1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * access_tracking_perf_test 4 * 5 * Copyright (C) 2021, Google, Inc. 6 * 7 * This test measures the performance effects of KVM's access tracking. 8 * Access tracking is driven by the MMU notifiers test_young, clear_young, and 9 * clear_flush_young. These notifiers do not have a direct userspace API, 10 * however the clear_young notifier can be triggered either by 11 * 1. marking a pages as idle in /sys/kernel/mm/page_idle/bitmap OR 12 * 2. adding a new MGLRU generation using the lru_gen debugfs file. 13 * This test leverages page_idle to enable access tracking on guest memory 14 * unless MGLRU is enabled, in which case MGLRU is used. 15 * 16 * To measure performance this test runs a VM with a configurable number of 17 * vCPUs that each touch every page in disjoint regions of memory. Performance 18 * is measured in the time it takes all vCPUs to finish touching their 19 * predefined region. 20 * 21 * Note that a deterministic correctness test of access tracking is not possible 22 * by using page_idle or MGLRU aging as it exists today. This is for a few 23 * reasons: 24 * 25 * 1. page_idle and MGLRU only issue clear_young notifiers, which lack a TLB flush. 26 * This means subsequent guest accesses are not guaranteed to see page table 27 * updates made by KVM until some time in the future. 28 * 29 * 2. page_idle only operates on LRU pages. Newly allocated pages are not 30 * immediately allocated to LRU lists. Instead they are held in a "pagevec", 31 * which is drained to LRU lists some time in the future. There is no 32 * userspace API to force this drain to occur. 33 * 34 * These limitations are worked around in this test by using a large enough 35 * region of memory for each vCPU such that the number of translations cached in 36 * the TLB and the number of pages held in pagevecs are a small fraction of the 37 * overall workload. And if either of those conditions are not true (for example 38 * in nesting, where TLB size is unlimited) this test will print a warning 39 * rather than silently passing. 40 */ 41 #include <inttypes.h> 42 #include <limits.h> 43 #include <pthread.h> 44 #include <sys/mman.h> 45 #include <sys/types.h> 46 #include <sys/stat.h> 47 48 #include "kvm_util.h" 49 #include "test_util.h" 50 #include "memstress.h" 51 #include "guest_modes.h" 52 #include "processor.h" 53 54 #include "cgroup_util.h" 55 #include "lru_gen_util.h" 56 57 static const char *TEST_MEMCG_NAME = "access_tracking_perf_test"; 58 59 /* Global variable used to synchronize all of the vCPU threads. */ 60 static int iteration; 61 62 /* The cgroup memory controller root. Needed for lru_gen-based aging. */ 63 char cgroup_root[PATH_MAX]; 64 65 /* Defines what vCPU threads should do during a given iteration. */ 66 static enum { 67 /* Run the vCPU to access all its memory. */ 68 ITERATION_ACCESS_MEMORY, 69 /* Mark the vCPU's memory idle in page_idle. */ 70 ITERATION_MARK_IDLE, 71 } iteration_work; 72 73 /* The iteration that was last completed by each vCPU. */ 74 static int vcpu_last_completed_iteration[KVM_MAX_VCPUS]; 75 76 /* Whether to overlap the regions of memory vCPUs access. */ 77 static bool overlap_memory_access; 78 79 /* 80 * If the test should only warn if there are too many idle pages (i.e., it is 81 * expected). 82 * -1: Not yet set. 83 * 0: We do not expect too many idle pages, so FAIL if too many idle pages. 84 * 1: Having too many idle pages is expected, so merely print a warning if 85 * too many idle pages are found. 86 */ 87 static int idle_pages_warn_only = -1; 88 89 /* Whether or not to use MGLRU instead of page_idle for access tracking */ 90 static bool use_lru_gen; 91 92 /* Total number of pages to expect in the memcg after touching everything */ 93 static long test_pages; 94 95 /* Last generation we found the pages in */ 96 static int lru_gen_last_gen = -1; 97 98 struct test_params { 99 /* The backing source for the region of memory. */ 100 enum vm_mem_backing_src_type backing_src; 101 102 /* The amount of memory to allocate for each vCPU. */ 103 uint64_t vcpu_memory_bytes; 104 105 /* The number of vCPUs to create in the VM. */ 106 int nr_vcpus; 107 }; 108 109 static uint64_t pread_uint64(int fd, const char *filename, uint64_t index) 110 { 111 uint64_t value; 112 off_t offset = index * sizeof(value); 113 114 TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value), 115 "pread from %s offset 0x%" PRIx64 " failed!", 116 filename, offset); 117 118 return value; 119 120 } 121 122 #define PAGEMAP_PRESENT (1ULL << 63) 123 #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1) 124 125 static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva) 126 { 127 uint64_t hva = (uint64_t) addr_gva2hva(vm, gva); 128 uint64_t entry; 129 uint64_t pfn; 130 131 entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize()); 132 if (!(entry & PAGEMAP_PRESENT)) 133 return 0; 134 135 pfn = entry & PAGEMAP_PFN_MASK; 136 __TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN"); 137 138 return pfn; 139 } 140 141 static bool is_page_idle(int page_idle_fd, uint64_t pfn) 142 { 143 uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64); 144 145 return !!((bits >> (pfn % 64)) & 1); 146 } 147 148 static void mark_page_idle(int page_idle_fd, uint64_t pfn) 149 { 150 uint64_t bits = 1ULL << (pfn % 64); 151 152 TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8, 153 "Set page_idle bits for PFN 0x%" PRIx64, pfn); 154 } 155 156 static void too_many_idle_pages(long idle_pages, long total_pages, int vcpu_idx) 157 { 158 char prefix[18] = {}; 159 160 if (vcpu_idx >= 0) 161 snprintf(prefix, 18, "vCPU%d: ", vcpu_idx); 162 163 TEST_ASSERT(idle_pages_warn_only, 164 "%sToo many pages still idle (%lu out of %lu)", 165 prefix, idle_pages, total_pages); 166 167 printf("WARNING: %sToo many pages still idle (%lu out of %lu), " 168 "this will affect performance results.\n", 169 prefix, idle_pages, total_pages); 170 } 171 172 static void pageidle_mark_vcpu_memory_idle(struct kvm_vm *vm, 173 struct memstress_vcpu_args *vcpu_args) 174 { 175 int vcpu_idx = vcpu_args->vcpu_idx; 176 uint64_t base_gva = vcpu_args->gva; 177 uint64_t pages = vcpu_args->pages; 178 uint64_t page; 179 uint64_t still_idle = 0; 180 uint64_t no_pfn = 0; 181 int page_idle_fd; 182 int pagemap_fd; 183 184 /* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */ 185 if (overlap_memory_access && vcpu_idx) 186 return; 187 188 page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); 189 TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle."); 190 191 pagemap_fd = open("/proc/self/pagemap", O_RDONLY); 192 TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap."); 193 194 for (page = 0; page < pages; page++) { 195 uint64_t gva = base_gva + page * memstress_args.guest_page_size; 196 uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva); 197 198 if (!pfn) { 199 no_pfn++; 200 continue; 201 } 202 203 if (is_page_idle(page_idle_fd, pfn)) { 204 still_idle++; 205 continue; 206 } 207 208 mark_page_idle(page_idle_fd, pfn); 209 } 210 211 /* 212 * Assumption: Less than 1% of pages are going to be swapped out from 213 * under us during this test. 214 */ 215 TEST_ASSERT(no_pfn < pages / 100, 216 "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.", 217 vcpu_idx, no_pfn, pages); 218 219 /* 220 * Check that at least 90% of memory has been marked idle (the rest 221 * might not be marked idle because the pages have not yet made it to an 222 * LRU list or the translations are still cached in the TLB). 90% is 223 * arbitrary; high enough that we ensure most memory access went through 224 * access tracking but low enough as to not make the test too brittle 225 * over time and across architectures. 226 */ 227 if (still_idle >= pages / 10) 228 too_many_idle_pages(still_idle, pages, 229 overlap_memory_access ? -1 : vcpu_idx); 230 231 close(page_idle_fd); 232 close(pagemap_fd); 233 } 234 235 int find_generation(struct memcg_stats *stats, long total_pages) 236 { 237 /* 238 * For finding the generation that contains our pages, use the same 239 * 90% threshold that page_idle uses. 240 */ 241 int gen = lru_gen_find_generation(stats, total_pages * 9 / 10); 242 243 if (gen >= 0) 244 return gen; 245 246 if (!idle_pages_warn_only) { 247 TEST_FAIL("Could not find a generation with 90%% of guest memory (%ld pages).", 248 total_pages * 9 / 10); 249 return gen; 250 } 251 252 /* 253 * We couldn't find a generation with 90% of guest memory, which can 254 * happen if access tracking is unreliable. Simply look for a majority 255 * of pages. 256 */ 257 puts("WARNING: Couldn't find a generation with 90% of guest memory. " 258 "Performance results may not be accurate."); 259 gen = lru_gen_find_generation(stats, total_pages / 2); 260 TEST_ASSERT(gen >= 0, 261 "Could not find a generation with 50%% of guest memory (%ld pages).", 262 total_pages / 2); 263 return gen; 264 } 265 266 static void lru_gen_mark_memory_idle(struct kvm_vm *vm) 267 { 268 struct timespec ts_start; 269 struct timespec ts_elapsed; 270 struct memcg_stats stats; 271 int new_gen; 272 273 /* Make a new generation */ 274 clock_gettime(CLOCK_MONOTONIC, &ts_start); 275 lru_gen_do_aging(&stats, TEST_MEMCG_NAME); 276 ts_elapsed = timespec_elapsed(ts_start); 277 278 /* Check the generation again */ 279 new_gen = find_generation(&stats, test_pages); 280 281 /* 282 * This function should only be invoked with newly-accessed pages, 283 * so pages should always move to a newer generation. 284 */ 285 if (new_gen <= lru_gen_last_gen) { 286 /* We did not move to a newer generation. */ 287 long idle_pages = lru_gen_sum_memcg_stats_for_gen(lru_gen_last_gen, 288 &stats); 289 290 too_many_idle_pages(min_t(long, idle_pages, test_pages), 291 test_pages, -1); 292 } 293 pr_info("%-30s: %ld.%09lds\n", 294 "Mark memory idle (lru_gen)", ts_elapsed.tv_sec, 295 ts_elapsed.tv_nsec); 296 lru_gen_last_gen = new_gen; 297 } 298 299 static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall) 300 { 301 struct ucall uc; 302 uint64_t actual_ucall = get_ucall(vcpu, &uc); 303 304 TEST_ASSERT(expected_ucall == actual_ucall, 305 "Guest exited unexpectedly (expected ucall %" PRIu64 306 ", got %" PRIu64 ")", 307 expected_ucall, actual_ucall); 308 } 309 310 static bool spin_wait_for_next_iteration(int *current_iteration) 311 { 312 int last_iteration = *current_iteration; 313 314 do { 315 if (READ_ONCE(memstress_args.stop_vcpus)) 316 return false; 317 318 *current_iteration = READ_ONCE(iteration); 319 } while (last_iteration == *current_iteration); 320 321 return true; 322 } 323 324 static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args) 325 { 326 struct kvm_vcpu *vcpu = vcpu_args->vcpu; 327 struct kvm_vm *vm = memstress_args.vm; 328 int vcpu_idx = vcpu_args->vcpu_idx; 329 int current_iteration = 0; 330 331 while (spin_wait_for_next_iteration(¤t_iteration)) { 332 switch (READ_ONCE(iteration_work)) { 333 case ITERATION_ACCESS_MEMORY: 334 vcpu_run(vcpu); 335 assert_ucall(vcpu, UCALL_SYNC); 336 break; 337 case ITERATION_MARK_IDLE: 338 pageidle_mark_vcpu_memory_idle(vm, vcpu_args); 339 break; 340 } 341 342 vcpu_last_completed_iteration[vcpu_idx] = current_iteration; 343 } 344 } 345 346 static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration) 347 { 348 while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) != 349 target_iteration) { 350 continue; 351 } 352 } 353 354 /* The type of memory accesses to perform in the VM. */ 355 enum access_type { 356 ACCESS_READ, 357 ACCESS_WRITE, 358 }; 359 360 static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description) 361 { 362 struct timespec ts_start; 363 struct timespec ts_elapsed; 364 int next_iteration, i; 365 366 /* Kick off the vCPUs by incrementing iteration. */ 367 next_iteration = ++iteration; 368 369 clock_gettime(CLOCK_MONOTONIC, &ts_start); 370 371 /* Wait for all vCPUs to finish the iteration. */ 372 for (i = 0; i < nr_vcpus; i++) 373 spin_wait_for_vcpu(i, next_iteration); 374 375 ts_elapsed = timespec_elapsed(ts_start); 376 pr_info("%-30s: %ld.%09lds\n", 377 description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec); 378 } 379 380 static void access_memory(struct kvm_vm *vm, int nr_vcpus, 381 enum access_type access, const char *description) 382 { 383 memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100); 384 iteration_work = ITERATION_ACCESS_MEMORY; 385 run_iteration(vm, nr_vcpus, description); 386 } 387 388 static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus) 389 { 390 if (use_lru_gen) 391 return lru_gen_mark_memory_idle(vm); 392 393 /* 394 * Even though this parallelizes the work across vCPUs, this is still a 395 * very slow operation because page_idle forces the test to mark one pfn 396 * at a time and the clear_young notifier may serialize on the KVM MMU 397 * lock. 398 */ 399 pr_debug("Marking VM memory idle (slow)...\n"); 400 iteration_work = ITERATION_MARK_IDLE; 401 run_iteration(vm, nr_vcpus, "Mark memory idle (page_idle)"); 402 } 403 404 static void run_test(enum vm_guest_mode mode, void *arg) 405 { 406 struct test_params *params = arg; 407 struct kvm_vm *vm; 408 int nr_vcpus = params->nr_vcpus; 409 410 vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1, 411 params->backing_src, !overlap_memory_access); 412 413 /* 414 * If guest_page_size is larger than the host's page size, the 415 * guest (memstress) will only fault in a subset of the host's pages. 416 */ 417 test_pages = params->nr_vcpus * params->vcpu_memory_bytes / 418 max(memstress_args.guest_page_size, 419 (uint64_t)getpagesize()); 420 421 memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main); 422 423 pr_info("\n"); 424 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory"); 425 426 if (use_lru_gen) { 427 struct memcg_stats stats; 428 429 /* 430 * Do a page table scan now. Following initial population, aging 431 * may not cause the pages to move to a newer generation. Do 432 * an aging pass now so that future aging passes always move 433 * pages to a newer generation. 434 */ 435 printf("Initial aging pass (lru_gen)\n"); 436 lru_gen_do_aging(&stats, TEST_MEMCG_NAME); 437 TEST_ASSERT(lru_gen_sum_memcg_stats(&stats) >= test_pages, 438 "Not all pages accounted for (looking for %ld). " 439 "Was the memcg set up correctly?", test_pages); 440 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Re-populating memory"); 441 lru_gen_read_memcg_stats(&stats, TEST_MEMCG_NAME); 442 lru_gen_last_gen = find_generation(&stats, test_pages); 443 } 444 445 /* As a control, read and write to the populated memory first. */ 446 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory"); 447 access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory"); 448 449 /* Repeat on memory that has been marked as idle. */ 450 mark_memory_idle(vm, nr_vcpus); 451 access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory"); 452 mark_memory_idle(vm, nr_vcpus); 453 access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory"); 454 455 memstress_join_vcpu_threads(nr_vcpus); 456 memstress_destroy_vm(vm); 457 } 458 459 static int access_tracking_unreliable(void) 460 { 461 #ifdef __x86_64__ 462 /* 463 * When running nested, the TLB size may be effectively unlimited (for 464 * example, this is the case when running on KVM L0), and KVM doesn't 465 * explicitly flush the TLB when aging SPTEs. As a result, more pages 466 * are cached and the guest won't see the "idle" bit cleared. 467 */ 468 if (this_cpu_has(X86_FEATURE_HYPERVISOR)) { 469 puts("Skipping idle page count sanity check, because the test is run nested"); 470 return 1; 471 } 472 #endif 473 /* 474 * When NUMA balancing is enabled, guest memory will be unmapped to get 475 * NUMA faults, dropping the Accessed bits. 476 */ 477 if (is_numa_balancing_enabled()) { 478 puts("Skipping idle page count sanity check, because NUMA balancing is enabled"); 479 return 1; 480 } 481 return 0; 482 } 483 484 static int run_test_for_each_guest_mode(const char *cgroup, void *arg) 485 { 486 for_each_guest_mode(run_test, arg); 487 return 0; 488 } 489 490 static void help(char *name) 491 { 492 puts(""); 493 printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n", 494 name); 495 puts(""); 496 printf(" -h: Display this help message."); 497 guest_modes_help(); 498 printf(" -b: specify the size of the memory region which should be\n" 499 " dirtied by each vCPU. e.g. 10M or 3G.\n" 500 " (default: 1G)\n"); 501 printf(" -v: specify the number of vCPUs to run.\n"); 502 printf(" -o: Overlap guest memory accesses instead of partitioning\n" 503 " them into a separate region of memory for each vCPU.\n"); 504 printf(" -w: Control whether the test warns or fails if more than 10%%\n" 505 " of pages are still seen as idle/old after accessing guest\n" 506 " memory. >0 == warn only, 0 == fail, <0 == auto. For auto\n" 507 " mode, the test fails by default, but switches to warn only\n" 508 " if NUMA balancing is enabled or the test detects it's running\n" 509 " in a VM.\n"); 510 backing_src_help("-s"); 511 puts(""); 512 exit(0); 513 } 514 515 void destroy_cgroup(char *cg) 516 { 517 printf("Destroying cgroup: %s\n", cg); 518 } 519 520 int main(int argc, char *argv[]) 521 { 522 struct test_params params = { 523 .backing_src = DEFAULT_VM_MEM_SRC, 524 .vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE, 525 .nr_vcpus = 1, 526 }; 527 char *new_cg = NULL; 528 int page_idle_fd; 529 int opt; 530 531 guest_modes_append_default(); 532 533 while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) { 534 switch (opt) { 535 case 'm': 536 guest_modes_cmdline(optarg); 537 break; 538 case 'b': 539 params.vcpu_memory_bytes = parse_size(optarg); 540 break; 541 case 'v': 542 params.nr_vcpus = atoi_positive("Number of vCPUs", optarg); 543 break; 544 case 'o': 545 overlap_memory_access = true; 546 break; 547 case 's': 548 params.backing_src = parse_backing_src_type(optarg); 549 break; 550 case 'w': 551 idle_pages_warn_only = 552 atoi_non_negative("Idle pages warning", 553 optarg); 554 break; 555 case 'h': 556 default: 557 help(argv[0]); 558 break; 559 } 560 } 561 562 if (idle_pages_warn_only == -1) 563 idle_pages_warn_only = access_tracking_unreliable(); 564 565 if (lru_gen_usable()) { 566 bool cg_created = true; 567 int ret; 568 569 puts("Using lru_gen for aging"); 570 use_lru_gen = true; 571 572 if (cg_find_controller_root(cgroup_root, sizeof(cgroup_root), "memory")) 573 ksft_exit_skip("Cannot find memory cgroup controller\n"); 574 575 new_cg = cg_name(cgroup_root, TEST_MEMCG_NAME); 576 printf("Creating cgroup: %s\n", new_cg); 577 if (cg_create(new_cg)) { 578 if (errno == EEXIST) { 579 printf("Found existing cgroup"); 580 cg_created = false; 581 } else { 582 ksft_exit_skip("could not create new cgroup: %s\n", new_cg); 583 } 584 } 585 586 /* 587 * This will fork off a new process to run the test within 588 * a new memcg, so we need to properly propagate the return 589 * value up. 590 */ 591 ret = cg_run(new_cg, &run_test_for_each_guest_mode, ¶ms); 592 if (cg_created) 593 cg_destroy(new_cg); 594 if (ret < 0) 595 TEST_FAIL("child did not spawn or was abnormally killed"); 596 if (ret) 597 return ret; 598 } else { 599 page_idle_fd = __open_path_or_exit("/sys/kernel/mm/page_idle/bitmap", O_RDWR, 600 "Is CONFIG_IDLE_PAGE_TRACKING enabled?"); 601 close(page_idle_fd); 602 603 puts("Using page_idle for aging"); 604 run_test_for_each_guest_mode(NULL, ¶ms); 605 } 606 607 return 0; 608 } 609