xref: /linux/tools/testing/selftests/kvm/aarch64/vpmu_counter_access.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * vpmu_counter_access - Test vPMU event counter access
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  * This test checks if the guest can see the same number of the PMU event
8  * counters (PMCR_EL0.N) that userspace sets, if the guest can access
9  * those counters, and if the guest is prevented from accessing any
10  * other counters.
11  * It also checks if the userspace accesses to the PMU regsisters honor the
12  * PMCR.N value that's set for the guest.
13  * This test runs only when KVM_CAP_ARM_PMU_V3 is supported on the host.
14  */
15 #include <kvm_util.h>
16 #include <processor.h>
17 #include <test_util.h>
18 #include <vgic.h>
19 #include <perf/arm_pmuv3.h>
20 #include <linux/bitfield.h>
21 
22 /* The max number of the PMU event counters (excluding the cycle counter) */
23 #define ARMV8_PMU_MAX_GENERAL_COUNTERS	(ARMV8_PMU_MAX_COUNTERS - 1)
24 
25 /* The cycle counter bit position that's common among the PMU registers */
26 #define ARMV8_PMU_CYCLE_IDX		31
27 
28 struct vpmu_vm {
29 	struct kvm_vm *vm;
30 	struct kvm_vcpu *vcpu;
31 	int gic_fd;
32 };
33 
34 static struct vpmu_vm vpmu_vm;
35 
36 struct pmreg_sets {
37 	uint64_t set_reg_id;
38 	uint64_t clr_reg_id;
39 };
40 
41 #define PMREG_SET(set, clr) {.set_reg_id = set, .clr_reg_id = clr}
42 
43 static uint64_t get_pmcr_n(uint64_t pmcr)
44 {
45 	return FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
46 }
47 
48 static void set_pmcr_n(uint64_t *pmcr, uint64_t pmcr_n)
49 {
50 	u64p_replace_bits((__u64 *) pmcr, pmcr_n, ARMV8_PMU_PMCR_N);
51 }
52 
53 static uint64_t get_counters_mask(uint64_t n)
54 {
55 	uint64_t mask = BIT(ARMV8_PMU_CYCLE_IDX);
56 
57 	if (n)
58 		mask |= GENMASK(n - 1, 0);
59 	return mask;
60 }
61 
62 /* Read PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
63 static inline unsigned long read_sel_evcntr(int sel)
64 {
65 	write_sysreg(sel, pmselr_el0);
66 	isb();
67 	return read_sysreg(pmxevcntr_el0);
68 }
69 
70 /* Write PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
71 static inline void write_sel_evcntr(int sel, unsigned long val)
72 {
73 	write_sysreg(sel, pmselr_el0);
74 	isb();
75 	write_sysreg(val, pmxevcntr_el0);
76 	isb();
77 }
78 
79 /* Read PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
80 static inline unsigned long read_sel_evtyper(int sel)
81 {
82 	write_sysreg(sel, pmselr_el0);
83 	isb();
84 	return read_sysreg(pmxevtyper_el0);
85 }
86 
87 /* Write PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
88 static inline void write_sel_evtyper(int sel, unsigned long val)
89 {
90 	write_sysreg(sel, pmselr_el0);
91 	isb();
92 	write_sysreg(val, pmxevtyper_el0);
93 	isb();
94 }
95 
96 static inline void enable_counter(int idx)
97 {
98 	uint64_t v = read_sysreg(pmcntenset_el0);
99 
100 	write_sysreg(BIT(idx) | v, pmcntenset_el0);
101 	isb();
102 }
103 
104 static inline void disable_counter(int idx)
105 {
106 	uint64_t v = read_sysreg(pmcntenset_el0);
107 
108 	write_sysreg(BIT(idx) | v, pmcntenclr_el0);
109 	isb();
110 }
111 
112 static void pmu_disable_reset(void)
113 {
114 	uint64_t pmcr = read_sysreg(pmcr_el0);
115 
116 	/* Reset all counters, disabling them */
117 	pmcr &= ~ARMV8_PMU_PMCR_E;
118 	write_sysreg(pmcr | ARMV8_PMU_PMCR_P, pmcr_el0);
119 	isb();
120 }
121 
122 #define RETURN_READ_PMEVCNTRN(n) \
123 	return read_sysreg(pmevcntr##n##_el0)
124 static unsigned long read_pmevcntrn(int n)
125 {
126 	PMEVN_SWITCH(n, RETURN_READ_PMEVCNTRN);
127 	return 0;
128 }
129 
130 #define WRITE_PMEVCNTRN(n) \
131 	write_sysreg(val, pmevcntr##n##_el0)
132 static void write_pmevcntrn(int n, unsigned long val)
133 {
134 	PMEVN_SWITCH(n, WRITE_PMEVCNTRN);
135 	isb();
136 }
137 
138 #define READ_PMEVTYPERN(n) \
139 	return read_sysreg(pmevtyper##n##_el0)
140 static unsigned long read_pmevtypern(int n)
141 {
142 	PMEVN_SWITCH(n, READ_PMEVTYPERN);
143 	return 0;
144 }
145 
146 #define WRITE_PMEVTYPERN(n) \
147 	write_sysreg(val, pmevtyper##n##_el0)
148 static void write_pmevtypern(int n, unsigned long val)
149 {
150 	PMEVN_SWITCH(n, WRITE_PMEVTYPERN);
151 	isb();
152 }
153 
154 /*
155  * The pmc_accessor structure has pointers to PMEV{CNTR,TYPER}<n>_EL0
156  * accessors that test cases will use. Each of the accessors will
157  * either directly reads/writes PMEV{CNTR,TYPER}<n>_EL0
158  * (i.e. {read,write}_pmev{cnt,type}rn()), or reads/writes them through
159  * PMXEV{CNTR,TYPER}_EL0 (i.e. {read,write}_sel_ev{cnt,type}r()).
160  *
161  * This is used to test that combinations of those accessors provide
162  * the consistent behavior.
163  */
164 struct pmc_accessor {
165 	/* A function to be used to read PMEVTCNTR<n>_EL0 */
166 	unsigned long	(*read_cntr)(int idx);
167 	/* A function to be used to write PMEVTCNTR<n>_EL0 */
168 	void		(*write_cntr)(int idx, unsigned long val);
169 	/* A function to be used to read PMEVTYPER<n>_EL0 */
170 	unsigned long	(*read_typer)(int idx);
171 	/* A function to be used to write PMEVTYPER<n>_EL0 */
172 	void		(*write_typer)(int idx, unsigned long val);
173 };
174 
175 struct pmc_accessor pmc_accessors[] = {
176 	/* test with all direct accesses */
177 	{ read_pmevcntrn, write_pmevcntrn, read_pmevtypern, write_pmevtypern },
178 	/* test with all indirect accesses */
179 	{ read_sel_evcntr, write_sel_evcntr, read_sel_evtyper, write_sel_evtyper },
180 	/* read with direct accesses, and write with indirect accesses */
181 	{ read_pmevcntrn, write_sel_evcntr, read_pmevtypern, write_sel_evtyper },
182 	/* read with indirect accesses, and write with direct accesses */
183 	{ read_sel_evcntr, write_pmevcntrn, read_sel_evtyper, write_pmevtypern },
184 };
185 
186 /*
187  * Convert a pointer of pmc_accessor to an index in pmc_accessors[],
188  * assuming that the pointer is one of the entries in pmc_accessors[].
189  */
190 #define PMC_ACC_TO_IDX(acc)	(acc - &pmc_accessors[0])
191 
192 #define GUEST_ASSERT_BITMAP_REG(regname, mask, set_expected)			 \
193 {										 \
194 	uint64_t _tval = read_sysreg(regname);					 \
195 										 \
196 	if (set_expected)							 \
197 		__GUEST_ASSERT((_tval & mask),					 \
198 				"tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
199 				_tval, mask, set_expected);			 \
200 	else									 \
201 		__GUEST_ASSERT(!(_tval & mask),					 \
202 				"tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
203 				_tval, mask, set_expected);			 \
204 }
205 
206 /*
207  * Check if @mask bits in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers
208  * are set or cleared as specified in @set_expected.
209  */
210 static void check_bitmap_pmu_regs(uint64_t mask, bool set_expected)
211 {
212 	GUEST_ASSERT_BITMAP_REG(pmcntenset_el0, mask, set_expected);
213 	GUEST_ASSERT_BITMAP_REG(pmcntenclr_el0, mask, set_expected);
214 	GUEST_ASSERT_BITMAP_REG(pmintenset_el1, mask, set_expected);
215 	GUEST_ASSERT_BITMAP_REG(pmintenclr_el1, mask, set_expected);
216 	GUEST_ASSERT_BITMAP_REG(pmovsset_el0, mask, set_expected);
217 	GUEST_ASSERT_BITMAP_REG(pmovsclr_el0, mask, set_expected);
218 }
219 
220 /*
221  * Check if the bit in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers corresponding
222  * to the specified counter (@pmc_idx) can be read/written as expected.
223  * When @set_op is true, it tries to set the bit for the counter in
224  * those registers by writing the SET registers (the bit won't be set
225  * if the counter is not implemented though).
226  * Otherwise, it tries to clear the bits in the registers by writing
227  * the CLR registers.
228  * Then, it checks if the values indicated in the registers are as expected.
229  */
230 static void test_bitmap_pmu_regs(int pmc_idx, bool set_op)
231 {
232 	uint64_t pmcr_n, test_bit = BIT(pmc_idx);
233 	bool set_expected = false;
234 
235 	if (set_op) {
236 		write_sysreg(test_bit, pmcntenset_el0);
237 		write_sysreg(test_bit, pmintenset_el1);
238 		write_sysreg(test_bit, pmovsset_el0);
239 
240 		/* The bit will be set only if the counter is implemented */
241 		pmcr_n = get_pmcr_n(read_sysreg(pmcr_el0));
242 		set_expected = (pmc_idx < pmcr_n) ? true : false;
243 	} else {
244 		write_sysreg(test_bit, pmcntenclr_el0);
245 		write_sysreg(test_bit, pmintenclr_el1);
246 		write_sysreg(test_bit, pmovsclr_el0);
247 	}
248 	check_bitmap_pmu_regs(test_bit, set_expected);
249 }
250 
251 /*
252  * Tests for reading/writing registers for the (implemented) event counter
253  * specified by @pmc_idx.
254  */
255 static void test_access_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
256 {
257 	uint64_t write_data, read_data;
258 
259 	/* Disable all PMCs and reset all PMCs to zero. */
260 	pmu_disable_reset();
261 
262 	/*
263 	 * Tests for reading/writing {PMCNTEN,PMINTEN,PMOVS}{SET,CLR}_EL1.
264 	 */
265 
266 	/* Make sure that the bit in those registers are set to 0 */
267 	test_bitmap_pmu_regs(pmc_idx, false);
268 	/* Test if setting the bit in those registers works */
269 	test_bitmap_pmu_regs(pmc_idx, true);
270 	/* Test if clearing the bit in those registers works */
271 	test_bitmap_pmu_regs(pmc_idx, false);
272 
273 	/*
274 	 * Tests for reading/writing the event type register.
275 	 */
276 
277 	/*
278 	 * Set the event type register to an arbitrary value just for testing
279 	 * of reading/writing the register.
280 	 * Arm ARM says that for the event from 0x0000 to 0x003F,
281 	 * the value indicated in the PMEVTYPER<n>_EL0.evtCount field is
282 	 * the value written to the field even when the specified event
283 	 * is not supported.
284 	 */
285 	write_data = (ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMUV3_PERFCTR_INST_RETIRED);
286 	acc->write_typer(pmc_idx, write_data);
287 	read_data = acc->read_typer(pmc_idx);
288 	__GUEST_ASSERT(read_data == write_data,
289 		       "pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
290 		       pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
291 
292 	/*
293 	 * Tests for reading/writing the event count register.
294 	 */
295 
296 	read_data = acc->read_cntr(pmc_idx);
297 
298 	/* The count value must be 0, as it is disabled and reset */
299 	__GUEST_ASSERT(read_data == 0,
300 		       "pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx",
301 		       pmc_idx, PMC_ACC_TO_IDX(acc), read_data);
302 
303 	write_data = read_data + pmc_idx + 0x12345;
304 	acc->write_cntr(pmc_idx, write_data);
305 	read_data = acc->read_cntr(pmc_idx);
306 	__GUEST_ASSERT(read_data == write_data,
307 		       "pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
308 		       pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
309 }
310 
311 #define INVALID_EC	(-1ul)
312 uint64_t expected_ec = INVALID_EC;
313 
314 static void guest_sync_handler(struct ex_regs *regs)
315 {
316 	uint64_t esr, ec;
317 
318 	esr = read_sysreg(esr_el1);
319 	ec = (esr >> ESR_EC_SHIFT) & ESR_EC_MASK;
320 
321 	__GUEST_ASSERT(expected_ec == ec,
322 			"PC: 0x%lx; ESR: 0x%lx; EC: 0x%lx; EC expected: 0x%lx",
323 			regs->pc, esr, ec, expected_ec);
324 
325 	/* skip the trapping instruction */
326 	regs->pc += 4;
327 
328 	/* Use INVALID_EC to indicate an exception occurred */
329 	expected_ec = INVALID_EC;
330 }
331 
332 /*
333  * Run the given operation that should trigger an exception with the
334  * given exception class. The exception handler (guest_sync_handler)
335  * will reset op_end_addr to 0, expected_ec to INVALID_EC, and skip
336  * the instruction that trapped.
337  */
338 #define TEST_EXCEPTION(ec, ops)				\
339 ({							\
340 	GUEST_ASSERT(ec != INVALID_EC);			\
341 	WRITE_ONCE(expected_ec, ec);			\
342 	dsb(ish);					\
343 	ops;						\
344 	GUEST_ASSERT(expected_ec == INVALID_EC);	\
345 })
346 
347 /*
348  * Tests for reading/writing registers for the unimplemented event counter
349  * specified by @pmc_idx (>= PMCR_EL0.N).
350  */
351 static void test_access_invalid_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
352 {
353 	/*
354 	 * Reading/writing the event count/type registers should cause
355 	 * an UNDEFINED exception.
356 	 */
357 	TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_cntr(pmc_idx));
358 	TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_cntr(pmc_idx, 0));
359 	TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_typer(pmc_idx));
360 	TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_typer(pmc_idx, 0));
361 	/*
362 	 * The bit corresponding to the (unimplemented) counter in
363 	 * {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers should be RAZ.
364 	 */
365 	test_bitmap_pmu_regs(pmc_idx, 1);
366 	test_bitmap_pmu_regs(pmc_idx, 0);
367 }
368 
369 /*
370  * The guest is configured with PMUv3 with @expected_pmcr_n number of
371  * event counters.
372  * Check if @expected_pmcr_n is consistent with PMCR_EL0.N, and
373  * if reading/writing PMU registers for implemented or unimplemented
374  * counters works as expected.
375  */
376 static void guest_code(uint64_t expected_pmcr_n)
377 {
378 	uint64_t pmcr, pmcr_n, unimp_mask;
379 	int i, pmc;
380 
381 	__GUEST_ASSERT(expected_pmcr_n <= ARMV8_PMU_MAX_GENERAL_COUNTERS,
382 			"Expected PMCR.N: 0x%lx; ARMv8 general counters: 0x%lx",
383 			expected_pmcr_n, ARMV8_PMU_MAX_GENERAL_COUNTERS);
384 
385 	pmcr = read_sysreg(pmcr_el0);
386 	pmcr_n = get_pmcr_n(pmcr);
387 
388 	/* Make sure that PMCR_EL0.N indicates the value userspace set */
389 	__GUEST_ASSERT(pmcr_n == expected_pmcr_n,
390 			"Expected PMCR.N: 0x%lx, PMCR.N: 0x%lx",
391 			expected_pmcr_n, pmcr_n);
392 
393 	/*
394 	 * Make sure that (RAZ) bits corresponding to unimplemented event
395 	 * counters in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers are reset
396 	 * to zero.
397 	 * (NOTE: bits for implemented event counters are reset to UNKNOWN)
398 	 */
399 	unimp_mask = GENMASK_ULL(ARMV8_PMU_MAX_GENERAL_COUNTERS - 1, pmcr_n);
400 	check_bitmap_pmu_regs(unimp_mask, false);
401 
402 	/*
403 	 * Tests for reading/writing PMU registers for implemented counters.
404 	 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
405 	 */
406 	for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
407 		for (pmc = 0; pmc < pmcr_n; pmc++)
408 			test_access_pmc_regs(&pmc_accessors[i], pmc);
409 	}
410 
411 	/*
412 	 * Tests for reading/writing PMU registers for unimplemented counters.
413 	 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
414 	 */
415 	for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
416 		for (pmc = pmcr_n; pmc < ARMV8_PMU_MAX_GENERAL_COUNTERS; pmc++)
417 			test_access_invalid_pmc_regs(&pmc_accessors[i], pmc);
418 	}
419 
420 	GUEST_DONE();
421 }
422 
423 #define GICD_BASE_GPA	0x8000000ULL
424 #define GICR_BASE_GPA	0x80A0000ULL
425 
426 /* Create a VM that has one vCPU with PMUv3 configured. */
427 static void create_vpmu_vm(void *guest_code)
428 {
429 	struct kvm_vcpu_init init;
430 	uint8_t pmuver, ec;
431 	uint64_t dfr0, irq = 23;
432 	struct kvm_device_attr irq_attr = {
433 		.group = KVM_ARM_VCPU_PMU_V3_CTRL,
434 		.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
435 		.addr = (uint64_t)&irq,
436 	};
437 	struct kvm_device_attr init_attr = {
438 		.group = KVM_ARM_VCPU_PMU_V3_CTRL,
439 		.attr = KVM_ARM_VCPU_PMU_V3_INIT,
440 	};
441 
442 	/* The test creates the vpmu_vm multiple times. Ensure a clean state */
443 	memset(&vpmu_vm, 0, sizeof(vpmu_vm));
444 
445 	vpmu_vm.vm = vm_create(1);
446 	vm_init_descriptor_tables(vpmu_vm.vm);
447 	for (ec = 0; ec < ESR_EC_NUM; ec++) {
448 		vm_install_sync_handler(vpmu_vm.vm, VECTOR_SYNC_CURRENT, ec,
449 					guest_sync_handler);
450 	}
451 
452 	/* Create vCPU with PMUv3 */
453 	vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
454 	init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
455 	vpmu_vm.vcpu = aarch64_vcpu_add(vpmu_vm.vm, 0, &init, guest_code);
456 	vcpu_init_descriptor_tables(vpmu_vm.vcpu);
457 	vpmu_vm.gic_fd = vgic_v3_setup(vpmu_vm.vm, 1, 64,
458 					GICD_BASE_GPA, GICR_BASE_GPA);
459 	__TEST_REQUIRE(vpmu_vm.gic_fd >= 0,
460 		       "Failed to create vgic-v3, skipping");
461 
462 	/* Make sure that PMUv3 support is indicated in the ID register */
463 	vcpu_get_reg(vpmu_vm.vcpu,
464 		     KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &dfr0);
465 	pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0);
466 	TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF &&
467 		    pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP,
468 		    "Unexpected PMUVER (0x%x) on the vCPU with PMUv3", pmuver);
469 
470 	/* Initialize vPMU */
471 	vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &irq_attr);
472 	vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &init_attr);
473 }
474 
475 static void destroy_vpmu_vm(void)
476 {
477 	close(vpmu_vm.gic_fd);
478 	kvm_vm_free(vpmu_vm.vm);
479 }
480 
481 static void run_vcpu(struct kvm_vcpu *vcpu, uint64_t pmcr_n)
482 {
483 	struct ucall uc;
484 
485 	vcpu_args_set(vcpu, 1, pmcr_n);
486 	vcpu_run(vcpu);
487 	switch (get_ucall(vcpu, &uc)) {
488 	case UCALL_ABORT:
489 		REPORT_GUEST_ASSERT(uc);
490 		break;
491 	case UCALL_DONE:
492 		break;
493 	default:
494 		TEST_FAIL("Unknown ucall %lu", uc.cmd);
495 		break;
496 	}
497 }
498 
499 static void test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n, bool expect_fail)
500 {
501 	struct kvm_vcpu *vcpu;
502 	uint64_t pmcr, pmcr_orig;
503 
504 	create_vpmu_vm(guest_code);
505 	vcpu = vpmu_vm.vcpu;
506 
507 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr_orig);
508 	pmcr = pmcr_orig;
509 
510 	/*
511 	 * Setting a larger value of PMCR.N should not modify the field, and
512 	 * return a success.
513 	 */
514 	set_pmcr_n(&pmcr, pmcr_n);
515 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), pmcr);
516 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
517 
518 	if (expect_fail)
519 		TEST_ASSERT(pmcr_orig == pmcr,
520 			    "PMCR.N modified by KVM to a larger value (PMCR: 0x%lx) for pmcr_n: 0x%lx\n",
521 			    pmcr, pmcr_n);
522 	else
523 		TEST_ASSERT(pmcr_n == get_pmcr_n(pmcr),
524 			    "Failed to update PMCR.N to %lu (received: %lu)\n",
525 			    pmcr_n, get_pmcr_n(pmcr));
526 }
527 
528 /*
529  * Create a guest with one vCPU, set the PMCR_EL0.N for the vCPU to @pmcr_n,
530  * and run the test.
531  */
532 static void run_access_test(uint64_t pmcr_n)
533 {
534 	uint64_t sp;
535 	struct kvm_vcpu *vcpu;
536 	struct kvm_vcpu_init init;
537 
538 	pr_debug("Test with pmcr_n %lu\n", pmcr_n);
539 
540 	test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
541 	vcpu = vpmu_vm.vcpu;
542 
543 	/* Save the initial sp to restore them later to run the guest again */
544 	vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1), &sp);
545 
546 	run_vcpu(vcpu, pmcr_n);
547 
548 	/*
549 	 * Reset and re-initialize the vCPU, and run the guest code again to
550 	 * check if PMCR_EL0.N is preserved.
551 	 */
552 	vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
553 	init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
554 	aarch64_vcpu_setup(vcpu, &init);
555 	vcpu_init_descriptor_tables(vcpu);
556 	vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), sp);
557 	vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
558 
559 	run_vcpu(vcpu, pmcr_n);
560 
561 	destroy_vpmu_vm();
562 }
563 
564 static struct pmreg_sets validity_check_reg_sets[] = {
565 	PMREG_SET(SYS_PMCNTENSET_EL0, SYS_PMCNTENCLR_EL0),
566 	PMREG_SET(SYS_PMINTENSET_EL1, SYS_PMINTENCLR_EL1),
567 	PMREG_SET(SYS_PMOVSSET_EL0, SYS_PMOVSCLR_EL0),
568 };
569 
570 /*
571  * Create a VM, and check if KVM handles the userspace accesses of
572  * the PMU register sets in @validity_check_reg_sets[] correctly.
573  */
574 static void run_pmregs_validity_test(uint64_t pmcr_n)
575 {
576 	int i;
577 	struct kvm_vcpu *vcpu;
578 	uint64_t set_reg_id, clr_reg_id, reg_val;
579 	uint64_t valid_counters_mask, max_counters_mask;
580 
581 	test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
582 	vcpu = vpmu_vm.vcpu;
583 
584 	valid_counters_mask = get_counters_mask(pmcr_n);
585 	max_counters_mask = get_counters_mask(ARMV8_PMU_MAX_COUNTERS);
586 
587 	for (i = 0; i < ARRAY_SIZE(validity_check_reg_sets); i++) {
588 		set_reg_id = validity_check_reg_sets[i].set_reg_id;
589 		clr_reg_id = validity_check_reg_sets[i].clr_reg_id;
590 
591 		/*
592 		 * Test if the 'set' and 'clr' variants of the registers
593 		 * are initialized based on the number of valid counters.
594 		 */
595 		vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), &reg_val);
596 		TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
597 			    "Initial read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
598 			    KVM_ARM64_SYS_REG(set_reg_id), reg_val);
599 
600 		vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), &reg_val);
601 		TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
602 			    "Initial read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
603 			    KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
604 
605 		/*
606 		 * Using the 'set' variant, force-set the register to the
607 		 * max number of possible counters and test if KVM discards
608 		 * the bits for unimplemented counters as it should.
609 		 */
610 		vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), max_counters_mask);
611 
612 		vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), &reg_val);
613 		TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
614 			    "Read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
615 			    KVM_ARM64_SYS_REG(set_reg_id), reg_val);
616 
617 		vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), &reg_val);
618 		TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
619 			    "Read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
620 			    KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
621 	}
622 
623 	destroy_vpmu_vm();
624 }
625 
626 /*
627  * Create a guest with one vCPU, and attempt to set the PMCR_EL0.N for
628  * the vCPU to @pmcr_n, which is larger than the host value.
629  * The attempt should fail as @pmcr_n is too big to set for the vCPU.
630  */
631 static void run_error_test(uint64_t pmcr_n)
632 {
633 	pr_debug("Error test with pmcr_n %lu (larger than the host)\n", pmcr_n);
634 
635 	test_create_vpmu_vm_with_pmcr_n(pmcr_n, true);
636 	destroy_vpmu_vm();
637 }
638 
639 /*
640  * Return the default number of implemented PMU event counters excluding
641  * the cycle counter (i.e. PMCR_EL0.N value) for the guest.
642  */
643 static uint64_t get_pmcr_n_limit(void)
644 {
645 	uint64_t pmcr;
646 
647 	create_vpmu_vm(guest_code);
648 	vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
649 	destroy_vpmu_vm();
650 	return get_pmcr_n(pmcr);
651 }
652 
653 int main(void)
654 {
655 	uint64_t i, pmcr_n;
656 
657 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_PMU_V3));
658 
659 	pmcr_n = get_pmcr_n_limit();
660 	for (i = 0; i <= pmcr_n; i++) {
661 		run_access_test(i);
662 		run_pmregs_validity_test(i);
663 	}
664 
665 	for (i = pmcr_n + 1; i < ARMV8_PMU_MAX_COUNTERS; i++)
666 		run_error_test(i);
667 
668 	return 0;
669 }
670