1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM dirty page logging test 4 * 5 * Copyright (C) 2018, Red Hat, Inc. 6 */ 7 #include <stdio.h> 8 #include <stdlib.h> 9 #include <pthread.h> 10 #include <semaphore.h> 11 #include <sys/types.h> 12 #include <signal.h> 13 #include <errno.h> 14 #include <linux/bitmap.h> 15 #include <linux/bitops.h> 16 #include <linux/atomic.h> 17 #include <asm/barrier.h> 18 19 #include "kvm_util.h" 20 #include "test_util.h" 21 #include "guest_modes.h" 22 #include "processor.h" 23 #include "ucall_common.h" 24 25 #define DIRTY_MEM_BITS 30 /* 1G */ 26 #define PAGE_SHIFT_4K 12 27 28 /* The memory slot index to track dirty pages */ 29 #define TEST_MEM_SLOT_INDEX 1 30 31 /* Default guest test virtual memory offset */ 32 #define DEFAULT_GUEST_TEST_MEM 0xc0000000 33 34 /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */ 35 #define TEST_HOST_LOOP_N 32UL 36 37 /* Interval for each host loop (ms) */ 38 #define TEST_HOST_LOOP_INTERVAL 10UL 39 40 /* 41 * Ensure the vCPU is able to perform a reasonable number of writes in each 42 * iteration to provide a lower bound on coverage. 43 */ 44 #define TEST_MIN_WRITES_PER_ITERATION 0x100 45 46 /* Dirty bitmaps are always little endian, so we need to swap on big endian */ 47 #if defined(__s390x__) 48 # define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) 49 # define test_bit_le(nr, addr) \ 50 test_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 51 # define __set_bit_le(nr, addr) \ 52 __set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 53 # define __clear_bit_le(nr, addr) \ 54 __clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 55 # define __test_and_set_bit_le(nr, addr) \ 56 __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 57 # define __test_and_clear_bit_le(nr, addr) \ 58 __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) 59 #else 60 # define test_bit_le test_bit 61 # define __set_bit_le __set_bit 62 # define __clear_bit_le __clear_bit 63 # define __test_and_set_bit_le __test_and_set_bit 64 # define __test_and_clear_bit_le __test_and_clear_bit 65 #endif 66 67 #define TEST_DIRTY_RING_COUNT 65536 68 69 #define SIG_IPI SIGUSR1 70 71 /* 72 * Guest/Host shared variables. Ensure addr_gva2hva() and/or 73 * sync_global_to/from_guest() are used when accessing from 74 * the host. READ/WRITE_ONCE() should also be used with anything 75 * that may change. 76 */ 77 static uint64_t host_page_size; 78 static uint64_t guest_page_size; 79 static uint64_t guest_num_pages; 80 static uint64_t iteration; 81 static uint64_t nr_writes; 82 static bool vcpu_stop; 83 84 /* 85 * Guest physical memory offset of the testing memory slot. 86 * This will be set to the topmost valid physical address minus 87 * the test memory size. 88 */ 89 static uint64_t guest_test_phys_mem; 90 91 /* 92 * Guest virtual memory offset of the testing memory slot. 93 * Must not conflict with identity mapped test code. 94 */ 95 static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; 96 97 /* 98 * Continuously write to the first 8 bytes of a random pages within 99 * the testing memory region. 100 */ 101 static void guest_code(void) 102 { 103 uint64_t addr; 104 105 #ifdef __s390x__ 106 uint64_t i; 107 108 /* 109 * On s390x, all pages of a 1M segment are initially marked as dirty 110 * when a page of the segment is written to for the very first time. 111 * To compensate this specialty in this test, we need to touch all 112 * pages during the first iteration. 113 */ 114 for (i = 0; i < guest_num_pages; i++) { 115 addr = guest_test_virt_mem + i * guest_page_size; 116 vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); 117 nr_writes++; 118 } 119 #endif 120 121 while (true) { 122 while (!READ_ONCE(vcpu_stop)) { 123 addr = guest_test_virt_mem; 124 addr += (guest_random_u64(&guest_rng) % guest_num_pages) 125 * guest_page_size; 126 addr = align_down(addr, host_page_size); 127 128 vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); 129 nr_writes++; 130 } 131 132 GUEST_SYNC(1); 133 } 134 } 135 136 /* Host variables */ 137 static bool host_quit; 138 139 /* Points to the test VM memory region on which we track dirty logs */ 140 static void *host_test_mem; 141 static uint64_t host_num_pages; 142 143 /* For statistics only */ 144 static uint64_t host_dirty_count; 145 static uint64_t host_clear_count; 146 147 /* Whether dirty ring reset is requested, or finished */ 148 static sem_t sem_vcpu_stop; 149 static sem_t sem_vcpu_cont; 150 151 /* 152 * This is updated by the vcpu thread to tell the host whether it's a 153 * ring-full event. It should only be read until a sem_wait() of 154 * sem_vcpu_stop and before vcpu continues to run. 155 */ 156 static bool dirty_ring_vcpu_ring_full; 157 158 /* 159 * This is only used for verifying the dirty pages. Dirty ring has a very 160 * tricky case when the ring just got full, kvm will do userspace exit due to 161 * ring full. When that happens, the very last PFN is set but actually the 162 * data is not changed (the guest WRITE is not really applied yet), because 163 * we found that the dirty ring is full, refused to continue the vcpu, and 164 * recorded the dirty gfn with the old contents. 165 * 166 * For this specific case, it's safe to skip checking this pfn for this 167 * bit, because it's a redundant bit, and when the write happens later the bit 168 * will be set again. We use this variable to always keep track of the latest 169 * dirty gfn we've collected, so that if a mismatch of data found later in the 170 * verifying process, we let it pass. 171 */ 172 static uint64_t dirty_ring_last_page = -1ULL; 173 174 /* 175 * In addition to the above, it is possible (especially if this 176 * test is run nested) for the above scenario to repeat multiple times: 177 * 178 * The following can happen: 179 * 180 * - L1 vCPU: Memory write is logged to PML but not committed. 181 * 182 * - L1 test thread: Ignores the write because its last dirty ring entry 183 * Resets the dirty ring which: 184 * - Resets the A/D bits in EPT 185 * - Issues tlb flush (invept), which is intercepted by L0 186 * 187 * - L0: frees the whole nested ept mmu root as the response to invept, 188 * and thus ensures that when memory write is retried, it will fault again 189 * 190 * - L1 vCPU: Same memory write is logged to the PML but not committed again. 191 * 192 * - L1 test thread: Ignores the write because its last dirty ring entry (again) 193 * Resets the dirty ring which: 194 * - Resets the A/D bits in EPT (again) 195 * - Issues tlb flush (again) which is intercepted by L0 196 * 197 * ... 198 * 199 * N times 200 * 201 * - L1 vCPU: Memory write is logged in the PML and then committed. 202 * Lots of other memory writes are logged and committed. 203 * ... 204 * 205 * - L1 test thread: Sees the memory write along with other memory writes 206 * in the dirty ring, and since the write is usually not 207 * the last entry in the dirty-ring and has a very outdated 208 * iteration, the test fails. 209 * 210 * 211 * Note that this is only possible when the write was the last log entry 212 * write during iteration N-1, thus remember last iteration last log entry 213 * and also don't fail when it is reported in the next iteration, together with 214 * an outdated iteration count. 215 */ 216 static uint64_t dirty_ring_prev_iteration_last_page; 217 218 enum log_mode_t { 219 /* Only use KVM_GET_DIRTY_LOG for logging */ 220 LOG_MODE_DIRTY_LOG = 0, 221 222 /* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */ 223 LOG_MODE_CLEAR_LOG = 1, 224 225 /* Use dirty ring for logging */ 226 LOG_MODE_DIRTY_RING = 2, 227 228 LOG_MODE_NUM, 229 230 /* Run all supported modes */ 231 LOG_MODE_ALL = LOG_MODE_NUM, 232 }; 233 234 /* Mode of logging to test. Default is to run all supported modes */ 235 static enum log_mode_t host_log_mode_option = LOG_MODE_ALL; 236 /* Logging mode for current run */ 237 static enum log_mode_t host_log_mode; 238 static pthread_t vcpu_thread; 239 static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT; 240 241 static bool clear_log_supported(void) 242 { 243 return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 244 } 245 246 static void clear_log_create_vm_done(struct kvm_vm *vm) 247 { 248 u64 manual_caps; 249 250 manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 251 TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!"); 252 manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 253 KVM_DIRTY_LOG_INITIALLY_SET); 254 vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps); 255 } 256 257 static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 258 void *bitmap, uint32_t num_pages, 259 uint32_t *unused) 260 { 261 kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); 262 } 263 264 static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 265 void *bitmap, uint32_t num_pages, 266 uint32_t *unused) 267 { 268 kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); 269 kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages); 270 } 271 272 /* Should only be called after a GUEST_SYNC */ 273 static void vcpu_handle_sync_stop(void) 274 { 275 if (READ_ONCE(vcpu_stop)) { 276 sem_post(&sem_vcpu_stop); 277 sem_wait(&sem_vcpu_cont); 278 } 279 } 280 281 static void default_after_vcpu_run(struct kvm_vcpu *vcpu) 282 { 283 struct kvm_run *run = vcpu->run; 284 285 TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, 286 "Invalid guest sync status: exit_reason=%s", 287 exit_reason_str(run->exit_reason)); 288 289 vcpu_handle_sync_stop(); 290 } 291 292 static bool dirty_ring_supported(void) 293 { 294 return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) || 295 kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL)); 296 } 297 298 static void dirty_ring_create_vm_done(struct kvm_vm *vm) 299 { 300 uint64_t pages; 301 uint32_t limit; 302 303 /* 304 * We rely on vcpu exit due to full dirty ring state. Adjust 305 * the ring buffer size to ensure we're able to reach the 306 * full dirty ring state. 307 */ 308 pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; 309 pages = vm_adjust_num_guest_pages(vm->mode, pages); 310 if (vm->page_size < getpagesize()) 311 pages = vm_num_host_pages(vm->mode, pages); 312 313 limit = 1 << (31 - __builtin_clz(pages)); 314 test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count)); 315 test_dirty_ring_count = min(limit, test_dirty_ring_count); 316 pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count); 317 318 /* 319 * Switch to dirty ring mode after VM creation but before any 320 * of the vcpu creation. 321 */ 322 vm_enable_dirty_ring(vm, test_dirty_ring_count * 323 sizeof(struct kvm_dirty_gfn)); 324 } 325 326 static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 327 { 328 return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 329 } 330 331 static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 332 { 333 smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 334 } 335 336 static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns, 337 int slot, void *bitmap, 338 uint32_t num_pages, uint32_t *fetch_index) 339 { 340 struct kvm_dirty_gfn *cur; 341 uint32_t count = 0; 342 343 while (true) { 344 cur = &dirty_gfns[*fetch_index % test_dirty_ring_count]; 345 if (!dirty_gfn_is_dirtied(cur)) 346 break; 347 TEST_ASSERT(cur->slot == slot, "Slot number didn't match: " 348 "%u != %u", cur->slot, slot); 349 TEST_ASSERT(cur->offset < num_pages, "Offset overflow: " 350 "0x%llx >= 0x%x", cur->offset, num_pages); 351 __set_bit_le(cur->offset, bitmap); 352 dirty_ring_last_page = cur->offset; 353 dirty_gfn_set_collected(cur); 354 (*fetch_index)++; 355 count++; 356 } 357 358 return count; 359 } 360 361 static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 362 void *bitmap, uint32_t num_pages, 363 uint32_t *ring_buf_idx) 364 { 365 uint32_t count, cleared; 366 367 /* Only have one vcpu */ 368 count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu), 369 slot, bitmap, num_pages, 370 ring_buf_idx); 371 372 cleared = kvm_vm_reset_dirty_ring(vcpu->vm); 373 374 /* 375 * Cleared pages should be the same as collected, as KVM is supposed to 376 * clear only the entries that have been harvested. 377 */ 378 TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch " 379 "with collected (%u)", cleared, count); 380 } 381 382 static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu) 383 { 384 struct kvm_run *run = vcpu->run; 385 386 /* A ucall-sync or ring-full event is allowed */ 387 if (get_ucall(vcpu, NULL) == UCALL_SYNC) { 388 vcpu_handle_sync_stop(); 389 } else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL) { 390 WRITE_ONCE(dirty_ring_vcpu_ring_full, true); 391 vcpu_handle_sync_stop(); 392 } else { 393 TEST_ASSERT(false, "Invalid guest sync status: " 394 "exit_reason=%s", 395 exit_reason_str(run->exit_reason)); 396 } 397 } 398 399 struct log_mode { 400 const char *name; 401 /* Return true if this mode is supported, otherwise false */ 402 bool (*supported)(void); 403 /* Hook when the vm creation is done (before vcpu creation) */ 404 void (*create_vm_done)(struct kvm_vm *vm); 405 /* Hook to collect the dirty pages into the bitmap provided */ 406 void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot, 407 void *bitmap, uint32_t num_pages, 408 uint32_t *ring_buf_idx); 409 /* Hook to call when after each vcpu run */ 410 void (*after_vcpu_run)(struct kvm_vcpu *vcpu); 411 } log_modes[LOG_MODE_NUM] = { 412 { 413 .name = "dirty-log", 414 .collect_dirty_pages = dirty_log_collect_dirty_pages, 415 .after_vcpu_run = default_after_vcpu_run, 416 }, 417 { 418 .name = "clear-log", 419 .supported = clear_log_supported, 420 .create_vm_done = clear_log_create_vm_done, 421 .collect_dirty_pages = clear_log_collect_dirty_pages, 422 .after_vcpu_run = default_after_vcpu_run, 423 }, 424 { 425 .name = "dirty-ring", 426 .supported = dirty_ring_supported, 427 .create_vm_done = dirty_ring_create_vm_done, 428 .collect_dirty_pages = dirty_ring_collect_dirty_pages, 429 .after_vcpu_run = dirty_ring_after_vcpu_run, 430 }, 431 }; 432 433 static void log_modes_dump(void) 434 { 435 int i; 436 437 printf("all"); 438 for (i = 0; i < LOG_MODE_NUM; i++) 439 printf(", %s", log_modes[i].name); 440 printf("\n"); 441 } 442 443 static bool log_mode_supported(void) 444 { 445 struct log_mode *mode = &log_modes[host_log_mode]; 446 447 if (mode->supported) 448 return mode->supported(); 449 450 return true; 451 } 452 453 static void log_mode_create_vm_done(struct kvm_vm *vm) 454 { 455 struct log_mode *mode = &log_modes[host_log_mode]; 456 457 if (mode->create_vm_done) 458 mode->create_vm_done(vm); 459 } 460 461 static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, 462 void *bitmap, uint32_t num_pages, 463 uint32_t *ring_buf_idx) 464 { 465 struct log_mode *mode = &log_modes[host_log_mode]; 466 467 TEST_ASSERT(mode->collect_dirty_pages != NULL, 468 "collect_dirty_pages() is required for any log mode!"); 469 mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx); 470 } 471 472 static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu) 473 { 474 struct log_mode *mode = &log_modes[host_log_mode]; 475 476 if (mode->after_vcpu_run) 477 mode->after_vcpu_run(vcpu); 478 } 479 480 static void *vcpu_worker(void *data) 481 { 482 struct kvm_vcpu *vcpu = data; 483 484 sem_wait(&sem_vcpu_cont); 485 486 while (!READ_ONCE(host_quit)) { 487 /* Let the guest dirty the random pages */ 488 vcpu_run(vcpu); 489 log_mode_after_vcpu_run(vcpu); 490 } 491 492 return NULL; 493 } 494 495 static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long **bmap) 496 { 497 uint64_t page, nr_dirty_pages = 0, nr_clean_pages = 0; 498 uint64_t step = vm_num_host_pages(mode, 1); 499 500 for (page = 0; page < host_num_pages; page += step) { 501 uint64_t val = *(uint64_t *)(host_test_mem + page * host_page_size); 502 bool bmap0_dirty = __test_and_clear_bit_le(page, bmap[0]); 503 504 /* 505 * Ensure both bitmaps are cleared, as a page can be written 506 * multiple times per iteration, i.e. can show up in both 507 * bitmaps, and the dirty ring is additive, i.e. doesn't purge 508 * bitmap entries from previous collections. 509 */ 510 if (__test_and_clear_bit_le(page, bmap[1]) || bmap0_dirty) { 511 nr_dirty_pages++; 512 513 /* 514 * If the page is dirty, the value written to memory 515 * should be the current iteration number. 516 */ 517 if (val == iteration) 518 continue; 519 520 if (host_log_mode == LOG_MODE_DIRTY_RING) { 521 /* 522 * The last page in the ring from previous 523 * iteration can be written with the value 524 * from the previous iteration, as the value to 525 * be written may be cached in a CPU register. 526 */ 527 if (page == dirty_ring_prev_iteration_last_page && 528 val == iteration - 1) 529 continue; 530 531 /* 532 * Any value from a previous iteration is legal 533 * for the last entry, as the write may not yet 534 * have retired, i.e. the page may hold whatever 535 * it had before this iteration started. 536 */ 537 if (page == dirty_ring_last_page && 538 val < iteration) 539 continue; 540 } else if (!val && iteration == 1 && bmap0_dirty) { 541 /* 542 * When testing get+clear, the dirty bitmap 543 * starts with all bits set, and so the first 544 * iteration can observe a "dirty" page that 545 * was never written, but only in the first 546 * bitmap (collecting the bitmap also clears 547 * all dirty pages). 548 */ 549 continue; 550 } 551 552 TEST_FAIL("Dirty page %lu value (%lu) != iteration (%lu) " 553 "(last = %lu, prev_last = %lu)", 554 page, val, iteration, dirty_ring_last_page, 555 dirty_ring_prev_iteration_last_page); 556 } else { 557 nr_clean_pages++; 558 /* 559 * If cleared, the value written can be any 560 * value smaller than the iteration number. 561 */ 562 TEST_ASSERT(val < iteration, 563 "Clear page %lu value (%lu) >= iteration (%lu) " 564 "(last = %lu, prev_last = %lu)", 565 page, val, iteration, dirty_ring_last_page, 566 dirty_ring_prev_iteration_last_page); 567 } 568 } 569 570 pr_info("Iteration %2ld: dirty: %-6lu clean: %-6lu writes: %-6lu\n", 571 iteration, nr_dirty_pages, nr_clean_pages, nr_writes); 572 573 host_dirty_count += nr_dirty_pages; 574 host_clear_count += nr_clean_pages; 575 } 576 577 static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu, 578 uint64_t extra_mem_pages, void *guest_code) 579 { 580 struct kvm_vm *vm; 581 582 pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); 583 584 vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages); 585 586 log_mode_create_vm_done(vm); 587 *vcpu = vm_vcpu_add(vm, 0, guest_code); 588 return vm; 589 } 590 591 struct test_params { 592 unsigned long iterations; 593 unsigned long interval; 594 uint64_t phys_offset; 595 }; 596 597 static void run_test(enum vm_guest_mode mode, void *arg) 598 { 599 struct test_params *p = arg; 600 struct kvm_vcpu *vcpu; 601 struct kvm_vm *vm; 602 unsigned long *bmap[2]; 603 uint32_t ring_buf_idx = 0; 604 int sem_val; 605 606 if (!log_mode_supported()) { 607 print_skip("Log mode '%s' not supported", 608 log_modes[host_log_mode].name); 609 return; 610 } 611 612 /* 613 * We reserve page table for 2 times of extra dirty mem which 614 * will definitely cover the original (1G+) test range. Here 615 * we do the calculation with 4K page size which is the 616 * smallest so the page number will be enough for all archs 617 * (e.g., 64K page size guest will need even less memory for 618 * page tables). 619 */ 620 vm = create_vm(mode, &vcpu, 621 2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code); 622 623 guest_page_size = vm->page_size; 624 /* 625 * A little more than 1G of guest page sized pages. Cover the 626 * case where the size is not aligned to 64 pages. 627 */ 628 guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; 629 guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); 630 631 host_page_size = getpagesize(); 632 host_num_pages = vm_num_host_pages(mode, guest_num_pages); 633 634 if (!p->phys_offset) { 635 guest_test_phys_mem = (vm->max_gfn - guest_num_pages) * 636 guest_page_size; 637 guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size); 638 } else { 639 guest_test_phys_mem = p->phys_offset; 640 } 641 642 #ifdef __s390x__ 643 /* Align to 1M (segment size) */ 644 guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20); 645 646 /* 647 * The workaround in guest_code() to write all pages prior to the first 648 * iteration isn't compatible with the dirty ring, as the dirty ring 649 * support relies on the vCPU to actually stop when vcpu_stop is set so 650 * that the vCPU doesn't hang waiting for the dirty ring to be emptied. 651 */ 652 TEST_ASSERT(host_log_mode != LOG_MODE_DIRTY_RING, 653 "Test needs to be updated to support s390 dirty ring"); 654 #endif 655 656 pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); 657 658 bmap[0] = bitmap_zalloc(host_num_pages); 659 bmap[1] = bitmap_zalloc(host_num_pages); 660 661 /* Add an extra memory slot for testing dirty logging */ 662 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 663 guest_test_phys_mem, 664 TEST_MEM_SLOT_INDEX, 665 guest_num_pages, 666 KVM_MEM_LOG_DIRTY_PAGES); 667 668 /* Do mapping for the dirty track memory slot */ 669 virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); 670 671 /* Cache the HVA pointer of the region */ 672 host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); 673 674 /* Export the shared variables to the guest */ 675 sync_global_to_guest(vm, host_page_size); 676 sync_global_to_guest(vm, guest_page_size); 677 sync_global_to_guest(vm, guest_test_virt_mem); 678 sync_global_to_guest(vm, guest_num_pages); 679 680 host_dirty_count = 0; 681 host_clear_count = 0; 682 WRITE_ONCE(host_quit, false); 683 684 /* 685 * Ensure the previous iteration didn't leave a dangling semaphore, i.e. 686 * that the main task and vCPU worker were synchronized and completed 687 * verification of all iterations. 688 */ 689 sem_getvalue(&sem_vcpu_stop, &sem_val); 690 TEST_ASSERT_EQ(sem_val, 0); 691 sem_getvalue(&sem_vcpu_cont, &sem_val); 692 TEST_ASSERT_EQ(sem_val, 0); 693 694 TEST_ASSERT_EQ(vcpu_stop, false); 695 696 pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu); 697 698 for (iteration = 1; iteration <= p->iterations; iteration++) { 699 unsigned long i; 700 701 sync_global_to_guest(vm, iteration); 702 703 WRITE_ONCE(nr_writes, 0); 704 sync_global_to_guest(vm, nr_writes); 705 706 dirty_ring_prev_iteration_last_page = dirty_ring_last_page; 707 WRITE_ONCE(dirty_ring_vcpu_ring_full, false); 708 709 sem_post(&sem_vcpu_cont); 710 711 /* 712 * Let the vCPU run beyond the configured interval until it has 713 * performed the minimum number of writes. This verifies the 714 * guest is making forward progress, e.g. isn't stuck because 715 * of a KVM bug, and puts a firm floor on test coverage. 716 */ 717 for (i = 0; i < p->interval || nr_writes < TEST_MIN_WRITES_PER_ITERATION; i++) { 718 /* 719 * Sleep in 1ms chunks to keep the interval math simple 720 * and so that the test doesn't run too far beyond the 721 * specified interval. 722 */ 723 usleep(1000); 724 725 sync_global_from_guest(vm, nr_writes); 726 727 /* 728 * Reap dirty pages while the guest is running so that 729 * dirty ring full events are resolved, i.e. so that a 730 * larger interval doesn't always end up with a vCPU 731 * that's effectively blocked. Collecting while the 732 * guest is running also verifies KVM doesn't lose any 733 * state. 734 * 735 * For bitmap modes, KVM overwrites the entire bitmap, 736 * i.e. collecting the bitmaps is destructive. Collect 737 * the bitmap only on the first pass, otherwise this 738 * test would lose track of dirty pages. 739 */ 740 if (i && host_log_mode != LOG_MODE_DIRTY_RING) 741 continue; 742 743 /* 744 * For the dirty ring, empty the ring on subsequent 745 * passes only if the ring was filled at least once, 746 * to verify KVM's handling of a full ring (emptying 747 * the ring on every pass would make it unlikely the 748 * vCPU would ever fill the fing). 749 */ 750 if (i && !READ_ONCE(dirty_ring_vcpu_ring_full)) 751 continue; 752 753 log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, 754 bmap[0], host_num_pages, 755 &ring_buf_idx); 756 } 757 758 /* 759 * Stop the vCPU prior to collecting and verifying the dirty 760 * log. If the vCPU is allowed to run during collection, then 761 * pages that are written during this iteration may be missed, 762 * i.e. collected in the next iteration. And if the vCPU is 763 * writing memory during verification, pages that this thread 764 * sees as clean may be written with this iteration's value. 765 */ 766 WRITE_ONCE(vcpu_stop, true); 767 sync_global_to_guest(vm, vcpu_stop); 768 sem_wait(&sem_vcpu_stop); 769 770 /* 771 * Clear vcpu_stop after the vCPU thread has acknowledge the 772 * stop request and is waiting, i.e. is definitely not running! 773 */ 774 WRITE_ONCE(vcpu_stop, false); 775 sync_global_to_guest(vm, vcpu_stop); 776 777 /* 778 * Sync the number of writes performed before verification, the 779 * info will be printed along with the dirty/clean page counts. 780 */ 781 sync_global_from_guest(vm, nr_writes); 782 783 /* 784 * NOTE: for dirty ring, it's possible that we didn't stop at 785 * GUEST_SYNC but instead we stopped because ring is full; 786 * that's okay too because ring full means we're only missing 787 * the flush of the last page, and since we handle the last 788 * page specially verification will succeed anyway. 789 */ 790 log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, 791 bmap[1], host_num_pages, 792 &ring_buf_idx); 793 vm_dirty_log_verify(mode, bmap); 794 } 795 796 WRITE_ONCE(host_quit, true); 797 sem_post(&sem_vcpu_cont); 798 799 pthread_join(vcpu_thread, NULL); 800 801 pr_info("Total bits checked: dirty (%lu), clear (%lu)\n", 802 host_dirty_count, host_clear_count); 803 804 free(bmap[0]); 805 free(bmap[1]); 806 kvm_vm_free(vm); 807 } 808 809 static void help(char *name) 810 { 811 puts(""); 812 printf("usage: %s [-h] [-i iterations] [-I interval] " 813 "[-p offset] [-m mode]\n", name); 814 puts(""); 815 printf(" -c: hint to dirty ring size, in number of entries\n"); 816 printf(" (only useful for dirty-ring test; default: %"PRIu32")\n", 817 TEST_DIRTY_RING_COUNT); 818 printf(" -i: specify iteration counts (default: %"PRIu64")\n", 819 TEST_HOST_LOOP_N); 820 printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n", 821 TEST_HOST_LOOP_INTERVAL); 822 printf(" -p: specify guest physical test memory offset\n" 823 " Warning: a low offset can conflict with the loaded test code.\n"); 824 printf(" -M: specify the host logging mode " 825 "(default: run all log modes). Supported modes: \n\t"); 826 log_modes_dump(); 827 guest_modes_help(); 828 puts(""); 829 exit(0); 830 } 831 832 int main(int argc, char *argv[]) 833 { 834 struct test_params p = { 835 .iterations = TEST_HOST_LOOP_N, 836 .interval = TEST_HOST_LOOP_INTERVAL, 837 }; 838 int opt, i; 839 840 sem_init(&sem_vcpu_stop, 0, 0); 841 sem_init(&sem_vcpu_cont, 0, 0); 842 843 guest_modes_append_default(); 844 845 while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) { 846 switch (opt) { 847 case 'c': 848 test_dirty_ring_count = strtol(optarg, NULL, 10); 849 break; 850 case 'i': 851 p.iterations = strtol(optarg, NULL, 10); 852 break; 853 case 'I': 854 p.interval = strtol(optarg, NULL, 10); 855 break; 856 case 'p': 857 p.phys_offset = strtoull(optarg, NULL, 0); 858 break; 859 case 'm': 860 guest_modes_cmdline(optarg); 861 break; 862 case 'M': 863 if (!strcmp(optarg, "all")) { 864 host_log_mode_option = LOG_MODE_ALL; 865 break; 866 } 867 for (i = 0; i < LOG_MODE_NUM; i++) { 868 if (!strcmp(optarg, log_modes[i].name)) { 869 pr_info("Setting log mode to: '%s'\n", 870 optarg); 871 host_log_mode_option = i; 872 break; 873 } 874 } 875 if (i == LOG_MODE_NUM) { 876 printf("Log mode '%s' invalid. Please choose " 877 "from: ", optarg); 878 log_modes_dump(); 879 exit(1); 880 } 881 break; 882 case 'h': 883 default: 884 help(argv[0]); 885 break; 886 } 887 } 888 889 TEST_ASSERT(p.iterations > 0, "Iterations must be greater than zero"); 890 TEST_ASSERT(p.interval > 0, "Interval must be greater than zero"); 891 892 pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n", 893 p.iterations, p.interval); 894 895 if (host_log_mode_option == LOG_MODE_ALL) { 896 /* Run each log mode */ 897 for (i = 0; i < LOG_MODE_NUM; i++) { 898 pr_info("Testing Log Mode '%s'\n", log_modes[i].name); 899 host_log_mode = i; 900 for_each_guest_mode(run_test, &p); 901 } 902 } else { 903 host_log_mode = host_log_mode_option; 904 for_each_guest_mode(run_test, &p); 905 } 906 907 return 0; 908 } 909