xref: /linux/tools/testing/selftests/kvm/include/kvm_util.h (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7 
8 #include "test_util.h"
9 
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17 
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20 
21 #include <sys/ioctl.h>
22 
23 #include "kvm_util_arch.h"
24 #include "kvm_util_types.h"
25 #include "sparsebit.h"
26 
27 #define KVM_DEV_PATH "/dev/kvm"
28 #define KVM_MAX_VCPUS 512
29 
30 #define NSEC_PER_SEC 1000000000L
31 
32 struct userspace_mem_region {
33 	struct kvm_userspace_memory_region2 region;
34 	struct sparsebit *unused_phy_pages;
35 	struct sparsebit *protected_phy_pages;
36 	int fd;
37 	off_t offset;
38 	enum vm_mem_backing_src_type backing_src_type;
39 	void *host_mem;
40 	void *host_alias;
41 	void *mmap_start;
42 	void *mmap_alias;
43 	size_t mmap_size;
44 	struct rb_node gpa_node;
45 	struct rb_node hva_node;
46 	struct hlist_node slot_node;
47 };
48 
49 struct kvm_vcpu {
50 	struct list_head list;
51 	uint32_t id;
52 	int fd;
53 	struct kvm_vm *vm;
54 	struct kvm_run *run;
55 #ifdef __x86_64__
56 	struct kvm_cpuid2 *cpuid;
57 #endif
58 	struct kvm_dirty_gfn *dirty_gfns;
59 	uint32_t fetch_index;
60 	uint32_t dirty_gfns_count;
61 };
62 
63 struct userspace_mem_regions {
64 	struct rb_root gpa_tree;
65 	struct rb_root hva_tree;
66 	DECLARE_HASHTABLE(slot_hash, 9);
67 };
68 
69 enum kvm_mem_region_type {
70 	MEM_REGION_CODE,
71 	MEM_REGION_DATA,
72 	MEM_REGION_PT,
73 	MEM_REGION_TEST_DATA,
74 	NR_MEM_REGIONS,
75 };
76 
77 struct kvm_vm {
78 	int mode;
79 	unsigned long type;
80 	int kvm_fd;
81 	int fd;
82 	unsigned int pgtable_levels;
83 	unsigned int page_size;
84 	unsigned int page_shift;
85 	unsigned int pa_bits;
86 	unsigned int va_bits;
87 	uint64_t max_gfn;
88 	struct list_head vcpus;
89 	struct userspace_mem_regions regions;
90 	struct sparsebit *vpages_valid;
91 	struct sparsebit *vpages_mapped;
92 	bool has_irqchip;
93 	bool pgd_created;
94 	vm_paddr_t ucall_mmio_addr;
95 	vm_paddr_t pgd;
96 	vm_vaddr_t handlers;
97 	uint32_t dirty_ring_size;
98 	uint64_t gpa_tag_mask;
99 
100 	struct kvm_vm_arch arch;
101 
102 	/* Cache of information for binary stats interface */
103 	int stats_fd;
104 	struct kvm_stats_header stats_header;
105 	struct kvm_stats_desc *stats_desc;
106 
107 	/*
108 	 * KVM region slots. These are the default memslots used by page
109 	 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
110 	 * memslot.
111 	 */
112 	uint32_t memslots[NR_MEM_REGIONS];
113 };
114 
115 struct vcpu_reg_sublist {
116 	const char *name;
117 	long capability;
118 	int feature;
119 	int feature_type;
120 	bool finalize;
121 	__u64 *regs;
122 	__u64 regs_n;
123 	__u64 *rejects_set;
124 	__u64 rejects_set_n;
125 	__u64 *skips_set;
126 	__u64 skips_set_n;
127 };
128 
129 struct vcpu_reg_list {
130 	char *name;
131 	struct vcpu_reg_sublist sublists[];
132 };
133 
134 #define for_each_sublist(c, s)		\
135 	for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
136 
137 #define kvm_for_each_vcpu(vm, i, vcpu)			\
138 	for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++)	\
139 		if (!((vcpu) = vm->vcpus[i]))		\
140 			continue;			\
141 		else
142 
143 struct userspace_mem_region *
144 memslot2region(struct kvm_vm *vm, uint32_t memslot);
145 
146 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
147 							     enum kvm_mem_region_type type)
148 {
149 	assert(type < NR_MEM_REGIONS);
150 	return memslot2region(vm, vm->memslots[type]);
151 }
152 
153 /* Minimum allocated guest virtual and physical addresses */
154 #define KVM_UTIL_MIN_VADDR		0x2000
155 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR	0x180000
156 
157 #define DEFAULT_GUEST_STACK_VADDR_MIN	0xab6000
158 #define DEFAULT_STACK_PGS		5
159 
160 enum vm_guest_mode {
161 	VM_MODE_P52V48_4K,
162 	VM_MODE_P52V48_16K,
163 	VM_MODE_P52V48_64K,
164 	VM_MODE_P48V48_4K,
165 	VM_MODE_P48V48_16K,
166 	VM_MODE_P48V48_64K,
167 	VM_MODE_P40V48_4K,
168 	VM_MODE_P40V48_16K,
169 	VM_MODE_P40V48_64K,
170 	VM_MODE_PXXV48_4K,	/* For 48bits VA but ANY bits PA */
171 	VM_MODE_P47V64_4K,
172 	VM_MODE_P44V64_4K,
173 	VM_MODE_P36V48_4K,
174 	VM_MODE_P36V48_16K,
175 	VM_MODE_P36V48_64K,
176 	VM_MODE_P36V47_16K,
177 	NUM_VM_MODES,
178 };
179 
180 struct vm_shape {
181 	uint32_t type;
182 	uint8_t  mode;
183 	uint8_t  pad0;
184 	uint16_t pad1;
185 };
186 
187 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
188 
189 #define VM_TYPE_DEFAULT			0
190 
191 #define VM_SHAPE(__mode)			\
192 ({						\
193 	struct vm_shape shape = {		\
194 		.mode = (__mode),		\
195 		.type = VM_TYPE_DEFAULT		\
196 	};					\
197 						\
198 	shape;					\
199 })
200 
201 #if defined(__aarch64__)
202 
203 extern enum vm_guest_mode vm_mode_default;
204 
205 #define VM_MODE_DEFAULT			vm_mode_default
206 #define MIN_PAGE_SHIFT			12U
207 #define ptes_per_page(page_size)	((page_size) / 8)
208 
209 #elif defined(__x86_64__)
210 
211 #define VM_MODE_DEFAULT			VM_MODE_PXXV48_4K
212 #define MIN_PAGE_SHIFT			12U
213 #define ptes_per_page(page_size)	((page_size) / 8)
214 
215 #elif defined(__s390x__)
216 
217 #define VM_MODE_DEFAULT			VM_MODE_P44V64_4K
218 #define MIN_PAGE_SHIFT			12U
219 #define ptes_per_page(page_size)	((page_size) / 16)
220 
221 #elif defined(__riscv)
222 
223 #if __riscv_xlen == 32
224 #error "RISC-V 32-bit kvm selftests not supported"
225 #endif
226 
227 #define VM_MODE_DEFAULT			VM_MODE_P40V48_4K
228 #define MIN_PAGE_SHIFT			12U
229 #define ptes_per_page(page_size)	((page_size) / 8)
230 
231 #endif
232 
233 #define VM_SHAPE_DEFAULT	VM_SHAPE(VM_MODE_DEFAULT)
234 
235 #define MIN_PAGE_SIZE		(1U << MIN_PAGE_SHIFT)
236 #define PTES_PER_MIN_PAGE	ptes_per_page(MIN_PAGE_SIZE)
237 
238 struct vm_guest_mode_params {
239 	unsigned int pa_bits;
240 	unsigned int va_bits;
241 	unsigned int page_size;
242 	unsigned int page_shift;
243 };
244 extern const struct vm_guest_mode_params vm_guest_mode_params[];
245 
246 int open_path_or_exit(const char *path, int flags);
247 int open_kvm_dev_path_or_exit(void);
248 
249 bool get_kvm_param_bool(const char *param);
250 bool get_kvm_intel_param_bool(const char *param);
251 bool get_kvm_amd_param_bool(const char *param);
252 
253 int get_kvm_param_integer(const char *param);
254 int get_kvm_intel_param_integer(const char *param);
255 int get_kvm_amd_param_integer(const char *param);
256 
257 unsigned int kvm_check_cap(long cap);
258 
259 static inline bool kvm_has_cap(long cap)
260 {
261 	return kvm_check_cap(cap);
262 }
263 
264 #define __KVM_SYSCALL_ERROR(_name, _ret) \
265 	"%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
266 
267 /*
268  * Use the "inner", double-underscore macro when reporting errors from within
269  * other macros so that the name of ioctl() and not its literal numeric value
270  * is printed on error.  The "outer" macro is strongly preferred when reporting
271  * errors "directly", i.e. without an additional layer of macros, as it reduces
272  * the probability of passing in the wrong string.
273  */
274 #define __KVM_IOCTL_ERROR(_name, _ret)	__KVM_SYSCALL_ERROR(_name, _ret)
275 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
276 
277 #define kvm_do_ioctl(fd, cmd, arg)						\
278 ({										\
279 	kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd));	\
280 	ioctl(fd, cmd, arg);							\
281 })
282 
283 #define __kvm_ioctl(kvm_fd, cmd, arg)				\
284 	kvm_do_ioctl(kvm_fd, cmd, arg)
285 
286 #define kvm_ioctl(kvm_fd, cmd, arg)				\
287 ({								\
288 	int ret = __kvm_ioctl(kvm_fd, cmd, arg);		\
289 								\
290 	TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret));	\
291 })
292 
293 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
294 
295 #define __vm_ioctl(vm, cmd, arg)				\
296 ({								\
297 	static_assert_is_vm(vm);				\
298 	kvm_do_ioctl((vm)->fd, cmd, arg);			\
299 })
300 
301 /*
302  * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
303  * the ioctl() failed because KVM killed/bugged the VM.  To detect a dead VM,
304  * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
305  * selftests existed and (b) should never outright fail, i.e. is supposed to
306  * return 0 or 1.  If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
307  * VM and its vCPUs, including KVM_CHECK_EXTENSION.
308  */
309 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm)				\
310 do {											\
311 	int __errno = errno;								\
312 											\
313 	static_assert_is_vm(vm);							\
314 											\
315 	if (cond)									\
316 		break;									\
317 											\
318 	if (errno == EIO &&								\
319 	    __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) {	\
320 		TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO");	\
321 		TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues");	\
322 	}										\
323 	errno = __errno;								\
324 	TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret));				\
325 } while (0)
326 
327 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm)		\
328 	__TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
329 
330 #define vm_ioctl(vm, cmd, arg)					\
331 ({								\
332 	int ret = __vm_ioctl(vm, cmd, arg);			\
333 								\
334 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm);		\
335 })
336 
337 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
338 
339 #define __vcpu_ioctl(vcpu, cmd, arg)				\
340 ({								\
341 	static_assert_is_vcpu(vcpu);				\
342 	kvm_do_ioctl((vcpu)->fd, cmd, arg);			\
343 })
344 
345 #define vcpu_ioctl(vcpu, cmd, arg)				\
346 ({								\
347 	int ret = __vcpu_ioctl(vcpu, cmd, arg);			\
348 								\
349 	__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm);	\
350 })
351 
352 /*
353  * Looks up and returns the value corresponding to the capability
354  * (KVM_CAP_*) given by cap.
355  */
356 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
357 {
358 	int ret =  __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
359 
360 	TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
361 	return ret;
362 }
363 
364 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
365 {
366 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
367 
368 	return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
369 }
370 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
371 {
372 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
373 
374 	vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
375 }
376 
377 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
378 					    uint64_t size, uint64_t attributes)
379 {
380 	struct kvm_memory_attributes attr = {
381 		.attributes = attributes,
382 		.address = gpa,
383 		.size = size,
384 		.flags = 0,
385 	};
386 
387 	/*
388 	 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes.  These flows
389 	 * need significant enhancements to support multiple attributes.
390 	 */
391 	TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
392 		    "Update me to support multiple attributes!");
393 
394 	vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
395 }
396 
397 
398 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
399 				      uint64_t size)
400 {
401 	vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
402 }
403 
404 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
405 				     uint64_t size)
406 {
407 	vm_set_memory_attributes(vm, gpa, size, 0);
408 }
409 
410 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
411 			    bool punch_hole);
412 
413 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
414 					   uint64_t size)
415 {
416 	vm_guest_mem_fallocate(vm, gpa, size, true);
417 }
418 
419 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
420 					 uint64_t size)
421 {
422 	vm_guest_mem_fallocate(vm, gpa, size, false);
423 }
424 
425 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
426 const char *vm_guest_mode_string(uint32_t i);
427 
428 void kvm_vm_free(struct kvm_vm *vmp);
429 void kvm_vm_restart(struct kvm_vm *vmp);
430 void kvm_vm_release(struct kvm_vm *vmp);
431 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva,
432 		       size_t len);
433 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
434 int kvm_memfd_alloc(size_t size, bool hugepages);
435 
436 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
437 
438 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
439 {
440 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
441 
442 	vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
443 }
444 
445 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
446 					  uint64_t first_page, uint32_t num_pages)
447 {
448 	struct kvm_clear_dirty_log args = {
449 		.dirty_bitmap = log,
450 		.slot = slot,
451 		.first_page = first_page,
452 		.num_pages = num_pages
453 	};
454 
455 	vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
456 }
457 
458 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
459 {
460 	return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
461 }
462 
463 static inline int vm_get_stats_fd(struct kvm_vm *vm)
464 {
465 	int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
466 
467 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
468 	return fd;
469 }
470 
471 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
472 {
473 	ssize_t ret;
474 
475 	ret = pread(stats_fd, header, sizeof(*header), 0);
476 	TEST_ASSERT(ret == sizeof(*header),
477 		    "Failed to read '%lu' header bytes, ret = '%ld'",
478 		    sizeof(*header), ret);
479 }
480 
481 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
482 					      struct kvm_stats_header *header);
483 
484 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
485 {
486 	 /*
487 	  * The base size of the descriptor is defined by KVM's ABI, but the
488 	  * size of the name field is variable, as far as KVM's ABI is
489 	  * concerned. For a given instance of KVM, the name field is the same
490 	  * size for all stats and is provided in the overall stats header.
491 	  */
492 	return sizeof(struct kvm_stats_desc) + header->name_size;
493 }
494 
495 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
496 							  int index,
497 							  struct kvm_stats_header *header)
498 {
499 	/*
500 	 * Note, size_desc includes the size of the name field, which is
501 	 * variable. i.e. this is NOT equivalent to &stats_desc[i].
502 	 */
503 	return (void *)stats + index * get_stats_descriptor_size(header);
504 }
505 
506 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
507 		    struct kvm_stats_desc *desc, uint64_t *data,
508 		    size_t max_elements);
509 
510 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
511 		   size_t max_elements);
512 
513 static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
514 {
515 	uint64_t data;
516 
517 	__vm_get_stat(vm, stat_name, &data, 1);
518 	return data;
519 }
520 
521 void vm_create_irqchip(struct kvm_vm *vm);
522 
523 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
524 					uint64_t flags)
525 {
526 	struct kvm_create_guest_memfd guest_memfd = {
527 		.size = size,
528 		.flags = flags,
529 	};
530 
531 	return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
532 }
533 
534 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
535 					uint64_t flags)
536 {
537 	int fd = __vm_create_guest_memfd(vm, size, flags);
538 
539 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
540 	return fd;
541 }
542 
543 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
544 			       uint64_t gpa, uint64_t size, void *hva);
545 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
546 				uint64_t gpa, uint64_t size, void *hva);
547 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
548 				uint64_t gpa, uint64_t size, void *hva,
549 				uint32_t guest_memfd, uint64_t guest_memfd_offset);
550 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
551 				 uint64_t gpa, uint64_t size, void *hva,
552 				 uint32_t guest_memfd, uint64_t guest_memfd_offset);
553 
554 void vm_userspace_mem_region_add(struct kvm_vm *vm,
555 	enum vm_mem_backing_src_type src_type,
556 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
557 	uint32_t flags);
558 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
559 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
560 		uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
561 
562 #ifndef vm_arch_has_protected_memory
563 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
564 {
565 	return false;
566 }
567 #endif
568 
569 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
570 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
571 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
572 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
573 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
574 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
575 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
576 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
577 			    enum kvm_mem_region_type type);
578 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
579 				 vm_vaddr_t vaddr_min,
580 				 enum kvm_mem_region_type type);
581 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
582 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
583 				 enum kvm_mem_region_type type);
584 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
585 
586 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
587 	      unsigned int npages);
588 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
589 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
590 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
591 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
592 
593 #ifndef vcpu_arch_put_guest
594 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
595 #endif
596 
597 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
598 {
599 	return gpa & ~vm->gpa_tag_mask;
600 }
601 
602 void vcpu_run(struct kvm_vcpu *vcpu);
603 int _vcpu_run(struct kvm_vcpu *vcpu);
604 
605 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
606 {
607 	return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
608 }
609 
610 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
611 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
612 
613 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
614 				   uint64_t arg0)
615 {
616 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
617 
618 	vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
619 }
620 
621 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
622 					struct kvm_guest_debug *debug)
623 {
624 	vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
625 }
626 
627 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
628 				     struct kvm_mp_state *mp_state)
629 {
630 	vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
631 }
632 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
633 				     struct kvm_mp_state *mp_state)
634 {
635 	vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
636 }
637 
638 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
639 {
640 	vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
641 }
642 
643 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
644 {
645 	vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
646 }
647 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
648 {
649 	vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
650 
651 }
652 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
653 {
654 	vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
655 }
656 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
657 {
658 	return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
659 }
660 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
661 {
662 	vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
663 }
664 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
665 {
666 	vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
667 }
668 
669 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
670 {
671 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
672 
673 	return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
674 }
675 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
676 {
677 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
678 
679 	return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
680 }
681 static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
682 {
683 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
684 
685 	vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
686 }
687 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
688 {
689 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
690 
691 	vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
692 }
693 
694 #ifdef __KVM_HAVE_VCPU_EVENTS
695 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
696 				   struct kvm_vcpu_events *events)
697 {
698 	vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
699 }
700 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
701 				   struct kvm_vcpu_events *events)
702 {
703 	vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
704 }
705 #endif
706 #ifdef __x86_64__
707 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
708 					 struct kvm_nested_state *state)
709 {
710 	vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
711 }
712 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
713 					  struct kvm_nested_state *state)
714 {
715 	return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
716 }
717 
718 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
719 					 struct kvm_nested_state *state)
720 {
721 	vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
722 }
723 #endif
724 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
725 {
726 	int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
727 
728 	TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
729 	return fd;
730 }
731 
732 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
733 
734 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
735 {
736 	int ret = __kvm_has_device_attr(dev_fd, group, attr);
737 
738 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
739 }
740 
741 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
742 
743 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
744 				       uint64_t attr, void *val)
745 {
746 	int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
747 
748 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
749 }
750 
751 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
752 
753 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
754 				       uint64_t attr, void *val)
755 {
756 	int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
757 
758 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
759 }
760 
761 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
762 					 uint64_t attr)
763 {
764 	return __kvm_has_device_attr(vcpu->fd, group, attr);
765 }
766 
767 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
768 					uint64_t attr)
769 {
770 	kvm_has_device_attr(vcpu->fd, group, attr);
771 }
772 
773 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
774 					 uint64_t attr, void *val)
775 {
776 	return __kvm_device_attr_get(vcpu->fd, group, attr, val);
777 }
778 
779 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
780 					uint64_t attr, void *val)
781 {
782 	kvm_device_attr_get(vcpu->fd, group, attr, val);
783 }
784 
785 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
786 					 uint64_t attr, void *val)
787 {
788 	return __kvm_device_attr_set(vcpu->fd, group, attr, val);
789 }
790 
791 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
792 					uint64_t attr, void *val)
793 {
794 	kvm_device_attr_set(vcpu->fd, group, attr, val);
795 }
796 
797 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
798 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
799 
800 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
801 {
802 	int fd = __kvm_create_device(vm, type);
803 
804 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
805 	return fd;
806 }
807 
808 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
809 
810 /*
811  * VM VCPU Args Set
812  *
813  * Input Args:
814  *   vm - Virtual Machine
815  *   num - number of arguments
816  *   ... - arguments, each of type uint64_t
817  *
818  * Output Args: None
819  *
820  * Return: None
821  *
822  * Sets the first @num input parameters for the function at @vcpu's entry point,
823  * per the C calling convention of the architecture, to the values given as
824  * variable args. Each of the variable args is expected to be of type uint64_t.
825  * The maximum @num can be is specific to the architecture.
826  */
827 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
828 
829 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
830 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
831 
832 #define KVM_MAX_IRQ_ROUTES		4096
833 
834 struct kvm_irq_routing *kvm_gsi_routing_create(void);
835 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
836 		uint32_t gsi, uint32_t pin);
837 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
838 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
839 
840 const char *exit_reason_str(unsigned int exit_reason);
841 
842 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
843 			     uint32_t memslot);
844 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
845 				vm_paddr_t paddr_min, uint32_t memslot,
846 				bool protected);
847 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
848 
849 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
850 					    vm_paddr_t paddr_min, uint32_t memslot)
851 {
852 	/*
853 	 * By default, allocate memory as protected for VMs that support
854 	 * protected memory, as the majority of memory for such VMs is
855 	 * protected, i.e. using shared memory is effectively opt-in.
856 	 */
857 	return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
858 				    vm_arch_has_protected_memory(vm));
859 }
860 
861 /*
862  * ____vm_create() does KVM_CREATE_VM and little else.  __vm_create() also
863  * loads the test binary into guest memory and creates an IRQ chip (x86 only).
864  * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
865  * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
866  */
867 struct kvm_vm *____vm_create(struct vm_shape shape);
868 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
869 			   uint64_t nr_extra_pages);
870 
871 static inline struct kvm_vm *vm_create_barebones(void)
872 {
873 	return ____vm_create(VM_SHAPE_DEFAULT);
874 }
875 
876 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
877 {
878 	const struct vm_shape shape = {
879 		.mode = VM_MODE_DEFAULT,
880 		.type = type,
881 	};
882 
883 	return ____vm_create(shape);
884 }
885 
886 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
887 {
888 	return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
889 }
890 
891 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
892 				      uint64_t extra_mem_pages,
893 				      void *guest_code, struct kvm_vcpu *vcpus[]);
894 
895 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
896 						  void *guest_code,
897 						  struct kvm_vcpu *vcpus[])
898 {
899 	return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
900 				      guest_code, vcpus);
901 }
902 
903 
904 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
905 					       struct kvm_vcpu **vcpu,
906 					       uint64_t extra_mem_pages,
907 					       void *guest_code);
908 
909 /*
910  * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
911  * additional pages of guest memory.  Returns the VM and vCPU (via out param).
912  */
913 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
914 						       uint64_t extra_mem_pages,
915 						       void *guest_code)
916 {
917 	return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
918 					       extra_mem_pages, guest_code);
919 }
920 
921 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
922 						     void *guest_code)
923 {
924 	return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
925 }
926 
927 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
928 							   struct kvm_vcpu **vcpu,
929 							   void *guest_code)
930 {
931 	return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
932 }
933 
934 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
935 
936 void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
937 void kvm_print_vcpu_pinning_help(void);
938 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
939 			    int nr_vcpus);
940 
941 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
942 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
943 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
944 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
945 static inline unsigned int
946 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
947 {
948 	unsigned int n;
949 	n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
950 #ifdef __s390x__
951 	/* s390 requires 1M aligned guest sizes */
952 	n = (n + 255) & ~255;
953 #endif
954 	return n;
955 }
956 
957 #define sync_global_to_guest(vm, g) ({				\
958 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
959 	memcpy(_p, &(g), sizeof(g));				\
960 })
961 
962 #define sync_global_from_guest(vm, g) ({			\
963 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
964 	memcpy(&(g), _p, sizeof(g));				\
965 })
966 
967 /*
968  * Write a global value, but only in the VM's (guest's) domain.  Primarily used
969  * for "globals" that hold per-VM values (VMs always duplicate code and global
970  * data into their own region of physical memory), but can be used anytime it's
971  * undesirable to change the host's copy of the global.
972  */
973 #define write_guest_global(vm, g, val) ({			\
974 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
975 	typeof(g) _val = val;					\
976 								\
977 	memcpy(_p, &(_val), sizeof(g));				\
978 })
979 
980 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
981 
982 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
983 		    uint8_t indent);
984 
985 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
986 			     uint8_t indent)
987 {
988 	vcpu_arch_dump(stream, vcpu, indent);
989 }
990 
991 /*
992  * Adds a vCPU with reasonable defaults (e.g. a stack)
993  *
994  * Input Args:
995  *   vm - Virtual Machine
996  *   vcpu_id - The id of the VCPU to add to the VM.
997  */
998 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
999 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1000 
1001 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1002 					   void *guest_code)
1003 {
1004 	struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1005 
1006 	vcpu_arch_set_entry_point(vcpu, guest_code);
1007 
1008 	return vcpu;
1009 }
1010 
1011 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1012 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1013 
1014 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1015 						uint32_t vcpu_id)
1016 {
1017 	return vm_arch_vcpu_recreate(vm, vcpu_id);
1018 }
1019 
1020 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1021 
1022 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1023 
1024 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1025 {
1026 	virt_arch_pgd_alloc(vm);
1027 }
1028 
1029 /*
1030  * VM Virtual Page Map
1031  *
1032  * Input Args:
1033  *   vm - Virtual Machine
1034  *   vaddr - VM Virtual Address
1035  *   paddr - VM Physical Address
1036  *   memslot - Memory region slot for new virtual translation tables
1037  *
1038  * Output Args: None
1039  *
1040  * Return: None
1041  *
1042  * Within @vm, creates a virtual translation for the page starting
1043  * at @vaddr to the page starting at @paddr.
1044  */
1045 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1046 
1047 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1048 {
1049 	virt_arch_pg_map(vm, vaddr, paddr);
1050 }
1051 
1052 
1053 /*
1054  * Address Guest Virtual to Guest Physical
1055  *
1056  * Input Args:
1057  *   vm - Virtual Machine
1058  *   gva - VM virtual address
1059  *
1060  * Output Args: None
1061  *
1062  * Return:
1063  *   Equivalent VM physical address
1064  *
1065  * Returns the VM physical address of the translated VM virtual
1066  * address given by @gva.
1067  */
1068 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1069 
1070 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1071 {
1072 	return addr_arch_gva2gpa(vm, gva);
1073 }
1074 
1075 /*
1076  * Virtual Translation Tables Dump
1077  *
1078  * Input Args:
1079  *   stream - Output FILE stream
1080  *   vm     - Virtual Machine
1081  *   indent - Left margin indent amount
1082  *
1083  * Output Args: None
1084  *
1085  * Return: None
1086  *
1087  * Dumps to the FILE stream given by @stream, the contents of all the
1088  * virtual translation tables for the VM given by @vm.
1089  */
1090 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1091 
1092 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1093 {
1094 	virt_arch_dump(stream, vm, indent);
1095 }
1096 
1097 
1098 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1099 {
1100 	return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1101 }
1102 
1103 /*
1104  * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1105  * to allow for arch-specific setup that is common to all tests, e.g. computing
1106  * the default guest "mode".
1107  */
1108 void kvm_selftest_arch_init(void);
1109 
1110 void kvm_arch_vm_post_create(struct kvm_vm *vm);
1111 
1112 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1113 
1114 uint32_t guest_get_vcpuid(void);
1115 
1116 #endif /* SELFTEST_KVM_UTIL_H */
1117