1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2018, Google LLC. 4 */ 5 #ifndef SELFTEST_KVM_UTIL_H 6 #define SELFTEST_KVM_UTIL_H 7 8 #include "test_util.h" 9 10 #include <linux/compiler.h> 11 #include "linux/hashtable.h" 12 #include "linux/list.h" 13 #include <linux/kernel.h> 14 #include <linux/kvm.h> 15 #include "linux/rbtree.h" 16 #include <linux/types.h> 17 18 #include <asm/atomic.h> 19 #include <asm/kvm.h> 20 21 #include <sys/eventfd.h> 22 #include <sys/ioctl.h> 23 24 #include <pthread.h> 25 26 #include "kvm_util_arch.h" 27 #include "kvm_util_types.h" 28 #include "sparsebit.h" 29 30 #define KVM_DEV_PATH "/dev/kvm" 31 #define KVM_MAX_VCPUS 512 32 33 #define NSEC_PER_SEC 1000000000L 34 35 struct userspace_mem_region { 36 struct kvm_userspace_memory_region2 region; 37 struct sparsebit *unused_phy_pages; 38 struct sparsebit *protected_phy_pages; 39 int fd; 40 off_t offset; 41 enum vm_mem_backing_src_type backing_src_type; 42 void *host_mem; 43 void *host_alias; 44 void *mmap_start; 45 void *mmap_alias; 46 size_t mmap_size; 47 struct rb_node gpa_node; 48 struct rb_node hva_node; 49 struct hlist_node slot_node; 50 }; 51 52 struct kvm_binary_stats { 53 int fd; 54 struct kvm_stats_header header; 55 struct kvm_stats_desc *desc; 56 }; 57 58 struct kvm_vcpu { 59 struct list_head list; 60 uint32_t id; 61 int fd; 62 struct kvm_vm *vm; 63 struct kvm_run *run; 64 #ifdef __x86_64__ 65 struct kvm_cpuid2 *cpuid; 66 #endif 67 #ifdef __aarch64__ 68 struct kvm_vcpu_init init; 69 #endif 70 struct kvm_binary_stats stats; 71 struct kvm_dirty_gfn *dirty_gfns; 72 uint32_t fetch_index; 73 uint32_t dirty_gfns_count; 74 }; 75 76 struct userspace_mem_regions { 77 struct rb_root gpa_tree; 78 struct rb_root hva_tree; 79 DECLARE_HASHTABLE(slot_hash, 9); 80 }; 81 82 enum kvm_mem_region_type { 83 MEM_REGION_CODE, 84 MEM_REGION_DATA, 85 MEM_REGION_PT, 86 MEM_REGION_TEST_DATA, 87 NR_MEM_REGIONS, 88 }; 89 90 struct kvm_vm { 91 int mode; 92 unsigned long type; 93 int kvm_fd; 94 int fd; 95 unsigned int pgtable_levels; 96 unsigned int page_size; 97 unsigned int page_shift; 98 unsigned int pa_bits; 99 unsigned int va_bits; 100 uint64_t max_gfn; 101 struct list_head vcpus; 102 struct userspace_mem_regions regions; 103 struct sparsebit *vpages_valid; 104 struct sparsebit *vpages_mapped; 105 bool has_irqchip; 106 bool pgd_created; 107 vm_paddr_t ucall_mmio_addr; 108 vm_paddr_t pgd; 109 vm_vaddr_t handlers; 110 uint32_t dirty_ring_size; 111 uint64_t gpa_tag_mask; 112 113 struct kvm_vm_arch arch; 114 115 struct kvm_binary_stats stats; 116 117 /* 118 * KVM region slots. These are the default memslots used by page 119 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE] 120 * memslot. 121 */ 122 uint32_t memslots[NR_MEM_REGIONS]; 123 }; 124 125 struct vcpu_reg_sublist { 126 const char *name; 127 long capability; 128 int feature; 129 int feature_type; 130 bool finalize; 131 __u64 *regs; 132 __u64 regs_n; 133 __u64 *rejects_set; 134 __u64 rejects_set_n; 135 __u64 *skips_set; 136 __u64 skips_set_n; 137 }; 138 139 struct vcpu_reg_list { 140 char *name; 141 struct vcpu_reg_sublist sublists[]; 142 }; 143 144 #define for_each_sublist(c, s) \ 145 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s)) 146 147 #define kvm_for_each_vcpu(vm, i, vcpu) \ 148 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \ 149 if (!((vcpu) = vm->vcpus[i])) \ 150 continue; \ 151 else 152 153 struct userspace_mem_region * 154 memslot2region(struct kvm_vm *vm, uint32_t memslot); 155 156 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm, 157 enum kvm_mem_region_type type) 158 { 159 assert(type < NR_MEM_REGIONS); 160 return memslot2region(vm, vm->memslots[type]); 161 } 162 163 /* Minimum allocated guest virtual and physical addresses */ 164 #define KVM_UTIL_MIN_VADDR 0x2000 165 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 166 167 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 168 #define DEFAULT_STACK_PGS 5 169 170 enum vm_guest_mode { 171 VM_MODE_P52V48_4K, 172 VM_MODE_P52V48_16K, 173 VM_MODE_P52V48_64K, 174 VM_MODE_P48V48_4K, 175 VM_MODE_P48V48_16K, 176 VM_MODE_P48V48_64K, 177 VM_MODE_P40V48_4K, 178 VM_MODE_P40V48_16K, 179 VM_MODE_P40V48_64K, 180 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */ 181 VM_MODE_P47V64_4K, 182 VM_MODE_P44V64_4K, 183 VM_MODE_P36V48_4K, 184 VM_MODE_P36V48_16K, 185 VM_MODE_P36V48_64K, 186 VM_MODE_P47V47_16K, 187 VM_MODE_P36V47_16K, 188 NUM_VM_MODES, 189 }; 190 191 struct vm_shape { 192 uint32_t type; 193 uint8_t mode; 194 uint8_t pad0; 195 uint16_t pad1; 196 }; 197 198 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t)); 199 200 #define VM_TYPE_DEFAULT 0 201 202 #define VM_SHAPE(__mode) \ 203 ({ \ 204 struct vm_shape shape = { \ 205 .mode = (__mode), \ 206 .type = VM_TYPE_DEFAULT \ 207 }; \ 208 \ 209 shape; \ 210 }) 211 212 #if defined(__aarch64__) 213 214 extern enum vm_guest_mode vm_mode_default; 215 216 #define VM_MODE_DEFAULT vm_mode_default 217 #define MIN_PAGE_SHIFT 12U 218 #define ptes_per_page(page_size) ((page_size) / 8) 219 220 #elif defined(__x86_64__) 221 222 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K 223 #define MIN_PAGE_SHIFT 12U 224 #define ptes_per_page(page_size) ((page_size) / 8) 225 226 #elif defined(__s390x__) 227 228 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K 229 #define MIN_PAGE_SHIFT 12U 230 #define ptes_per_page(page_size) ((page_size) / 16) 231 232 #elif defined(__riscv) 233 234 #if __riscv_xlen == 32 235 #error "RISC-V 32-bit kvm selftests not supported" 236 #endif 237 238 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K 239 #define MIN_PAGE_SHIFT 12U 240 #define ptes_per_page(page_size) ((page_size) / 8) 241 242 #elif defined(__loongarch__) 243 #define VM_MODE_DEFAULT VM_MODE_P47V47_16K 244 #define MIN_PAGE_SHIFT 12U 245 #define ptes_per_page(page_size) ((page_size) / 8) 246 247 #endif 248 249 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT) 250 251 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT) 252 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE) 253 254 struct vm_guest_mode_params { 255 unsigned int pa_bits; 256 unsigned int va_bits; 257 unsigned int page_size; 258 unsigned int page_shift; 259 }; 260 extern const struct vm_guest_mode_params vm_guest_mode_params[]; 261 262 int __open_path_or_exit(const char *path, int flags, const char *enoent_help); 263 int open_path_or_exit(const char *path, int flags); 264 int open_kvm_dev_path_or_exit(void); 265 266 bool get_kvm_param_bool(const char *param); 267 bool get_kvm_intel_param_bool(const char *param); 268 bool get_kvm_amd_param_bool(const char *param); 269 270 int get_kvm_param_integer(const char *param); 271 int get_kvm_intel_param_integer(const char *param); 272 int get_kvm_amd_param_integer(const char *param); 273 274 unsigned int kvm_check_cap(long cap); 275 276 static inline bool kvm_has_cap(long cap) 277 { 278 return kvm_check_cap(cap); 279 } 280 281 #define __KVM_SYSCALL_ERROR(_name, _ret) \ 282 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno) 283 284 /* 285 * Use the "inner", double-underscore macro when reporting errors from within 286 * other macros so that the name of ioctl() and not its literal numeric value 287 * is printed on error. The "outer" macro is strongly preferred when reporting 288 * errors "directly", i.e. without an additional layer of macros, as it reduces 289 * the probability of passing in the wrong string. 290 */ 291 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret) 292 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret) 293 294 #define kvm_do_ioctl(fd, cmd, arg) \ 295 ({ \ 296 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \ 297 ioctl(fd, cmd, arg); \ 298 }) 299 300 #define __kvm_ioctl(kvm_fd, cmd, arg) \ 301 kvm_do_ioctl(kvm_fd, cmd, arg) 302 303 #define kvm_ioctl(kvm_fd, cmd, arg) \ 304 ({ \ 305 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \ 306 \ 307 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \ 308 }) 309 310 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { } 311 312 #define __vm_ioctl(vm, cmd, arg) \ 313 ({ \ 314 static_assert_is_vm(vm); \ 315 kvm_do_ioctl((vm)->fd, cmd, arg); \ 316 }) 317 318 /* 319 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if 320 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM, 321 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before 322 * selftests existed and (b) should never outright fail, i.e. is supposed to 323 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the 324 * VM and its vCPUs, including KVM_CHECK_EXTENSION. 325 */ 326 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \ 327 do { \ 328 int __errno = errno; \ 329 \ 330 static_assert_is_vm(vm); \ 331 \ 332 if (cond) \ 333 break; \ 334 \ 335 if (errno == EIO && \ 336 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \ 337 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \ 338 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \ 339 } \ 340 errno = __errno; \ 341 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \ 342 } while (0) 343 344 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \ 345 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm) 346 347 #define vm_ioctl(vm, cmd, arg) \ 348 ({ \ 349 int ret = __vm_ioctl(vm, cmd, arg); \ 350 \ 351 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \ 352 }) 353 354 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { } 355 356 #define __vcpu_ioctl(vcpu, cmd, arg) \ 357 ({ \ 358 static_assert_is_vcpu(vcpu); \ 359 kvm_do_ioctl((vcpu)->fd, cmd, arg); \ 360 }) 361 362 #define vcpu_ioctl(vcpu, cmd, arg) \ 363 ({ \ 364 int ret = __vcpu_ioctl(vcpu, cmd, arg); \ 365 \ 366 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \ 367 }) 368 369 /* 370 * Looks up and returns the value corresponding to the capability 371 * (KVM_CAP_*) given by cap. 372 */ 373 static inline int vm_check_cap(struct kvm_vm *vm, long cap) 374 { 375 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap); 376 377 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm); 378 return ret; 379 } 380 381 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 382 { 383 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 384 385 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 386 } 387 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 388 { 389 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 390 391 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 392 } 393 394 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa, 395 uint64_t size, uint64_t attributes) 396 { 397 struct kvm_memory_attributes attr = { 398 .attributes = attributes, 399 .address = gpa, 400 .size = size, 401 .flags = 0, 402 }; 403 404 /* 405 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows 406 * need significant enhancements to support multiple attributes. 407 */ 408 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE, 409 "Update me to support multiple attributes!"); 410 411 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr); 412 } 413 414 415 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa, 416 uint64_t size) 417 { 418 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 419 } 420 421 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa, 422 uint64_t size) 423 { 424 vm_set_memory_attributes(vm, gpa, size, 0); 425 } 426 427 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size, 428 bool punch_hole); 429 430 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa, 431 uint64_t size) 432 { 433 vm_guest_mem_fallocate(vm, gpa, size, true); 434 } 435 436 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa, 437 uint64_t size) 438 { 439 vm_guest_mem_fallocate(vm, gpa, size, false); 440 } 441 442 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size); 443 const char *vm_guest_mode_string(uint32_t i); 444 445 void kvm_vm_free(struct kvm_vm *vmp); 446 void kvm_vm_restart(struct kvm_vm *vmp); 447 void kvm_vm_release(struct kvm_vm *vmp); 448 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename); 449 int kvm_memfd_alloc(size_t size, bool hugepages); 450 451 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 452 453 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 454 { 455 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 456 457 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args); 458 } 459 460 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 461 uint64_t first_page, uint32_t num_pages) 462 { 463 struct kvm_clear_dirty_log args = { 464 .dirty_bitmap = log, 465 .slot = slot, 466 .first_page = first_page, 467 .num_pages = num_pages 468 }; 469 470 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args); 471 } 472 473 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 474 { 475 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL); 476 } 477 478 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm, 479 uint64_t address, 480 uint64_t size, bool pio) 481 { 482 struct kvm_coalesced_mmio_zone zone = { 483 .addr = address, 484 .size = size, 485 .pio = pio, 486 }; 487 488 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone); 489 } 490 491 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm, 492 uint64_t address, 493 uint64_t size, bool pio) 494 { 495 struct kvm_coalesced_mmio_zone zone = { 496 .addr = address, 497 .size = size, 498 .pio = pio, 499 }; 500 501 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone); 502 } 503 504 static inline int vm_get_stats_fd(struct kvm_vm *vm) 505 { 506 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL); 507 508 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm); 509 return fd; 510 } 511 512 static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd, 513 uint32_t flags) 514 { 515 struct kvm_irqfd irqfd = { 516 .fd = eventfd, 517 .gsi = gsi, 518 .flags = flags, 519 .resamplefd = -1, 520 }; 521 522 return __vm_ioctl(vm, KVM_IRQFD, &irqfd); 523 } 524 525 static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd, 526 uint32_t flags) 527 { 528 int ret = __kvm_irqfd(vm, gsi, eventfd, flags); 529 530 TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm); 531 } 532 533 static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd) 534 { 535 kvm_irqfd(vm, gsi, eventfd, 0); 536 } 537 538 static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd) 539 { 540 kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN); 541 } 542 543 static inline int kvm_new_eventfd(void) 544 { 545 int fd = eventfd(0, 0); 546 547 TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd)); 548 return fd; 549 } 550 551 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header) 552 { 553 ssize_t ret; 554 555 ret = pread(stats_fd, header, sizeof(*header), 0); 556 TEST_ASSERT(ret == sizeof(*header), 557 "Failed to read '%lu' header bytes, ret = '%ld'", 558 sizeof(*header), ret); 559 } 560 561 struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 562 struct kvm_stats_header *header); 563 564 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header) 565 { 566 /* 567 * The base size of the descriptor is defined by KVM's ABI, but the 568 * size of the name field is variable, as far as KVM's ABI is 569 * concerned. For a given instance of KVM, the name field is the same 570 * size for all stats and is provided in the overall stats header. 571 */ 572 return sizeof(struct kvm_stats_desc) + header->name_size; 573 } 574 575 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats, 576 int index, 577 struct kvm_stats_header *header) 578 { 579 /* 580 * Note, size_desc includes the size of the name field, which is 581 * variable. i.e. this is NOT equivalent to &stats_desc[i]. 582 */ 583 return (void *)stats + index * get_stats_descriptor_size(header); 584 } 585 586 void read_stat_data(int stats_fd, struct kvm_stats_header *header, 587 struct kvm_stats_desc *desc, uint64_t *data, 588 size_t max_elements); 589 590 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name, 591 uint64_t *data, size_t max_elements); 592 593 #define __get_stat(stats, stat) \ 594 ({ \ 595 uint64_t data; \ 596 \ 597 kvm_get_stat(stats, #stat, &data, 1); \ 598 data; \ 599 }) 600 601 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat) 602 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat) 603 604 static inline bool read_smt_control(char *buf, size_t buf_size) 605 { 606 FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r"); 607 bool ret; 608 609 if (!f) 610 return false; 611 612 ret = fread(buf, sizeof(*buf), buf_size, f) > 0; 613 fclose(f); 614 615 return ret; 616 } 617 618 static inline bool is_smt_possible(void) 619 { 620 char buf[16]; 621 622 if (read_smt_control(buf, sizeof(buf)) && 623 (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12))) 624 return false; 625 626 return true; 627 } 628 629 static inline bool is_smt_on(void) 630 { 631 char buf[16]; 632 633 if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2)) 634 return true; 635 636 return false; 637 } 638 639 void vm_create_irqchip(struct kvm_vm *vm); 640 641 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 642 uint64_t flags) 643 { 644 struct kvm_create_guest_memfd guest_memfd = { 645 .size = size, 646 .flags = flags, 647 }; 648 649 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 650 } 651 652 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, 653 uint64_t flags) 654 { 655 int fd = __vm_create_guest_memfd(vm, size, flags); 656 657 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd)); 658 return fd; 659 } 660 661 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 662 uint64_t gpa, uint64_t size, void *hva); 663 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 664 uint64_t gpa, uint64_t size, void *hva); 665 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 666 uint64_t gpa, uint64_t size, void *hva, 667 uint32_t guest_memfd, uint64_t guest_memfd_offset); 668 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 669 uint64_t gpa, uint64_t size, void *hva, 670 uint32_t guest_memfd, uint64_t guest_memfd_offset); 671 672 void vm_userspace_mem_region_add(struct kvm_vm *vm, 673 enum vm_mem_backing_src_type src_type, 674 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 675 uint32_t flags); 676 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, 677 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 678 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset); 679 680 #ifndef vm_arch_has_protected_memory 681 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm) 682 { 683 return false; 684 } 685 #endif 686 687 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); 688 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa); 689 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot); 690 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 691 void vm_populate_vaddr_bitmap(struct kvm_vm *vm); 692 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 693 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 694 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 695 enum kvm_mem_region_type type); 696 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, 697 vm_vaddr_t vaddr_min, 698 enum kvm_mem_region_type type); 699 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); 700 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, 701 enum kvm_mem_region_type type); 702 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm); 703 704 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 705 unsigned int npages); 706 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); 707 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); 708 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); 709 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa); 710 711 #ifndef vcpu_arch_put_guest 712 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0) 713 #endif 714 715 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa) 716 { 717 return gpa & ~vm->gpa_tag_mask; 718 } 719 720 void vcpu_run(struct kvm_vcpu *vcpu); 721 int _vcpu_run(struct kvm_vcpu *vcpu); 722 723 static inline int __vcpu_run(struct kvm_vcpu *vcpu) 724 { 725 return __vcpu_ioctl(vcpu, KVM_RUN, NULL); 726 } 727 728 void vcpu_run_complete_io(struct kvm_vcpu *vcpu); 729 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu); 730 731 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap, 732 uint64_t arg0) 733 { 734 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 735 736 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap); 737 } 738 739 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu, 740 struct kvm_guest_debug *debug) 741 { 742 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug); 743 } 744 745 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu, 746 struct kvm_mp_state *mp_state) 747 { 748 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state); 749 } 750 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu, 751 struct kvm_mp_state *mp_state) 752 { 753 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state); 754 } 755 756 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 757 { 758 vcpu_ioctl(vcpu, KVM_GET_REGS, regs); 759 } 760 761 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 762 { 763 vcpu_ioctl(vcpu, KVM_SET_REGS, regs); 764 } 765 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 766 { 767 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs); 768 769 } 770 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 771 { 772 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 773 } 774 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 775 { 776 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 777 } 778 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 779 { 780 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu); 781 } 782 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 783 { 784 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu); 785 } 786 787 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 788 { 789 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 790 791 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 792 } 793 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 794 { 795 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 796 797 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 798 } 799 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id) 800 { 801 uint64_t val; 802 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 803 804 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 805 806 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); 807 return val; 808 } 809 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 810 { 811 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 812 813 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id); 814 815 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); 816 } 817 818 #ifdef __KVM_HAVE_VCPU_EVENTS 819 static inline void vcpu_events_get(struct kvm_vcpu *vcpu, 820 struct kvm_vcpu_events *events) 821 { 822 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events); 823 } 824 static inline void vcpu_events_set(struct kvm_vcpu *vcpu, 825 struct kvm_vcpu_events *events) 826 { 827 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events); 828 } 829 #endif 830 #ifdef __x86_64__ 831 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu, 832 struct kvm_nested_state *state) 833 { 834 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state); 835 } 836 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu, 837 struct kvm_nested_state *state) 838 { 839 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 840 } 841 842 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu, 843 struct kvm_nested_state *state) 844 { 845 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 846 } 847 #endif 848 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu) 849 { 850 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL); 851 852 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm); 853 return fd; 854 } 855 856 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr); 857 858 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 859 { 860 int ret = __kvm_has_device_attr(dev_fd, group, attr); 861 862 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 863 } 864 865 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val); 866 867 static inline void kvm_device_attr_get(int dev_fd, uint32_t group, 868 uint64_t attr, void *val) 869 { 870 int ret = __kvm_device_attr_get(dev_fd, group, attr, val); 871 872 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret)); 873 } 874 875 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val); 876 877 static inline void kvm_device_attr_set(int dev_fd, uint32_t group, 878 uint64_t attr, void *val) 879 { 880 int ret = __kvm_device_attr_set(dev_fd, group, attr, val); 881 882 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret)); 883 } 884 885 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 886 uint64_t attr) 887 { 888 return __kvm_has_device_attr(vcpu->fd, group, attr); 889 } 890 891 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 892 uint64_t attr) 893 { 894 kvm_has_device_attr(vcpu->fd, group, attr); 895 } 896 897 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 898 uint64_t attr, void *val) 899 { 900 return __kvm_device_attr_get(vcpu->fd, group, attr, val); 901 } 902 903 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 904 uint64_t attr, void *val) 905 { 906 kvm_device_attr_get(vcpu->fd, group, attr, val); 907 } 908 909 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 910 uint64_t attr, void *val) 911 { 912 return __kvm_device_attr_set(vcpu->fd, group, attr, val); 913 } 914 915 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 916 uint64_t attr, void *val) 917 { 918 kvm_device_attr_set(vcpu->fd, group, attr, val); 919 } 920 921 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type); 922 int __kvm_create_device(struct kvm_vm *vm, uint64_t type); 923 924 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type) 925 { 926 int fd = __kvm_create_device(vm, type); 927 928 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd)); 929 return fd; 930 } 931 932 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu); 933 934 /* 935 * VM VCPU Args Set 936 * 937 * Input Args: 938 * vm - Virtual Machine 939 * num - number of arguments 940 * ... - arguments, each of type uint64_t 941 * 942 * Output Args: None 943 * 944 * Return: None 945 * 946 * Sets the first @num input parameters for the function at @vcpu's entry point, 947 * per the C calling convention of the architecture, to the values given as 948 * variable args. Each of the variable args is expected to be of type uint64_t. 949 * The maximum @num can be is specific to the architecture. 950 */ 951 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...); 952 953 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 954 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 955 956 #define KVM_MAX_IRQ_ROUTES 4096 957 958 struct kvm_irq_routing *kvm_gsi_routing_create(void); 959 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 960 uint32_t gsi, uint32_t pin); 961 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 962 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 963 964 const char *exit_reason_str(unsigned int exit_reason); 965 966 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 967 uint32_t memslot); 968 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 969 vm_paddr_t paddr_min, uint32_t memslot, 970 bool protected); 971 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm); 972 973 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 974 vm_paddr_t paddr_min, uint32_t memslot) 975 { 976 /* 977 * By default, allocate memory as protected for VMs that support 978 * protected memory, as the majority of memory for such VMs is 979 * protected, i.e. using shared memory is effectively opt-in. 980 */ 981 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot, 982 vm_arch_has_protected_memory(vm)); 983 } 984 985 /* 986 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also 987 * loads the test binary into guest memory and creates an IRQ chip (x86 only). 988 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to 989 * calculate the amount of memory needed for per-vCPU data, e.g. stacks. 990 */ 991 struct kvm_vm *____vm_create(struct vm_shape shape); 992 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, 993 uint64_t nr_extra_pages); 994 995 static inline struct kvm_vm *vm_create_barebones(void) 996 { 997 return ____vm_create(VM_SHAPE_DEFAULT); 998 } 999 1000 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type) 1001 { 1002 const struct vm_shape shape = { 1003 .mode = VM_MODE_DEFAULT, 1004 .type = type, 1005 }; 1006 1007 return ____vm_create(shape); 1008 } 1009 1010 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus) 1011 { 1012 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0); 1013 } 1014 1015 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, 1016 uint64_t extra_mem_pages, 1017 void *guest_code, struct kvm_vcpu *vcpus[]); 1018 1019 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus, 1020 void *guest_code, 1021 struct kvm_vcpu *vcpus[]) 1022 { 1023 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0, 1024 guest_code, vcpus); 1025 } 1026 1027 1028 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, 1029 struct kvm_vcpu **vcpu, 1030 uint64_t extra_mem_pages, 1031 void *guest_code); 1032 1033 /* 1034 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages 1035 * additional pages of guest memory. Returns the VM and vCPU (via out param). 1036 */ 1037 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 1038 uint64_t extra_mem_pages, 1039 void *guest_code) 1040 { 1041 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu, 1042 extra_mem_pages, guest_code); 1043 } 1044 1045 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 1046 void *guest_code) 1047 { 1048 return __vm_create_with_one_vcpu(vcpu, 0, guest_code); 1049 } 1050 1051 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape, 1052 struct kvm_vcpu **vcpu, 1053 void *guest_code) 1054 { 1055 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code); 1056 } 1057 1058 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm); 1059 1060 void kvm_set_files_rlimit(uint32_t nr_vcpus); 1061 1062 int __pin_task_to_cpu(pthread_t task, int cpu); 1063 1064 static inline void pin_task_to_cpu(pthread_t task, int cpu) 1065 { 1066 int r; 1067 1068 r = __pin_task_to_cpu(task, cpu); 1069 TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu); 1070 } 1071 1072 static inline int pin_task_to_any_cpu(pthread_t task) 1073 { 1074 int cpu = sched_getcpu(); 1075 1076 pin_task_to_cpu(task, cpu); 1077 return cpu; 1078 } 1079 1080 static inline void pin_self_to_cpu(int cpu) 1081 { 1082 pin_task_to_cpu(pthread_self(), cpu); 1083 } 1084 1085 static inline int pin_self_to_any_cpu(void) 1086 { 1087 return pin_task_to_any_cpu(pthread_self()); 1088 } 1089 1090 void kvm_print_vcpu_pinning_help(void); 1091 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 1092 int nr_vcpus); 1093 1094 unsigned long vm_compute_max_gfn(struct kvm_vm *vm); 1095 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size); 1096 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages); 1097 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages); 1098 static inline unsigned int 1099 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 1100 { 1101 unsigned int n; 1102 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages)); 1103 #ifdef __s390x__ 1104 /* s390 requires 1M aligned guest sizes */ 1105 n = (n + 255) & ~255; 1106 #endif 1107 return n; 1108 } 1109 1110 #define sync_global_to_guest(vm, g) ({ \ 1111 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1112 memcpy(_p, &(g), sizeof(g)); \ 1113 }) 1114 1115 #define sync_global_from_guest(vm, g) ({ \ 1116 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1117 memcpy(&(g), _p, sizeof(g)); \ 1118 }) 1119 1120 /* 1121 * Write a global value, but only in the VM's (guest's) domain. Primarily used 1122 * for "globals" that hold per-VM values (VMs always duplicate code and global 1123 * data into their own region of physical memory), but can be used anytime it's 1124 * undesirable to change the host's copy of the global. 1125 */ 1126 #define write_guest_global(vm, g, val) ({ \ 1127 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 1128 typeof(g) _val = val; \ 1129 \ 1130 memcpy(_p, &(_val), sizeof(g)); \ 1131 }) 1132 1133 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu); 1134 1135 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, 1136 uint8_t indent); 1137 1138 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu, 1139 uint8_t indent) 1140 { 1141 vcpu_arch_dump(stream, vcpu, indent); 1142 } 1143 1144 /* 1145 * Adds a vCPU with reasonable defaults (e.g. a stack) 1146 * 1147 * Input Args: 1148 * vm - Virtual Machine 1149 * vcpu_id - The id of the VCPU to add to the VM. 1150 */ 1151 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 1152 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code); 1153 1154 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 1155 void *guest_code) 1156 { 1157 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id); 1158 1159 vcpu_arch_set_entry_point(vcpu, guest_code); 1160 1161 return vcpu; 1162 } 1163 1164 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */ 1165 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id); 1166 1167 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm, 1168 uint32_t vcpu_id) 1169 { 1170 return vm_arch_vcpu_recreate(vm, vcpu_id); 1171 } 1172 1173 void vcpu_arch_free(struct kvm_vcpu *vcpu); 1174 1175 void virt_arch_pgd_alloc(struct kvm_vm *vm); 1176 1177 static inline void virt_pgd_alloc(struct kvm_vm *vm) 1178 { 1179 virt_arch_pgd_alloc(vm); 1180 } 1181 1182 /* 1183 * VM Virtual Page Map 1184 * 1185 * Input Args: 1186 * vm - Virtual Machine 1187 * vaddr - VM Virtual Address 1188 * paddr - VM Physical Address 1189 * memslot - Memory region slot for new virtual translation tables 1190 * 1191 * Output Args: None 1192 * 1193 * Return: None 1194 * 1195 * Within @vm, creates a virtual translation for the page starting 1196 * at @vaddr to the page starting at @paddr. 1197 */ 1198 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr); 1199 1200 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 1201 { 1202 virt_arch_pg_map(vm, vaddr, paddr); 1203 } 1204 1205 1206 /* 1207 * Address Guest Virtual to Guest Physical 1208 * 1209 * Input Args: 1210 * vm - Virtual Machine 1211 * gva - VM virtual address 1212 * 1213 * Output Args: None 1214 * 1215 * Return: 1216 * Equivalent VM physical address 1217 * 1218 * Returns the VM physical address of the translated VM virtual 1219 * address given by @gva. 1220 */ 1221 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); 1222 1223 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 1224 { 1225 return addr_arch_gva2gpa(vm, gva); 1226 } 1227 1228 /* 1229 * Virtual Translation Tables Dump 1230 * 1231 * Input Args: 1232 * stream - Output FILE stream 1233 * vm - Virtual Machine 1234 * indent - Left margin indent amount 1235 * 1236 * Output Args: None 1237 * 1238 * Return: None 1239 * 1240 * Dumps to the FILE stream given by @stream, the contents of all the 1241 * virtual translation tables for the VM given by @vm. 1242 */ 1243 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 1244 1245 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1246 { 1247 virt_arch_dump(stream, vm, indent); 1248 } 1249 1250 1251 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm) 1252 { 1253 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0); 1254 } 1255 1256 /* 1257 * Arch hook that is invoked via a constructor, i.e. before exeucting main(), 1258 * to allow for arch-specific setup that is common to all tests, e.g. computing 1259 * the default guest "mode". 1260 */ 1261 void kvm_selftest_arch_init(void); 1262 1263 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus); 1264 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm); 1265 void kvm_arch_vm_release(struct kvm_vm *vm); 1266 1267 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr); 1268 1269 uint32_t guest_get_vcpuid(void); 1270 1271 #endif /* SELFTEST_KVM_UTIL_H */ 1272