xref: /linux/tools/testing/selftests/kvm/access_tracking_perf_test.c (revision 7f2b47f22b825c16d9843e6e78bbb2370d2c31a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * access_tracking_perf_test
4  *
5  * Copyright (C) 2021, Google, Inc.
6  *
7  * This test measures the performance effects of KVM's access tracking.
8  * Access tracking is driven by the MMU notifiers test_young, clear_young, and
9  * clear_flush_young. These notifiers do not have a direct userspace API,
10  * however the clear_young notifier can be triggered by marking a pages as idle
11  * in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to
12  * enable access tracking on guest memory.
13  *
14  * To measure performance this test runs a VM with a configurable number of
15  * vCPUs that each touch every page in disjoint regions of memory. Performance
16  * is measured in the time it takes all vCPUs to finish touching their
17  * predefined region.
18  *
19  * Note that a deterministic correctness test of access tracking is not possible
20  * by using page_idle as it exists today. This is for a few reasons:
21  *
22  * 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This
23  *    means subsequent guest accesses are not guaranteed to see page table
24  *    updates made by KVM until some time in the future.
25  *
26  * 2. page_idle only operates on LRU pages. Newly allocated pages are not
27  *    immediately allocated to LRU lists. Instead they are held in a "pagevec",
28  *    which is drained to LRU lists some time in the future. There is no
29  *    userspace API to force this drain to occur.
30  *
31  * These limitations are worked around in this test by using a large enough
32  * region of memory for each vCPU such that the number of translations cached in
33  * the TLB and the number of pages held in pagevecs are a small fraction of the
34  * overall workload. And if either of those conditions are not true (for example
35  * in nesting, where TLB size is unlimited) this test will print a warning
36  * rather than silently passing.
37  */
38 #include <inttypes.h>
39 #include <limits.h>
40 #include <pthread.h>
41 #include <sys/mman.h>
42 #include <sys/types.h>
43 #include <sys/stat.h>
44 
45 #include "kvm_util.h"
46 #include "test_util.h"
47 #include "memstress.h"
48 #include "guest_modes.h"
49 #include "processor.h"
50 
51 /* Global variable used to synchronize all of the vCPU threads. */
52 static int iteration;
53 
54 /* Defines what vCPU threads should do during a given iteration. */
55 static enum {
56 	/* Run the vCPU to access all its memory. */
57 	ITERATION_ACCESS_MEMORY,
58 	/* Mark the vCPU's memory idle in page_idle. */
59 	ITERATION_MARK_IDLE,
60 } iteration_work;
61 
62 /* Set to true when vCPU threads should exit. */
63 static bool done;
64 
65 /* The iteration that was last completed by each vCPU. */
66 static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
67 
68 /* Whether to overlap the regions of memory vCPUs access. */
69 static bool overlap_memory_access;
70 
71 struct test_params {
72 	/* The backing source for the region of memory. */
73 	enum vm_mem_backing_src_type backing_src;
74 
75 	/* The amount of memory to allocate for each vCPU. */
76 	uint64_t vcpu_memory_bytes;
77 
78 	/* The number of vCPUs to create in the VM. */
79 	int nr_vcpus;
80 };
81 
82 static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
83 {
84 	uint64_t value;
85 	off_t offset = index * sizeof(value);
86 
87 	TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
88 		    "pread from %s offset 0x%" PRIx64 " failed!",
89 		    filename, offset);
90 
91 	return value;
92 
93 }
94 
95 #define PAGEMAP_PRESENT (1ULL << 63)
96 #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
97 
98 static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
99 {
100 	uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
101 	uint64_t entry;
102 	uint64_t pfn;
103 
104 	entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
105 	if (!(entry & PAGEMAP_PRESENT))
106 		return 0;
107 
108 	pfn = entry & PAGEMAP_PFN_MASK;
109 	__TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN");
110 
111 	return pfn;
112 }
113 
114 static bool is_page_idle(int page_idle_fd, uint64_t pfn)
115 {
116 	uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
117 
118 	return !!((bits >> (pfn % 64)) & 1);
119 }
120 
121 static void mark_page_idle(int page_idle_fd, uint64_t pfn)
122 {
123 	uint64_t bits = 1ULL << (pfn % 64);
124 
125 	TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
126 		    "Set page_idle bits for PFN 0x%" PRIx64, pfn);
127 }
128 
129 static void mark_vcpu_memory_idle(struct kvm_vm *vm,
130 				  struct memstress_vcpu_args *vcpu_args)
131 {
132 	int vcpu_idx = vcpu_args->vcpu_idx;
133 	uint64_t base_gva = vcpu_args->gva;
134 	uint64_t pages = vcpu_args->pages;
135 	uint64_t page;
136 	uint64_t still_idle = 0;
137 	uint64_t no_pfn = 0;
138 	int page_idle_fd;
139 	int pagemap_fd;
140 
141 	/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
142 	if (overlap_memory_access && vcpu_idx)
143 		return;
144 
145 	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
146 	TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
147 
148 	pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
149 	TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
150 
151 	for (page = 0; page < pages; page++) {
152 		uint64_t gva = base_gva + page * memstress_args.guest_page_size;
153 		uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
154 
155 		if (!pfn) {
156 			no_pfn++;
157 			continue;
158 		}
159 
160 		if (is_page_idle(page_idle_fd, pfn)) {
161 			still_idle++;
162 			continue;
163 		}
164 
165 		mark_page_idle(page_idle_fd, pfn);
166 	}
167 
168 	/*
169 	 * Assumption: Less than 1% of pages are going to be swapped out from
170 	 * under us during this test.
171 	 */
172 	TEST_ASSERT(no_pfn < pages / 100,
173 		    "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
174 		    vcpu_idx, no_pfn, pages);
175 
176 	/*
177 	 * Check that at least 90% of memory has been marked idle (the rest
178 	 * might not be marked idle because the pages have not yet made it to an
179 	 * LRU list or the translations are still cached in the TLB). 90% is
180 	 * arbitrary; high enough that we ensure most memory access went through
181 	 * access tracking but low enough as to not make the test too brittle
182 	 * over time and across architectures.
183 	 *
184 	 * When running the guest as a nested VM, "warn" instead of asserting
185 	 * as the TLB size is effectively unlimited and the KVM doesn't
186 	 * explicitly flush the TLB when aging SPTEs.  As a result, more pages
187 	 * are cached and the guest won't see the "idle" bit cleared.
188 	 */
189 	if (still_idle >= pages / 10) {
190 #ifdef __x86_64__
191 		TEST_ASSERT(this_cpu_has(X86_FEATURE_HYPERVISOR),
192 			    "vCPU%d: Too many pages still idle (%lu out of %lu)",
193 			    vcpu_idx, still_idle, pages);
194 #endif
195 		printf("WARNING: vCPU%d: Too many pages still idle (%lu out of %lu), "
196 		       "this will affect performance results.\n",
197 		       vcpu_idx, still_idle, pages);
198 	}
199 
200 	close(page_idle_fd);
201 	close(pagemap_fd);
202 }
203 
204 static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall)
205 {
206 	struct ucall uc;
207 	uint64_t actual_ucall = get_ucall(vcpu, &uc);
208 
209 	TEST_ASSERT(expected_ucall == actual_ucall,
210 		    "Guest exited unexpectedly (expected ucall %" PRIu64
211 		    ", got %" PRIu64 ")",
212 		    expected_ucall, actual_ucall);
213 }
214 
215 static bool spin_wait_for_next_iteration(int *current_iteration)
216 {
217 	int last_iteration = *current_iteration;
218 
219 	do {
220 		if (READ_ONCE(done))
221 			return false;
222 
223 		*current_iteration = READ_ONCE(iteration);
224 	} while (last_iteration == *current_iteration);
225 
226 	return true;
227 }
228 
229 static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args)
230 {
231 	struct kvm_vcpu *vcpu = vcpu_args->vcpu;
232 	struct kvm_vm *vm = memstress_args.vm;
233 	int vcpu_idx = vcpu_args->vcpu_idx;
234 	int current_iteration = 0;
235 
236 	while (spin_wait_for_next_iteration(&current_iteration)) {
237 		switch (READ_ONCE(iteration_work)) {
238 		case ITERATION_ACCESS_MEMORY:
239 			vcpu_run(vcpu);
240 			assert_ucall(vcpu, UCALL_SYNC);
241 			break;
242 		case ITERATION_MARK_IDLE:
243 			mark_vcpu_memory_idle(vm, vcpu_args);
244 			break;
245 		};
246 
247 		vcpu_last_completed_iteration[vcpu_idx] = current_iteration;
248 	}
249 }
250 
251 static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration)
252 {
253 	while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) !=
254 	       target_iteration) {
255 		continue;
256 	}
257 }
258 
259 /* The type of memory accesses to perform in the VM. */
260 enum access_type {
261 	ACCESS_READ,
262 	ACCESS_WRITE,
263 };
264 
265 static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description)
266 {
267 	struct timespec ts_start;
268 	struct timespec ts_elapsed;
269 	int next_iteration, i;
270 
271 	/* Kick off the vCPUs by incrementing iteration. */
272 	next_iteration = ++iteration;
273 
274 	clock_gettime(CLOCK_MONOTONIC, &ts_start);
275 
276 	/* Wait for all vCPUs to finish the iteration. */
277 	for (i = 0; i < nr_vcpus; i++)
278 		spin_wait_for_vcpu(i, next_iteration);
279 
280 	ts_elapsed = timespec_elapsed(ts_start);
281 	pr_info("%-30s: %ld.%09lds\n",
282 		description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
283 }
284 
285 static void access_memory(struct kvm_vm *vm, int nr_vcpus,
286 			  enum access_type access, const char *description)
287 {
288 	memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100);
289 	iteration_work = ITERATION_ACCESS_MEMORY;
290 	run_iteration(vm, nr_vcpus, description);
291 }
292 
293 static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus)
294 {
295 	/*
296 	 * Even though this parallelizes the work across vCPUs, this is still a
297 	 * very slow operation because page_idle forces the test to mark one pfn
298 	 * at a time and the clear_young notifier serializes on the KVM MMU
299 	 * lock.
300 	 */
301 	pr_debug("Marking VM memory idle (slow)...\n");
302 	iteration_work = ITERATION_MARK_IDLE;
303 	run_iteration(vm, nr_vcpus, "Mark memory idle");
304 }
305 
306 static void run_test(enum vm_guest_mode mode, void *arg)
307 {
308 	struct test_params *params = arg;
309 	struct kvm_vm *vm;
310 	int nr_vcpus = params->nr_vcpus;
311 
312 	vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1,
313 				 params->backing_src, !overlap_memory_access);
314 
315 	memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main);
316 
317 	pr_info("\n");
318 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory");
319 
320 	/* As a control, read and write to the populated memory first. */
321 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory");
322 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory");
323 
324 	/* Repeat on memory that has been marked as idle. */
325 	mark_memory_idle(vm, nr_vcpus);
326 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory");
327 	mark_memory_idle(vm, nr_vcpus);
328 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory");
329 
330 	/* Set done to signal the vCPU threads to exit */
331 	done = true;
332 
333 	memstress_join_vcpu_threads(nr_vcpus);
334 	memstress_destroy_vm(vm);
335 }
336 
337 static void help(char *name)
338 {
339 	puts("");
340 	printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o]  [-s mem_type]\n",
341 	       name);
342 	puts("");
343 	printf(" -h: Display this help message.");
344 	guest_modes_help();
345 	printf(" -b: specify the size of the memory region which should be\n"
346 	       "     dirtied by each vCPU. e.g. 10M or 3G.\n"
347 	       "     (default: 1G)\n");
348 	printf(" -v: specify the number of vCPUs to run.\n");
349 	printf(" -o: Overlap guest memory accesses instead of partitioning\n"
350 	       "     them into a separate region of memory for each vCPU.\n");
351 	backing_src_help("-s");
352 	puts("");
353 	exit(0);
354 }
355 
356 int main(int argc, char *argv[])
357 {
358 	struct test_params params = {
359 		.backing_src = DEFAULT_VM_MEM_SRC,
360 		.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
361 		.nr_vcpus = 1,
362 	};
363 	int page_idle_fd;
364 	int opt;
365 
366 	guest_modes_append_default();
367 
368 	while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) {
369 		switch (opt) {
370 		case 'm':
371 			guest_modes_cmdline(optarg);
372 			break;
373 		case 'b':
374 			params.vcpu_memory_bytes = parse_size(optarg);
375 			break;
376 		case 'v':
377 			params.nr_vcpus = atoi_positive("Number of vCPUs", optarg);
378 			break;
379 		case 'o':
380 			overlap_memory_access = true;
381 			break;
382 		case 's':
383 			params.backing_src = parse_backing_src_type(optarg);
384 			break;
385 		case 'h':
386 		default:
387 			help(argv[0]);
388 			break;
389 		}
390 	}
391 
392 	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
393 	__TEST_REQUIRE(page_idle_fd >= 0,
394 		       "CONFIG_IDLE_PAGE_TRACKING is not enabled");
395 	close(page_idle_fd);
396 
397 	for_each_guest_mode(run_test, &params);
398 
399 	return 0;
400 }
401