1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * set_id_regs - Test for setting ID register from usersapce. 4 * 5 * Copyright (c) 2023 Google LLC. 6 * 7 * 8 * Test that KVM supports setting ID registers from userspace and handles the 9 * feature set correctly. 10 */ 11 12 #include <stdint.h> 13 #include "kvm_util.h" 14 #include "processor.h" 15 #include "test_util.h" 16 #include <linux/bitfield.h> 17 18 enum ftr_type { 19 FTR_EXACT, /* Use a predefined safe value */ 20 FTR_LOWER_SAFE, /* Smaller value is safe */ 21 FTR_HIGHER_SAFE, /* Bigger value is safe */ 22 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ 23 FTR_END, /* Mark the last ftr bits */ 24 }; 25 26 #define FTR_SIGNED true /* Value should be treated as signed */ 27 #define FTR_UNSIGNED false /* Value should be treated as unsigned */ 28 29 struct reg_ftr_bits { 30 char *name; 31 bool sign; 32 enum ftr_type type; 33 uint8_t shift; 34 uint64_t mask; 35 /* 36 * For FTR_EXACT, safe_val is used as the exact safe value. 37 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value. 38 */ 39 int64_t safe_val; 40 }; 41 42 struct test_feature_reg { 43 uint32_t reg; 44 const struct reg_ftr_bits *ftr_bits; 45 }; 46 47 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL) \ 48 { \ 49 .name = #NAME, \ 50 .sign = SIGNED, \ 51 .type = TYPE, \ 52 .shift = SHIFT, \ 53 .mask = MASK, \ 54 .safe_val = SAFE_VAL, \ 55 } 56 57 #define REG_FTR_BITS(type, reg, field, safe_val) \ 58 __REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \ 59 reg##_##field##_MASK, safe_val) 60 61 #define S_REG_FTR_BITS(type, reg, field, safe_val) \ 62 __REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \ 63 reg##_##field##_MASK, safe_val) 64 65 #define REG_FTR_END \ 66 { \ 67 .type = FTR_END, \ 68 } 69 70 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = { 71 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0), 72 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0), 73 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0), 74 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP), 75 REG_FTR_END, 76 }; 77 78 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = { 79 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3), 80 REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8), 81 REG_FTR_END, 82 }; 83 84 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = { 85 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0), 86 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0), 87 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0), 88 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0), 89 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0), 90 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0), 91 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0), 92 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0), 93 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0), 94 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0), 95 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0), 96 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0), 97 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0), 98 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0), 99 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0), 100 REG_FTR_END, 101 }; 102 103 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = { 104 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0), 105 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0), 106 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0), 107 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0), 108 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0), 109 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0), 110 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0), 111 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0), 112 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0), 113 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0), 114 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0), 115 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0), 116 REG_FTR_END, 117 }; 118 119 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = { 120 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0), 121 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0), 122 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0), 123 REG_FTR_END, 124 }; 125 126 static const struct reg_ftr_bits ftr_id_aa64isar3_el1[] = { 127 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FPRCVT, 0), 128 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, LSFE, 0), 129 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FAMINMAX, 0), 130 REG_FTR_END, 131 }; 132 133 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = { 134 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0), 135 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0), 136 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0), 137 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0), 138 REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0), 139 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1), 140 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1), 141 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1), 142 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1), 143 REG_FTR_END, 144 }; 145 146 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = { 147 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0), 148 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0), 149 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI), 150 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0), 151 REG_FTR_END, 152 }; 153 154 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = { 155 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0), 156 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0), 157 REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1), 158 REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1), 159 REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1), 160 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0), 161 S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0), 162 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0), 163 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0), 164 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0), 165 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0), 166 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0), 167 REG_FTR_END, 168 }; 169 170 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = { 171 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0), 172 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0), 173 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HCX, 0), 174 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0), 175 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TWED, 0), 176 REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0), 177 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0), 178 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0), 179 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0), 180 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0), 181 REG_FTR_END, 182 }; 183 184 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = { 185 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0), 186 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0), 187 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0), 188 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0), 189 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0), 190 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0), 191 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0), 192 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0), 193 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0), 194 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0), 195 REG_FTR_END, 196 }; 197 198 static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = { 199 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0), 200 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0), 201 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0), 202 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0), 203 REG_FTR_END, 204 }; 205 206 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = { 207 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0), 208 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0), 209 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0), 210 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0), 211 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0), 212 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0), 213 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0), 214 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0), 215 REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0), 216 REG_FTR_END, 217 }; 218 219 #define TEST_REG(id, table) \ 220 { \ 221 .reg = id, \ 222 .ftr_bits = &((table)[0]), \ 223 } 224 225 static struct test_feature_reg test_regs[] = { 226 TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1), 227 TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1), 228 TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1), 229 TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1), 230 TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1), 231 TEST_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3_el1), 232 TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1), 233 TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1), 234 TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1), 235 TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1), 236 TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1), 237 TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1), 238 TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1), 239 }; 240 241 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0); 242 243 static void guest_code(void) 244 { 245 GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1); 246 GUEST_REG_SYNC(SYS_ID_DFR0_EL1); 247 GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1); 248 GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1); 249 GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1); 250 GUEST_REG_SYNC(SYS_ID_AA64ISAR3_EL1); 251 GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1); 252 GUEST_REG_SYNC(SYS_ID_AA64PFR1_EL1); 253 GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1); 254 GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1); 255 GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1); 256 GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1); 257 GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1); 258 GUEST_REG_SYNC(SYS_MPIDR_EL1); 259 GUEST_REG_SYNC(SYS_CLIDR_EL1); 260 GUEST_REG_SYNC(SYS_CTR_EL0); 261 GUEST_REG_SYNC(SYS_MIDR_EL1); 262 GUEST_REG_SYNC(SYS_REVIDR_EL1); 263 GUEST_REG_SYNC(SYS_AIDR_EL1); 264 265 GUEST_DONE(); 266 } 267 268 /* Return a safe value to a given ftr_bits an ftr value */ 269 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) 270 { 271 uint64_t ftr_max = ftr_bits->mask >> ftr_bits->shift; 272 273 TEST_ASSERT(ftr_max > 1, "This test doesn't support single bit features"); 274 275 if (ftr_bits->sign == FTR_UNSIGNED) { 276 switch (ftr_bits->type) { 277 case FTR_EXACT: 278 ftr = ftr_bits->safe_val; 279 break; 280 case FTR_LOWER_SAFE: 281 if (ftr > ftr_bits->safe_val) 282 ftr--; 283 break; 284 case FTR_HIGHER_SAFE: 285 if (ftr < ftr_max) 286 ftr++; 287 break; 288 case FTR_HIGHER_OR_ZERO_SAFE: 289 if (ftr == ftr_max) 290 ftr = 0; 291 else if (ftr != 0) 292 ftr++; 293 break; 294 default: 295 break; 296 } 297 } else if (ftr != ftr_max) { 298 switch (ftr_bits->type) { 299 case FTR_EXACT: 300 ftr = ftr_bits->safe_val; 301 break; 302 case FTR_LOWER_SAFE: 303 if (ftr > ftr_bits->safe_val) 304 ftr--; 305 break; 306 case FTR_HIGHER_SAFE: 307 if (ftr < ftr_max - 1) 308 ftr++; 309 break; 310 case FTR_HIGHER_OR_ZERO_SAFE: 311 if (ftr != 0 && ftr != ftr_max - 1) 312 ftr++; 313 break; 314 default: 315 break; 316 } 317 } 318 319 return ftr; 320 } 321 322 /* Return an invalid value to a given ftr_bits an ftr value */ 323 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) 324 { 325 uint64_t ftr_max = ftr_bits->mask >> ftr_bits->shift; 326 327 TEST_ASSERT(ftr_max > 1, "This test doesn't support single bit features"); 328 329 if (ftr_bits->sign == FTR_UNSIGNED) { 330 switch (ftr_bits->type) { 331 case FTR_EXACT: 332 ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); 333 break; 334 case FTR_LOWER_SAFE: 335 ftr++; 336 break; 337 case FTR_HIGHER_SAFE: 338 ftr--; 339 break; 340 case FTR_HIGHER_OR_ZERO_SAFE: 341 if (ftr == 0) 342 ftr = ftr_max; 343 else 344 ftr--; 345 break; 346 default: 347 break; 348 } 349 } else if (ftr != ftr_max) { 350 switch (ftr_bits->type) { 351 case FTR_EXACT: 352 ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); 353 break; 354 case FTR_LOWER_SAFE: 355 ftr++; 356 break; 357 case FTR_HIGHER_SAFE: 358 ftr--; 359 break; 360 case FTR_HIGHER_OR_ZERO_SAFE: 361 if (ftr == 0) 362 ftr = ftr_max - 1; 363 else 364 ftr--; 365 break; 366 default: 367 break; 368 } 369 } else { 370 ftr = 0; 371 } 372 373 return ftr; 374 } 375 376 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg, 377 const struct reg_ftr_bits *ftr_bits) 378 { 379 uint8_t shift = ftr_bits->shift; 380 uint64_t mask = ftr_bits->mask; 381 uint64_t val, new_val, ftr; 382 383 val = vcpu_get_reg(vcpu, reg); 384 ftr = (val & mask) >> shift; 385 386 ftr = get_safe_value(ftr_bits, ftr); 387 388 ftr <<= shift; 389 val &= ~mask; 390 val |= ftr; 391 392 vcpu_set_reg(vcpu, reg, val); 393 new_val = vcpu_get_reg(vcpu, reg); 394 TEST_ASSERT_EQ(new_val, val); 395 396 return new_val; 397 } 398 399 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg, 400 const struct reg_ftr_bits *ftr_bits) 401 { 402 uint8_t shift = ftr_bits->shift; 403 uint64_t mask = ftr_bits->mask; 404 uint64_t val, old_val, ftr; 405 int r; 406 407 val = vcpu_get_reg(vcpu, reg); 408 ftr = (val & mask) >> shift; 409 410 ftr = get_invalid_value(ftr_bits, ftr); 411 412 old_val = val; 413 ftr <<= shift; 414 val &= ~mask; 415 val |= ftr; 416 417 r = __vcpu_set_reg(vcpu, reg, val); 418 TEST_ASSERT(r < 0 && errno == EINVAL, 419 "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno); 420 421 val = vcpu_get_reg(vcpu, reg); 422 TEST_ASSERT_EQ(val, old_val); 423 } 424 425 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE]; 426 427 #define encoding_to_range_idx(encoding) \ 428 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding), \ 429 sys_reg_CRn(encoding), sys_reg_CRm(encoding), \ 430 sys_reg_Op2(encoding)) 431 432 433 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only) 434 { 435 uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; 436 struct reg_mask_range range = { 437 .addr = (__u64)masks, 438 }; 439 int ret; 440 441 /* KVM should return error when reserved field is not zero */ 442 range.reserved[0] = 1; 443 ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); 444 TEST_ASSERT(ret, "KVM doesn't check invalid parameters."); 445 446 /* Get writable masks for feature ID registers */ 447 memset(range.reserved, 0, sizeof(range.reserved)); 448 vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); 449 450 for (int i = 0; i < ARRAY_SIZE(test_regs); i++) { 451 const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits; 452 uint32_t reg_id = test_regs[i].reg; 453 uint64_t reg = KVM_ARM64_SYS_REG(reg_id); 454 int idx; 455 456 /* Get the index to masks array for the idreg */ 457 idx = encoding_to_range_idx(reg_id); 458 459 for (int j = 0; ftr_bits[j].type != FTR_END; j++) { 460 /* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */ 461 if (aarch64_only && sys_reg_CRm(reg_id) < 4) { 462 ksft_test_result_skip("%s on AARCH64 only system\n", 463 ftr_bits[j].name); 464 continue; 465 } 466 467 /* Make sure the feature field is writable */ 468 TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask); 469 470 test_reg_set_fail(vcpu, reg, &ftr_bits[j]); 471 472 test_reg_vals[idx] = test_reg_set_success(vcpu, reg, 473 &ftr_bits[j]); 474 475 ksft_test_result_pass("%s\n", ftr_bits[j].name); 476 } 477 } 478 } 479 480 #define MPAM_IDREG_TEST 6 481 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu) 482 { 483 uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; 484 struct reg_mask_range range = { 485 .addr = (__u64)masks, 486 }; 487 uint64_t val; 488 int idx, err; 489 490 /* 491 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero, 492 * check that if it can be set to 1, (i.e. it is supported by the 493 * hardware), that it can't be set to other values. 494 */ 495 496 /* Get writable masks for feature ID registers */ 497 memset(range.reserved, 0, sizeof(range.reserved)); 498 vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); 499 500 /* Writeable? Nothing to test! */ 501 idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1); 502 if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) { 503 ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n"); 504 return; 505 } 506 507 /* Get the id register value */ 508 val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1)); 509 510 /* Try to set MPAM=0. This should always be possible. */ 511 val &= ~ID_AA64PFR0_EL1_MPAM_MASK; 512 val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0); 513 err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); 514 if (err) 515 ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n"); 516 else 517 ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n"); 518 519 /* Try to set MPAM=1 */ 520 val &= ~ID_AA64PFR0_EL1_MPAM_MASK; 521 val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1); 522 err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); 523 if (err) 524 ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n"); 525 else 526 ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n"); 527 528 /* Try to set MPAM=2 */ 529 val &= ~ID_AA64PFR0_EL1_MPAM_MASK; 530 val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2); 531 err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); 532 if (err) 533 ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n"); 534 else 535 ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n"); 536 537 /* And again for ID_AA64PFR1_EL1.MPAM_frac */ 538 idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1); 539 if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) { 540 ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n"); 541 return; 542 } 543 544 /* Get the id register value */ 545 val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1)); 546 547 /* Try to set MPAM_frac=0. This should always be possible. */ 548 val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; 549 val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0); 550 err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); 551 if (err) 552 ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n"); 553 else 554 ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n"); 555 556 /* Try to set MPAM_frac=1 */ 557 val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; 558 val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1); 559 err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); 560 if (err) 561 ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n"); 562 else 563 ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n"); 564 565 /* Try to set MPAM_frac=2 */ 566 val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; 567 val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2); 568 err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); 569 if (err) 570 ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n"); 571 else 572 ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n"); 573 } 574 575 #define MTE_IDREG_TEST 1 576 static void test_user_set_mte_reg(struct kvm_vcpu *vcpu) 577 { 578 uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; 579 struct reg_mask_range range = { 580 .addr = (__u64)masks, 581 }; 582 uint64_t val; 583 uint64_t mte; 584 uint64_t mte_frac; 585 int idx, err; 586 587 val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1)); 588 mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val); 589 if (!mte) { 590 ksft_test_result_skip("MTE capability not supported, nothing to test\n"); 591 return; 592 } 593 594 /* Get writable masks for feature ID registers */ 595 memset(range.reserved, 0, sizeof(range.reserved)); 596 vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); 597 598 idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1); 599 if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) { 600 ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n"); 601 return; 602 } 603 604 /* 605 * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2) 606 * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported 607 * and MTE_frac == 0 indicates it is supported. 608 * 609 * As MTE_frac was previously unconditionally read as 0, check 610 * that the set to 0 succeeds but does not change MTE_frac 611 * from unsupported (0xF) to supported (0). 612 * 613 */ 614 mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val); 615 if (mte != ID_AA64PFR1_EL1_MTE_MTE2 || 616 mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) { 617 ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n"); 618 return; 619 } 620 621 /* Try to set MTE_frac=0. */ 622 val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK; 623 val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0); 624 err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); 625 if (err) { 626 ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n"); 627 return; 628 } 629 630 val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1)); 631 mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val); 632 if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI) 633 ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n"); 634 else 635 ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n"); 636 } 637 638 static void test_guest_reg_read(struct kvm_vcpu *vcpu) 639 { 640 bool done = false; 641 struct ucall uc; 642 643 while (!done) { 644 vcpu_run(vcpu); 645 646 switch (get_ucall(vcpu, &uc)) { 647 case UCALL_ABORT: 648 REPORT_GUEST_ASSERT(uc); 649 break; 650 case UCALL_SYNC: 651 /* Make sure the written values are seen by guest */ 652 TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])], 653 uc.args[3]); 654 break; 655 case UCALL_DONE: 656 done = true; 657 break; 658 default: 659 TEST_FAIL("Unexpected ucall: %lu", uc.cmd); 660 } 661 } 662 } 663 664 /* Politely lifted from arch/arm64/include/asm/cache.h */ 665 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */ 666 #define CLIDR_CTYPE_SHIFT(level) (3 * (level - 1)) 667 #define CLIDR_CTYPE_MASK(level) (7 << CLIDR_CTYPE_SHIFT(level)) 668 #define CLIDR_CTYPE(clidr, level) \ 669 (((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level)) 670 671 static void test_clidr(struct kvm_vcpu *vcpu) 672 { 673 uint64_t clidr; 674 int level; 675 676 clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1)); 677 678 /* find the first empty level in the cache hierarchy */ 679 for (level = 1; level <= 7; level++) { 680 if (!CLIDR_CTYPE(clidr, level)) 681 break; 682 } 683 684 /* 685 * If you have a mind-boggling 7 levels of cache, congratulations, you 686 * get to fix this. 687 */ 688 TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy"); 689 690 /* stick in a unified cache level */ 691 clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level); 692 693 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr); 694 test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr; 695 } 696 697 static void test_ctr(struct kvm_vcpu *vcpu) 698 { 699 u64 ctr; 700 701 ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0)); 702 ctr &= ~CTR_EL0_DIC_MASK; 703 if (ctr & CTR_EL0_IminLine_MASK) 704 ctr--; 705 706 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr); 707 test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr; 708 } 709 710 static void test_id_reg(struct kvm_vcpu *vcpu, u32 id) 711 { 712 u64 val; 713 714 val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id)); 715 val++; 716 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val); 717 test_reg_vals[encoding_to_range_idx(id)] = val; 718 } 719 720 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu) 721 { 722 test_clidr(vcpu); 723 test_ctr(vcpu); 724 725 test_id_reg(vcpu, SYS_MPIDR_EL1); 726 ksft_test_result_pass("%s\n", __func__); 727 } 728 729 static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu) 730 { 731 test_id_reg(vcpu, SYS_MIDR_EL1); 732 test_id_reg(vcpu, SYS_REVIDR_EL1); 733 test_id_reg(vcpu, SYS_AIDR_EL1); 734 735 ksft_test_result_pass("%s\n", __func__); 736 } 737 738 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding) 739 { 740 size_t idx = encoding_to_range_idx(encoding); 741 uint64_t observed; 742 743 observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding)); 744 TEST_ASSERT_EQ(test_reg_vals[idx], observed); 745 } 746 747 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu) 748 { 749 /* 750 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an 751 * architectural reset of the vCPU. 752 */ 753 aarch64_vcpu_setup(vcpu, NULL); 754 755 for (int i = 0; i < ARRAY_SIZE(test_regs); i++) 756 test_assert_id_reg_unchanged(vcpu, test_regs[i].reg); 757 758 test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1); 759 test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1); 760 test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0); 761 test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1); 762 test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1); 763 test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1); 764 765 ksft_test_result_pass("%s\n", __func__); 766 } 767 768 int main(void) 769 { 770 struct kvm_vcpu *vcpu; 771 struct kvm_vm *vm; 772 bool aarch64_only; 773 uint64_t val, el0; 774 int test_cnt, i, j; 775 776 TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES)); 777 TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS)); 778 779 test_wants_mte(); 780 781 vm = vm_create(1); 782 vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0); 783 vcpu = vm_vcpu_add(vm, 0, guest_code); 784 kvm_arch_vm_finalize_vcpus(vm); 785 786 /* Check for AARCH64 only system */ 787 val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1)); 788 el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val); 789 aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP); 790 791 ksft_print_header(); 792 793 test_cnt = 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST; 794 for (i = 0; i < ARRAY_SIZE(test_regs); i++) 795 for (j = 0; test_regs[i].ftr_bits[j].type != FTR_END; j++) 796 test_cnt++; 797 798 ksft_set_plan(test_cnt); 799 800 test_vm_ftr_id_regs(vcpu, aarch64_only); 801 test_vcpu_ftr_id_regs(vcpu); 802 test_vcpu_non_ftr_id_regs(vcpu); 803 test_user_set_mpam_reg(vcpu); 804 test_user_set_mte_reg(vcpu); 805 806 test_guest_reg_read(vcpu); 807 808 test_reset_preserves_id_regs(vcpu); 809 810 kvm_vm_free(vm); 811 812 ksft_finished(); 813 } 814