xref: /linux/tools/testing/selftests/kvm/aarch64/set_id_regs.c (revision c7546e2c3cb739a3c1a2f5acaf9bb629d401afe5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 enum ftr_type {
19 	FTR_EXACT,			/* Use a predefined safe value */
20 	FTR_LOWER_SAFE,			/* Smaller value is safe */
21 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
22 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
23 	FTR_END,			/* Mark the last ftr bits */
24 };
25 
26 #define FTR_SIGNED	true	/* Value should be treated as signed */
27 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
28 
29 struct reg_ftr_bits {
30 	char *name;
31 	bool sign;
32 	enum ftr_type type;
33 	uint8_t shift;
34 	uint64_t mask;
35 	/*
36 	 * For FTR_EXACT, safe_val is used as the exact safe value.
37 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
38 	 */
39 	int64_t safe_val;
40 };
41 
42 struct test_feature_reg {
43 	uint32_t reg;
44 	const struct reg_ftr_bits *ftr_bits;
45 };
46 
47 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
48 	{								\
49 		.name = #NAME,						\
50 		.sign = SIGNED,						\
51 		.type = TYPE,						\
52 		.shift = SHIFT,						\
53 		.mask = MASK,						\
54 		.safe_val = SAFE_VAL,					\
55 	}
56 
57 #define REG_FTR_BITS(type, reg, field, safe_val) \
58 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
59 		       reg##_##field##_MASK, safe_val)
60 
61 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
62 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
63 		       reg##_##field##_MASK, safe_val)
64 
65 #define REG_FTR_END					\
66 	{						\
67 		.type = FTR_END,			\
68 	}
69 
70 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
71 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
72 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
73 	REG_FTR_END,
74 };
75 
76 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
77 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
78 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
79 	REG_FTR_END,
80 };
81 
82 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
83 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
84 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
85 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
86 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
98 	REG_FTR_END,
99 };
100 
101 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
102 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
103 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
104 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
105 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
114 	REG_FTR_END,
115 };
116 
117 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
118 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
119 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
120 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
121 	REG_FTR_END,
122 };
123 
124 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
125 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
126 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
127 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
128 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
129 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
130 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 0),
131 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 0),
132 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 0),
133 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 0),
134 	REG_FTR_END,
135 };
136 
137 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
138 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
139 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
140 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
141 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
142 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
143 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
144 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
145 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
146 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ASIDBITS, 0),
147 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
148 	REG_FTR_END,
149 };
150 
151 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
152 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
153 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
154 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
155 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
156 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
157 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
158 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
159 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
160 	REG_FTR_END,
161 };
162 
163 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
164 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
165 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
166 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
167 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
168 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
169 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
170 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
171 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
172 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
173 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
174 	REG_FTR_END,
175 };
176 
177 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
180 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
181 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
182 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
183 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
184 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
185 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
186 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
187 	REG_FTR_END,
188 };
189 
190 #define TEST_REG(id, table)			\
191 	{					\
192 		.reg = id,			\
193 		.ftr_bits = &((table)[0]),	\
194 	}
195 
196 static struct test_feature_reg test_regs[] = {
197 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
198 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
199 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
200 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
201 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
202 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
203 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
204 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
205 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
206 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
207 };
208 
209 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
210 
211 static void guest_code(void)
212 {
213 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
214 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
215 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
216 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
217 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
218 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
219 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
220 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
221 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
222 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
223 	GUEST_REG_SYNC(SYS_CTR_EL0);
224 
225 	GUEST_DONE();
226 }
227 
228 /* Return a safe value to a given ftr_bits an ftr value */
229 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
230 {
231 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
232 
233 	if (ftr_bits->sign == FTR_UNSIGNED) {
234 		switch (ftr_bits->type) {
235 		case FTR_EXACT:
236 			ftr = ftr_bits->safe_val;
237 			break;
238 		case FTR_LOWER_SAFE:
239 			if (ftr > ftr_bits->safe_val)
240 				ftr--;
241 			break;
242 		case FTR_HIGHER_SAFE:
243 			if (ftr < ftr_max)
244 				ftr++;
245 			break;
246 		case FTR_HIGHER_OR_ZERO_SAFE:
247 			if (ftr == ftr_max)
248 				ftr = 0;
249 			else if (ftr != 0)
250 				ftr++;
251 			break;
252 		default:
253 			break;
254 		}
255 	} else if (ftr != ftr_max) {
256 		switch (ftr_bits->type) {
257 		case FTR_EXACT:
258 			ftr = ftr_bits->safe_val;
259 			break;
260 		case FTR_LOWER_SAFE:
261 			if (ftr > ftr_bits->safe_val)
262 				ftr--;
263 			break;
264 		case FTR_HIGHER_SAFE:
265 			if (ftr < ftr_max - 1)
266 				ftr++;
267 			break;
268 		case FTR_HIGHER_OR_ZERO_SAFE:
269 			if (ftr != 0 && ftr != ftr_max - 1)
270 				ftr++;
271 			break;
272 		default:
273 			break;
274 		}
275 	}
276 
277 	return ftr;
278 }
279 
280 /* Return an invalid value to a given ftr_bits an ftr value */
281 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
282 {
283 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
284 
285 	if (ftr_bits->sign == FTR_UNSIGNED) {
286 		switch (ftr_bits->type) {
287 		case FTR_EXACT:
288 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
289 			break;
290 		case FTR_LOWER_SAFE:
291 			ftr++;
292 			break;
293 		case FTR_HIGHER_SAFE:
294 			ftr--;
295 			break;
296 		case FTR_HIGHER_OR_ZERO_SAFE:
297 			if (ftr == 0)
298 				ftr = ftr_max;
299 			else
300 				ftr--;
301 			break;
302 		default:
303 			break;
304 		}
305 	} else if (ftr != ftr_max) {
306 		switch (ftr_bits->type) {
307 		case FTR_EXACT:
308 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
309 			break;
310 		case FTR_LOWER_SAFE:
311 			ftr++;
312 			break;
313 		case FTR_HIGHER_SAFE:
314 			ftr--;
315 			break;
316 		case FTR_HIGHER_OR_ZERO_SAFE:
317 			if (ftr == 0)
318 				ftr = ftr_max - 1;
319 			else
320 				ftr--;
321 			break;
322 		default:
323 			break;
324 		}
325 	} else {
326 		ftr = 0;
327 	}
328 
329 	return ftr;
330 }
331 
332 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
333 				     const struct reg_ftr_bits *ftr_bits)
334 {
335 	uint8_t shift = ftr_bits->shift;
336 	uint64_t mask = ftr_bits->mask;
337 	uint64_t val, new_val, ftr;
338 
339 	vcpu_get_reg(vcpu, reg, &val);
340 	ftr = (val & mask) >> shift;
341 
342 	ftr = get_safe_value(ftr_bits, ftr);
343 
344 	ftr <<= shift;
345 	val &= ~mask;
346 	val |= ftr;
347 
348 	vcpu_set_reg(vcpu, reg, val);
349 	vcpu_get_reg(vcpu, reg, &new_val);
350 	TEST_ASSERT_EQ(new_val, val);
351 
352 	return new_val;
353 }
354 
355 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
356 			      const struct reg_ftr_bits *ftr_bits)
357 {
358 	uint8_t shift = ftr_bits->shift;
359 	uint64_t mask = ftr_bits->mask;
360 	uint64_t val, old_val, ftr;
361 	int r;
362 
363 	vcpu_get_reg(vcpu, reg, &val);
364 	ftr = (val & mask) >> shift;
365 
366 	ftr = get_invalid_value(ftr_bits, ftr);
367 
368 	old_val = val;
369 	ftr <<= shift;
370 	val &= ~mask;
371 	val |= ftr;
372 
373 	r = __vcpu_set_reg(vcpu, reg, val);
374 	TEST_ASSERT(r < 0 && errno == EINVAL,
375 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
376 
377 	vcpu_get_reg(vcpu, reg, &val);
378 	TEST_ASSERT_EQ(val, old_val);
379 }
380 
381 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
382 
383 #define encoding_to_range_idx(encoding)							\
384 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
385 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
386 				     sys_reg_Op2(encoding))
387 
388 
389 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
390 {
391 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
392 	struct reg_mask_range range = {
393 		.addr = (__u64)masks,
394 	};
395 	int ret;
396 
397 	/* KVM should return error when reserved field is not zero */
398 	range.reserved[0] = 1;
399 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
400 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
401 
402 	/* Get writable masks for feature ID registers */
403 	memset(range.reserved, 0, sizeof(range.reserved));
404 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
405 
406 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
407 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
408 		uint32_t reg_id = test_regs[i].reg;
409 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
410 		int idx;
411 
412 		/* Get the index to masks array for the idreg */
413 		idx = encoding_to_range_idx(reg_id);
414 
415 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
416 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
417 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
418 				ksft_test_result_skip("%s on AARCH64 only system\n",
419 						      ftr_bits[j].name);
420 				continue;
421 			}
422 
423 			/* Make sure the feature field is writable */
424 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
425 
426 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
427 
428 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
429 								  &ftr_bits[j]);
430 
431 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
432 		}
433 	}
434 }
435 
436 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
437 {
438 	bool done = false;
439 	struct ucall uc;
440 
441 	while (!done) {
442 		vcpu_run(vcpu);
443 
444 		switch (get_ucall(vcpu, &uc)) {
445 		case UCALL_ABORT:
446 			REPORT_GUEST_ASSERT(uc);
447 			break;
448 		case UCALL_SYNC:
449 			/* Make sure the written values are seen by guest */
450 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
451 				       uc.args[3]);
452 			break;
453 		case UCALL_DONE:
454 			done = true;
455 			break;
456 		default:
457 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
458 		}
459 	}
460 }
461 
462 /* Politely lifted from arch/arm64/include/asm/cache.h */
463 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
464 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
465 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
466 #define CLIDR_CTYPE(clidr, level)	\
467 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
468 
469 static void test_clidr(struct kvm_vcpu *vcpu)
470 {
471 	uint64_t clidr;
472 	int level;
473 
474 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), &clidr);
475 
476 	/* find the first empty level in the cache hierarchy */
477 	for (level = 1; level < 7; level++) {
478 		if (!CLIDR_CTYPE(clidr, level))
479 			break;
480 	}
481 
482 	/*
483 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
484 	 * get to fix this.
485 	 */
486 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
487 
488 	/* stick in a unified cache level */
489 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
490 
491 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
492 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
493 }
494 
495 static void test_ctr(struct kvm_vcpu *vcpu)
496 {
497 	u64 ctr;
498 
499 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), &ctr);
500 	ctr &= ~CTR_EL0_DIC_MASK;
501 	if (ctr & CTR_EL0_IminLine_MASK)
502 		ctr--;
503 
504 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
505 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
506 }
507 
508 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
509 {
510 	u64 val;
511 
512 	test_clidr(vcpu);
513 	test_ctr(vcpu);
514 
515 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &val);
516 	val++;
517 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), val);
518 
519 	test_reg_vals[encoding_to_range_idx(SYS_MPIDR_EL1)] = val;
520 	ksft_test_result_pass("%s\n", __func__);
521 }
522 
523 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
524 {
525 	size_t idx = encoding_to_range_idx(encoding);
526 	uint64_t observed;
527 
528 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding), &observed);
529 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
530 }
531 
532 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
533 {
534 	/*
535 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
536 	 * architectural reset of the vCPU.
537 	 */
538 	aarch64_vcpu_setup(vcpu, NULL);
539 
540 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
541 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
542 
543 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
544 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
545 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
546 
547 	ksft_test_result_pass("%s\n", __func__);
548 }
549 
550 int main(void)
551 {
552 	struct kvm_vcpu *vcpu;
553 	struct kvm_vm *vm;
554 	bool aarch64_only;
555 	uint64_t val, el0;
556 	int test_cnt;
557 
558 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
559 
560 	vm = vm_create_with_one_vcpu(&vcpu, guest_code);
561 
562 	/* Check for AARCH64 only system */
563 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val);
564 	el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
565 	aarch64_only = (el0 == ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
566 
567 	ksft_print_header();
568 
569 	test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) +
570 		   ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) +
571 		   ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) +
572 		   ARRAY_SIZE(ftr_id_aa64mmfr0_el1) + ARRAY_SIZE(ftr_id_aa64mmfr1_el1) +
573 		   ARRAY_SIZE(ftr_id_aa64mmfr2_el1) + ARRAY_SIZE(ftr_id_aa64zfr0_el1) -
574 		   ARRAY_SIZE(test_regs) + 2;
575 
576 	ksft_set_plan(test_cnt);
577 
578 	test_vm_ftr_id_regs(vcpu, aarch64_only);
579 	test_vcpu_ftr_id_regs(vcpu);
580 
581 	test_guest_reg_read(vcpu);
582 
583 	test_reset_preserves_id_regs(vcpu);
584 
585 	kvm_vm_free(vm);
586 
587 	ksft_finished();
588 }
589