *)stats + index * get_stats_descriptor_size(header); 581 } 582 583 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 584 struct kvm_stats_desc *desc, uint64_t *data, 585 size_t max_elements); 586 587 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 588 uint64_t *data, size_t max_elements); 589 590 #define __get_stat(stats, stat) \ 591 ({ \ 592 uint64_t data; \ 593 \ 594 kvm_get_stat(stats, #stat, &data, 1); \ 595 data; \ 596 }) 597 598 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat) 599 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat) 600 601 static inline bool read_smt_control(char *buf, size_t buf_size) 602 { 603 FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r"); 604 bool ret; 605 606 if (!f) 607 return false; 608 609 ret = fread(buf, sizeof(*buf), buf_size, f) > 0; 610 fclose(f); 611 612 return ret; 613 } 614 615 static inline bool is_smt_possible(void) 616 { 617 char buf[16]; 618 619 if (read_smt_control(buf, sizeof(buf)) && 620 (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12))) 621 return false; 622 623 return true; 624 } 625 626 static inline bool is_smt_on(void) 627 { 628 char buf[16]; 629 630 if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2)) 631 return true; 632 633 return false; 634 } 635 636 void vm_create_irqchip(struct kvm_vm *vm); 637 638 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 639 uint64_t flags) 640 { 641 struct kvm_create_guest_memfd guest_memfd = { 642 .size = size, 643 .flags = flags, 644 }; 645 646 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 647 } 648 649 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 650 uint64_t flags) 651 { 652 int fd = __vm_create_guest_memfd(vm, size, flags); 653 654 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd)); 655 return fd; 656 } 657 658 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 659 uint64_t gpa, uint64_t size, void *hva); 660 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 661 uint64_t gpa, uint64_t size, void *hva); 662 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 663 uint64_t gpa, uint64_t size, void *hva, 664 uint32_t guest_memfd, uint64_t guest_memfd_offset); 665 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 666 uint64_t gpa, uint64_t size, void *hva, 667 uint32_t guest_memfd, uint64_t guest_memfd_offset); 668 669 void vm_userspace_mem_region_add(struct kvm_vm *vm, 670 enum vm_mem_backing_src_type src_type, 671 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 672 uint32_t flags); 673 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 674 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 675 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset); 676 677 #ifndef vm_arch_has_protected_memory 678 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm) 679 { 680 return false; 681 } 682 #endif 683 684 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); 685 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa); 686 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot); 687 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 688 void vm_populate_vaddr_bitmap(struct kvm_vm *vm); 689 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 690 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 691 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 692 enum kvm_mem_region_type type); 693 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 694 vm_vaddr_t vaddr_min, 695 enum kvm_mem_region_type type); 696 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); 697 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, 698 enum kvm_mem_region_type type); 699 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm); 700 701 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 702 unsigned int npages); 703 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); 704 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); 705 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); 706 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa); 707 708 #ifndef vcpu_arch_put_guest 709 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0) 710 #endif 711 712 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa) 713 { 714 return gpa & ~vm->gpa_tag_mask; 715 } 716 717 void vcpu_run(struct kvm_vcpu *vcpu); 718 int _vcpu_run(struct kvm_vcpu *vcpu); 719 720 static inline int __vcpu_run(struct kvm_vcpu *vcpu) 721 { 722 return __vcpu_ioctl(vcpu, KVM_RUN, NULL); 723 } 724 725 void vcpu_run_complete_io(struct kvm_vcpu *vcpu); 726 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu); 727 728 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap, 729 uint64_t arg0) 730 { 731 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 732 733 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap); 734 } 735 736 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu, 737 struct kvm_guest_debug *debug) 738 { 739 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug); 740 } 741 742 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu, 743 struct kvm_mp_state *mp_state) 744 { 745 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state); 746 } 747 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu, 748 struct kvm_mp_state *mp_state) 749 { 750 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state); 751 } 752 753 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 754 { 755 vcpu_ioctl(vcpu, KVM_GET_REGS, regs); 756 } 757 758 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 759 { 760 vcpu_ioctl(vcpu, KVM_SET_REGS, regs); 761 } 762 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 763 { 764 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs); 765 766 } 767 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 768 { 769 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 770 } 771 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 772 { 773 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 774 } 775 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 776 { 777 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu); 778 } 779 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 780 { 781 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu); 782 } 783 784 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 785 { 786 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 787 788 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 789 } 790 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 791 { 792 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 793 794 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 795 } 796 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id) 797 { 798 uint64_t val; 799 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 800 801 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 802 803 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 804 return val; 805 } 806 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 807 { 808 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 809 810 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 811 812 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 813 } 814 815 #ifdef __KVM_HAVE_VCPU_EVENTS 816 static inline void vcpu_events_get(struct kvm_vcpu *vcpu, 817 struct kvm_vcpu_events *events) 818 { 819 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events); 820 } 821 static inline void vcpu_events_set(struct kvm_vcpu *vcpu, 822 struct kvm_vcpu_events *events) 823 { 824 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events); 825 } 826 #endif 827 #ifdef __x86_64__ 828 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu, 829 struct kvm_nested_state *state) 830 { 831 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state); 832 } 833 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu, 834 struct kvm_nested_state *state) 835 { 836 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 837 } 838 839 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu, 840 struct kvm_nested_state *state) 841 { 842 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 843 } 844 #endif 845 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu) 846 { 847 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL); 848 849 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm); 850 return fd; 851 } 852 853 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr); 854 855 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 856 { 857 int ret = __kvm_has_device_attr(dev_fd, group, attr); 858 859 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 860 } 861 862 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val); 863 864 static inline void kvm_device_attr_get(int dev_fd, uint32_t group, 865 uint64_t attr, void *val) 866 { 867 int ret = __kvm_device_attr_get(dev_fd, group, attr, val); 868 869 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret)); 870 } 871 872 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val); 873 874 static inline void kvm_device_attr_set(int dev_fd, uint32_t group, 875 uint64_t attr, void *val) 876 { 877 int ret = __kvm_device_attr_set(dev_fd, group, attr, val); 878 879 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret)); 880 } 881 882 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 883 uint64_t attr) 884 { 885 return __kvm_has_device_attr(vcpu->fd, group, attr); 886 } 887 888 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 889 uint64_t attr) 890 { 891 kvm_has_device_attr(vcpu->fd, group, attr); 892 } 893 894 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 895 uint64_t attr, void *val) 896 { 897 return __kvm_device_attr_get(vcpu->fd, group, attr, val); 898 } 899 900 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 901 uint64_t attr, void *val) 902 { 903 kvm_device_attr_get(vcpu->fd, group, attr, val); 904 } 905 906 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 907 uint64_t attr, void *val) 908 { 909 return __kvm_device_attr_set(vcpu->fd, group, attr, val); 910 } 911 912 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 913 uint64_t attr, void *val) 914 { 915 kvm_device_attr_set(vcpu->fd, group, attr, val); 916 } 917 918 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type); 919 int __kvm_create_device(struct kvm_vm *vm, uint64_t type); 920 921 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type) 922 { 923 int fd = __kvm_create_device(vm, type); 924 925 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd)); 926 return fd; 927 } 928 929 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu); 930 931 /* 932 * VM VCPU Args Set 933 * 934 * Input Args: 935 * vm - Virtual Machine 936 * num - number of arguments 937 * ... - arguments, each of type uint64_t 938 * 939 * Output Args: None 940 * 941 * Return: None 942 * 943 * Sets the first @num input parameters for the function at @vcpu's entry point, 944 * per the C calling convention of the architecture, to the values given as 945 * variable args. Each of the variable args is expected to be of type uint64_t. 946 * The maximum @num can be is specific to the architecture. 947 */ 948 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...); 949 950 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 951 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 952 953 #define KVM_MAX_IRQ_ROUTES 4096 954 955 struct kvm_irq_routing *kvm_gsi_routing_create(void); 956 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 957 uint32_t gsi, uint32_t pin); 958 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 959 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 960 961 const char *exit_reason_str(unsigned int exit_reason); 962 963 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 964 uint32_t memslot); 965 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 966 vm_paddr_t paddr_min, uint32_t memslot, 967 bool protected); 968 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm); 969 970 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 971 vm_paddr_t paddr_min, uint32_t memslot) 972 { 973 /* 974 * By default, allocate memory as protected for VMs that support 975 * protected memory, as the majority of memory for such VMs is 976 * protected, i.e. using shared memory is effectively opt-in. 977 */ 978 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot, 979 vm_arch_has_protected_memory(vm)); 980 } 981 982 /* 983 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also 984 * loads the test binary into guest memory and creates an IRQ chip (x86 only). 985 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to 986 * calculate the amount of memory needed for per-vCPU data, e.g. stacks. 987 */ 988 struct kvm_vm *____vm_create(struct vm_shape shape); 989 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 990 uint64_t nr_extra_pages); 991 992 static inline struct kvm_vm *vm_create_barebones(void) 993 { 994 return ____vm_create(VM_SHAPE_DEFAULT); 995 } 996 997 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type) 998 { 999 const struct vm_shape shape = { 1000 .mode = VM_MODE_DEFAULT, 1001 .type = type, 1002 }; 1003 1004 return ____vm_create(shape); 1005 } 1006 1007 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus) 1008 { 1009 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0); 1010 } 1011 1012 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 1013 uint64_t extra_mem_pages, 1014 void *guest_code, struct kvm_vcpu *vcpus[]); 1015 1016 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus, 1017 void *guest_code, 1018 struct kvm_vcpu *vcpus[]) 1019 { 1020 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0, 1021 guest_code, vcpus); 1022 } 1023 1024 1025 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 1026 struct kvm_vcpu **vcpu, 1027 uint64_t extra_mem_pages, 1028 void *guest_code); 1029 1030 /* 1031 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages 1032 * additional pages of guest memory. Returns the VM and vCPU (via out param). 1033 */ 1034 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 1035 uint64_t extra_mem_pages, 1036 void *guest_code) 1037 { 1038 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu, 1039 extra_mem_pages, guest_code); 1040 } 1041 1042 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 1043 void *guest_code) 1044 { 1045 return __vm_create_with_one_vcpu(vcpu, 0, guest_code); 1046 } 1047 1048 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape, 1049 struct kvm_vcpu **vcpu, 1050 void *guest_code) 1051 { 1052 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code); 1053 } 1054 1055 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm); 1056 1057 void kvm_set_files_rlimit(uint32_t nr_vcpus); 1058 1059 int __pin_task_to_cpu(pthread_t task, int cpu); 1060 1061 static inline void pin_task_to_cpu(pthread_t task, int cpu) 1062 { 1063 int r; 1064 1065 r = __pin_task_to_cpu(task, cpu); 1066 TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu); 1067 } 1068 1069 static inline int pin_task_to_any_cpu(pthread_t task) 1070 { 1071 int cpu = sched_getcpu(); 1072 1073 pin_task_to_cpu(task, cpu); 1074 return cpu; 1075 } 1076 1077 static inline void pin_self_to_cpu(int cpu) 1078 { 1079 pin_task_to_cpu(pthread_self(), cpu); 1080 } 1081 1082 static inline int pin_self_to_any_cpu(void) 1083 { 1084 return pin_task_to_any_cpu(pthread_self()); 1085 } 1086 1087 void kvm_print_vcpu_pinning_help(void); 1088 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 1089 int nr_vcpus); 1090 1091 unsigned long vm_compute_max_gfn(struct kvm_vm *vm); 1092 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size); 1093 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages); 1094 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages); 1095 static inline unsigned int 1096 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 1097 { 1098 unsigned int n; 1099 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages)); 1100 #ifdef __s390x__ 1101 /* s390 requires 1M aligned guest sizes */ 1102 n = (n + 255) & ~255; 1103 #endif 1104 return n; 1105 } 1106 1107 #define sync_global_to_guest(vm, g) ({ \ 1108 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1109 memcpy(_p, &(g), sizeof(g)); \ 1110 }) 1111 1112 #define sync_global_from_guest(vm, g) ({ \ 1113 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1114 memcpy(&(g), _p, sizeof(g)); \ 1115 }) 1116 1117 /* 1118 * Write a global value, but only in the VM's (guest's) domain. Primarily used 1119 * for "globals" that hold per-VM values (VMs always duplicate code and global 1120 * data into their own region of physical memory), but can be used anytime it's 1121 * undesirable to change the host's copy of the global. 1122 */ 1123 #define write_guest_global(vm, g, val) ({ \ 1124 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1125 typeof(g) _val = val; \ 1126 \ 1127 memcpy(_p, &(_val), sizeof(g)); \ 1128 }) 1129 1130 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu); 1131 1132 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, 1133 uint8_t indent); 1134 1135 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu, 1136 uint8_t indent) 1137 { 1138 vcpu_arch_dump(stream, vcpu, indent); 1139 } 1140 1141 /* 1142 * Adds a vCPU with reasonable defaults (e.g. a stack) 1143 * 1144 * Input Args: 1145 * vm - Virtual Machine 1146 * vcpu_id - The id of the VCPU to add to the VM. 1147 */ 1148 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 1149 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code); 1150 1151 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 1152 void *guest_code) 1153 { 1154 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id); 1155 1156 vcpu_arch_set_entry_point(vcpu, guest_code); 1157 1158 return vcpu; 1159 } 1160 1161 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */ 1162 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id); 1163 1164 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm, 1165 uint32_t vcpu_id) 1166 { 1167 return vm_arch_vcpu_recreate(vm, vcpu_id); 1168 } 1169 1170 void vcpu_arch_free(struct kvm_vcpu *vcpu); 1171 1172 void virt_arch_pgd_alloc(struct kvm_vm *vm); 1173 1174 static inline void virt_pgd_alloc(struct kvm_vm *vm) 1175 { 1176 virt_arch_pgd_alloc(vm); 1177 } 1178 1179 /* 1180 * VM Virtual Page Map 1181 * 1182 * Input Args: 1183 * vm - Virtual Machine 1184 * vaddr - VM Virtual Address 1185 * paddr - VM Physical Address 1186 * memslot - Memory region slot for new virtual translation tables 1187 * 1188 * Output Args: None 1189 * 1190 * Return: None 1191 * 1192 * Within @vm, creates a virtual translation for the page starting 1193 * at @vaddr to the page starting at @paddr. 1194 */ 1195 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr); 1196 1197 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 1198 { 1199 virt_arch_pg_map(vm, vaddr, paddr); 1200 } 1201 1202 1203 /* 1204 * Address Guest Virtual to Guest Physical 1205 * 1206 * Input Args: 1207 * vm - Virtual Machine 1208 * gva - VM virtual address 1209 * 1210 * Output Args: None 1211 * 1212 * Return: 1213 * Equivalent VM physical address 1214 * 1215 * Returns the VM physical address of the translated VM virtual 1216 * address given by @gva. 1217 */ 1218 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); 1219 1220 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 1221 { 1222 return addr_arch_gva2gpa(vm, gva); 1223 } 1224 1225 /* 1226 * Virtual Translation Tables Dump 1227 * 1228 * Input Args: 1229 * stream - Output FILE stream 1230 * vm - Virtual Machine 1231 * indent - Left margin indent amount 1232 * 1233 * Output Args: None 1234 * 1235 * Return: None 1236 * 1237 * Dumps to the FILE stream given by @stream, the contents of all the 1238 * virtual translation tables for the VM given by @vm. 1239 */ 1240 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 1241 1242 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1243 { 1244 virt_arch_dump(stream, vm, indent); 1245 } 1246 1247 1248 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm) 1249 { 1250 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0); 1251 } 1252 1253 /* 1254 * Arch hook that is invoked via a constructor, i.e. before exeucting main(), 1255 * to allow for arch-specific setup that is common to all tests, e.g. computing 1256 * the default guest "mode". 1257 */ 1258 void kvm_selftest_arch_init(void); 1259 1260 void kvm_arch_vm_post_create(struct kvm_vm *vm); 1261 1262 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr); 1263 1264 uint32_t guest_get_vcpuid(void); 1265 1266 #endif /* SELFTEST_KVM_UTIL_H */ 1267