1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <linux/unistd.h> 26 #include <linux/filter.h> 27 #include <linux/bpf_perf_event.h> 28 #include <linux/bpf.h> 29 #include <linux/if_ether.h> 30 #include <linux/btf.h> 31 32 #include <bpf/btf.h> 33 #include <bpf/bpf.h> 34 #include <bpf/libbpf.h> 35 36 #ifdef HAVE_GENHDR 37 # include "autoconf.h" 38 #else 39 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 40 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 41 # endif 42 #endif 43 #include "cap_helpers.h" 44 #include "bpf_rand.h" 45 #include "bpf_util.h" 46 #include "test_btf.h" 47 #include "../../../include/linux/filter.h" 48 49 #ifndef ENOTSUPP 50 #define ENOTSUPP 524 51 #endif 52 53 #define MAX_INSNS BPF_MAXINSNS 54 #define MAX_EXPECTED_INSNS 32 55 #define MAX_UNEXPECTED_INSNS 32 56 #define MAX_TEST_INSNS 1000000 57 #define MAX_FIXUPS 8 58 #define MAX_NR_MAPS 23 59 #define MAX_TEST_RUNS 8 60 #define POINTER_VALUE 0xcafe4all 61 #define TEST_DATA_LEN 64 62 #define MAX_FUNC_INFOS 8 63 #define MAX_BTF_STRINGS 256 64 #define MAX_BTF_TYPES 256 65 66 #define INSN_OFF_MASK ((__s16)0xFFFF) 67 #define INSN_IMM_MASK ((__s32)0xFFFFFFFF) 68 #define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef) 69 70 #define DEFAULT_LIBBPF_LOG_LEVEL 4 71 72 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 73 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 74 75 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 76 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \ 77 1ULL << CAP_PERFMON | \ 78 1ULL << CAP_BPF) 79 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 80 static bool unpriv_disabled = false; 81 static int skips; 82 static bool verbose = false; 83 static int verif_log_level = 0; 84 85 struct kfunc_btf_id_pair { 86 const char *kfunc; 87 int insn_idx; 88 }; 89 90 struct bpf_test { 91 const char *descr; 92 struct bpf_insn insns[MAX_INSNS]; 93 struct bpf_insn *fill_insns; 94 /* If specified, test engine looks for this sequence of 95 * instructions in the BPF program after loading. Allows to 96 * test rewrites applied by verifier. Use values 97 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm` 98 * fields if content does not matter. The test case fails if 99 * specified instructions are not found. 100 * 101 * The sequence could be split into sub-sequences by adding 102 * SKIP_INSNS instruction at the end of each sub-sequence. In 103 * such case sub-sequences are searched for one after another. 104 */ 105 struct bpf_insn expected_insns[MAX_EXPECTED_INSNS]; 106 /* If specified, test engine applies same pattern matching 107 * logic as for `expected_insns`. If the specified pattern is 108 * matched test case is marked as failed. 109 */ 110 struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS]; 111 int fixup_map_hash_8b[MAX_FIXUPS]; 112 int fixup_map_hash_48b[MAX_FIXUPS]; 113 int fixup_map_hash_16b[MAX_FIXUPS]; 114 int fixup_map_array_48b[MAX_FIXUPS]; 115 int fixup_map_sockmap[MAX_FIXUPS]; 116 int fixup_map_sockhash[MAX_FIXUPS]; 117 int fixup_map_xskmap[MAX_FIXUPS]; 118 int fixup_map_stacktrace[MAX_FIXUPS]; 119 int fixup_prog1[MAX_FIXUPS]; 120 int fixup_prog2[MAX_FIXUPS]; 121 int fixup_map_in_map[MAX_FIXUPS]; 122 int fixup_cgroup_storage[MAX_FIXUPS]; 123 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 124 int fixup_map_spin_lock[MAX_FIXUPS]; 125 int fixup_map_array_ro[MAX_FIXUPS]; 126 int fixup_map_array_wo[MAX_FIXUPS]; 127 int fixup_map_array_small[MAX_FIXUPS]; 128 int fixup_sk_storage_map[MAX_FIXUPS]; 129 int fixup_map_event_output[MAX_FIXUPS]; 130 int fixup_map_reuseport_array[MAX_FIXUPS]; 131 int fixup_map_ringbuf[MAX_FIXUPS]; 132 int fixup_map_timer[MAX_FIXUPS]; 133 int fixup_map_kptr[MAX_FIXUPS]; 134 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; 135 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 136 * Can be a tab-separated sequence of expected strings. An empty string 137 * means no log verification. 138 */ 139 const char *errstr; 140 const char *errstr_unpriv; 141 uint32_t insn_processed; 142 int prog_len; 143 enum { 144 UNDEF, 145 ACCEPT, 146 REJECT, 147 VERBOSE_ACCEPT, 148 } result, result_unpriv; 149 enum bpf_prog_type prog_type; 150 uint8_t flags; 151 void (*fill_helper)(struct bpf_test *self); 152 int runs; 153 #define bpf_testdata_struct_t \ 154 struct { \ 155 uint32_t retval, retval_unpriv; \ 156 union { \ 157 __u8 data[TEST_DATA_LEN]; \ 158 __u64 data64[TEST_DATA_LEN / 8]; \ 159 }; \ 160 } 161 union { 162 bpf_testdata_struct_t; 163 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 164 }; 165 enum bpf_attach_type expected_attach_type; 166 const char *kfunc; 167 struct bpf_func_info func_info[MAX_FUNC_INFOS]; 168 int func_info_cnt; 169 char btf_strings[MAX_BTF_STRINGS]; 170 /* A set of BTF types to load when specified, 171 * use macro definitions from test_btf.h, 172 * must end with BTF_END_RAW 173 */ 174 __u32 btf_types[MAX_BTF_TYPES]; 175 }; 176 177 /* Note we want this to be 64 bit aligned so that the end of our array is 178 * actually the end of the structure. 179 */ 180 #define MAX_ENTRIES 11 181 182 struct test_val { 183 unsigned int index; 184 int foo[MAX_ENTRIES]; 185 }; 186 187 struct other_val { 188 long long foo; 189 long long bar; 190 }; 191 192 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 193 { 194 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 195 #define PUSH_CNT 51 196 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 197 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 198 struct bpf_insn *insn = self->fill_insns; 199 int i = 0, j, k = 0; 200 201 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 202 loop: 203 for (j = 0; j < PUSH_CNT; j++) { 204 insn[i++] = BPF_LD_ABS(BPF_B, 0); 205 /* jump to error label */ 206 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 207 i++; 208 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 209 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 210 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 211 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 212 BPF_FUNC_skb_vlan_push); 213 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 214 i++; 215 } 216 217 for (j = 0; j < PUSH_CNT; j++) { 218 insn[i++] = BPF_LD_ABS(BPF_B, 0); 219 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 220 i++; 221 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 222 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 223 BPF_FUNC_skb_vlan_pop); 224 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 225 i++; 226 } 227 if (++k < 5) 228 goto loop; 229 230 for (; i < len - 3; i++) 231 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 232 insn[len - 3] = BPF_JMP_A(1); 233 /* error label */ 234 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 235 insn[len - 1] = BPF_EXIT_INSN(); 236 self->prog_len = len; 237 } 238 239 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 240 { 241 struct bpf_insn *insn = self->fill_insns; 242 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 243 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 244 * to extend the error value of the inlined ld_abs sequence which then 245 * contains 7 insns. so, set the dividend to 7 so the testcase could 246 * work on all arches. 247 */ 248 unsigned int len = (1 << 15) / 7; 249 int i = 0; 250 251 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 252 insn[i++] = BPF_LD_ABS(BPF_B, 0); 253 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 254 i++; 255 while (i < len - 1) 256 insn[i++] = BPF_LD_ABS(BPF_B, 1); 257 insn[i] = BPF_EXIT_INSN(); 258 self->prog_len = i + 1; 259 } 260 261 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 262 { 263 struct bpf_insn *insn = self->fill_insns; 264 uint64_t res = 0; 265 int i = 0; 266 267 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 268 while (i < self->retval) { 269 uint64_t val = bpf_semi_rand_get(); 270 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 271 272 res ^= val; 273 insn[i++] = tmp[0]; 274 insn[i++] = tmp[1]; 275 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 276 } 277 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 278 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 279 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 280 insn[i] = BPF_EXIT_INSN(); 281 self->prog_len = i + 1; 282 res ^= (res >> 32); 283 self->retval = (uint32_t)res; 284 } 285 286 #define MAX_JMP_SEQ 8192 287 288 /* test the sequence of 8k jumps */ 289 static void bpf_fill_scale1(struct bpf_test *self) 290 { 291 struct bpf_insn *insn = self->fill_insns; 292 int i = 0, k = 0; 293 294 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 295 /* test to check that the long sequence of jumps is acceptable */ 296 while (k++ < MAX_JMP_SEQ) { 297 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 298 BPF_FUNC_get_prandom_u32); 299 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 300 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 301 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 302 -8 * (k % 64 + 1)); 303 } 304 /* is_state_visited() doesn't allocate state for pruning for every jump. 305 * Hence multiply jmps by 4 to accommodate that heuristic 306 */ 307 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 308 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 309 insn[i] = BPF_EXIT_INSN(); 310 self->prog_len = i + 1; 311 self->retval = 42; 312 } 313 314 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 315 static void bpf_fill_scale2(struct bpf_test *self) 316 { 317 struct bpf_insn *insn = self->fill_insns; 318 int i = 0, k = 0; 319 320 #define FUNC_NEST 7 321 for (k = 0; k < FUNC_NEST; k++) { 322 insn[i++] = BPF_CALL_REL(1); 323 insn[i++] = BPF_EXIT_INSN(); 324 } 325 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 326 /* test to check that the long sequence of jumps is acceptable */ 327 k = 0; 328 while (k++ < MAX_JMP_SEQ) { 329 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 330 BPF_FUNC_get_prandom_u32); 331 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 332 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 333 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 334 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 335 } 336 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 337 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 338 insn[i] = BPF_EXIT_INSN(); 339 self->prog_len = i + 1; 340 self->retval = 42; 341 } 342 343 static void bpf_fill_scale(struct bpf_test *self) 344 { 345 switch (self->retval) { 346 case 1: 347 return bpf_fill_scale1(self); 348 case 2: 349 return bpf_fill_scale2(self); 350 default: 351 self->prog_len = 0; 352 break; 353 } 354 } 355 356 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 357 { 358 unsigned int len = 259, hlen = 128; 359 int i; 360 361 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 362 for (i = 1; i <= hlen; i++) { 363 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 364 insn[i + hlen] = BPF_JMP_A(hlen - i); 365 } 366 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 367 insn[len - 1] = BPF_EXIT_INSN(); 368 369 return len; 370 } 371 372 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 373 { 374 unsigned int len = 4100, jmp_off = 2048; 375 int i, j; 376 377 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 378 for (i = 1; i <= jmp_off; i++) { 379 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 380 } 381 insn[i++] = BPF_JMP_A(jmp_off); 382 for (; i <= jmp_off * 2 + 1; i+=16) { 383 for (j = 0; j < 16; j++) { 384 insn[i + j] = BPF_JMP_A(16 - j - 1); 385 } 386 } 387 388 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 389 insn[len - 1] = BPF_EXIT_INSN(); 390 391 return len; 392 } 393 394 static void bpf_fill_torturous_jumps(struct bpf_test *self) 395 { 396 struct bpf_insn *insn = self->fill_insns; 397 int i = 0; 398 399 switch (self->retval) { 400 case 1: 401 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 402 return; 403 case 2: 404 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 405 return; 406 case 3: 407 /* main */ 408 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 409 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 410 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 411 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 412 insn[i++] = BPF_EXIT_INSN(); 413 414 /* subprog 1 */ 415 i += bpf_fill_torturous_jumps_insn_1(insn + i); 416 417 /* subprog 2 */ 418 i += bpf_fill_torturous_jumps_insn_2(insn + i); 419 420 self->prog_len = i; 421 return; 422 default: 423 self->prog_len = 0; 424 break; 425 } 426 } 427 428 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self) 429 { 430 struct bpf_insn *insn = self->fill_insns; 431 /* This test was added to catch a specific use after free 432 * error, which happened upon BPF program reallocation. 433 * Reallocation is handled by core.c:bpf_prog_realloc, which 434 * reuses old memory if page boundary is not crossed. The 435 * value of `len` is chosen to cross this boundary on bpf_loop 436 * patching. 437 */ 438 const int len = getpagesize() - 25; 439 int callback_load_idx; 440 int callback_idx; 441 int i = 0; 442 443 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1); 444 callback_load_idx = i; 445 insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 446 BPF_REG_2, BPF_PSEUDO_FUNC, 0, 447 777 /* filled below */); 448 insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0); 449 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0); 450 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0); 451 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop); 452 453 while (i < len - 3) 454 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 455 insn[i++] = BPF_EXIT_INSN(); 456 457 callback_idx = i; 458 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 459 insn[i++] = BPF_EXIT_INSN(); 460 461 insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1; 462 self->func_info[1].insn_off = callback_idx; 463 self->prog_len = i; 464 assert(i == len); 465 } 466 467 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 468 #define BPF_SK_LOOKUP(func) \ 469 /* struct bpf_sock_tuple tuple = {} */ \ 470 BPF_MOV64_IMM(BPF_REG_2, 0), \ 471 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 472 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 473 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 474 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 475 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 476 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 477 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 478 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 479 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 480 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 481 BPF_MOV64_IMM(BPF_REG_4, 0), \ 482 BPF_MOV64_IMM(BPF_REG_5, 0), \ 483 BPF_EMIT_CALL(BPF_FUNC_ ## func) 484 485 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 486 * value into 0 and does necessary preparation for direct packet access 487 * through r2. The allowed access range is 8 bytes. 488 */ 489 #define BPF_DIRECT_PKT_R2 \ 490 BPF_MOV64_IMM(BPF_REG_0, 0), \ 491 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 492 offsetof(struct __sk_buff, data)), \ 493 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 494 offsetof(struct __sk_buff, data_end)), \ 495 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 496 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 497 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 498 BPF_EXIT_INSN() 499 500 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 501 * positive u32, and zero-extend it into 64-bit. 502 */ 503 #define BPF_RAND_UEXT_R7 \ 504 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 505 BPF_FUNC_get_prandom_u32), \ 506 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 507 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 508 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 509 510 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 511 * negative u32, and sign-extend it into 64-bit. 512 */ 513 #define BPF_RAND_SEXT_R7 \ 514 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 515 BPF_FUNC_get_prandom_u32), \ 516 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 517 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 518 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 519 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 520 521 static struct bpf_test tests[] = { 522 #define FILL_ARRAY 523 #include <verifier/tests.h> 524 #undef FILL_ARRAY 525 }; 526 527 static int probe_filter_length(const struct bpf_insn *fp) 528 { 529 int len; 530 531 for (len = MAX_INSNS - 1; len > 0; --len) 532 if (fp[len].code != 0 || fp[len].imm != 0) 533 break; 534 return len + 1; 535 } 536 537 static bool skip_unsupported_map(enum bpf_map_type map_type) 538 { 539 if (!libbpf_probe_bpf_map_type(map_type, NULL)) { 540 printf("SKIP (unsupported map type %d)\n", map_type); 541 skips++; 542 return true; 543 } 544 return false; 545 } 546 547 static int __create_map(uint32_t type, uint32_t size_key, 548 uint32_t size_value, uint32_t max_elem, 549 uint32_t extra_flags) 550 { 551 LIBBPF_OPTS(bpf_map_create_opts, opts); 552 int fd; 553 554 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; 555 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); 556 if (fd < 0) { 557 if (skip_unsupported_map(type)) 558 return -1; 559 printf("Failed to create hash map '%s'!\n", strerror(errno)); 560 } 561 562 return fd; 563 } 564 565 static int create_map(uint32_t type, uint32_t size_key, 566 uint32_t size_value, uint32_t max_elem) 567 { 568 return __create_map(type, size_key, size_value, max_elem, 0); 569 } 570 571 static void update_map(int fd, int index) 572 { 573 struct test_val value = { 574 .index = (6 + 1) * sizeof(int), 575 .foo[6] = 0xabcdef12, 576 }; 577 578 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 579 } 580 581 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 582 { 583 struct bpf_insn prog[] = { 584 BPF_MOV64_IMM(BPF_REG_0, ret), 585 BPF_EXIT_INSN(), 586 }; 587 588 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 589 } 590 591 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 592 int idx, int ret) 593 { 594 struct bpf_insn prog[] = { 595 BPF_MOV64_IMM(BPF_REG_3, idx), 596 BPF_LD_MAP_FD(BPF_REG_2, mfd), 597 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 598 BPF_FUNC_tail_call), 599 BPF_MOV64_IMM(BPF_REG_0, ret), 600 BPF_EXIT_INSN(), 601 }; 602 603 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 604 } 605 606 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 607 int p1key, int p2key, int p3key) 608 { 609 int mfd, p1fd, p2fd, p3fd; 610 611 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), 612 sizeof(int), max_elem, NULL); 613 if (mfd < 0) { 614 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 615 return -1; 616 printf("Failed to create prog array '%s'!\n", strerror(errno)); 617 return -1; 618 } 619 620 p1fd = create_prog_dummy_simple(prog_type, 42); 621 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 622 p3fd = create_prog_dummy_simple(prog_type, 24); 623 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 624 goto err; 625 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 626 goto err; 627 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 628 goto err; 629 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 630 err: 631 close(mfd); 632 mfd = -1; 633 } 634 close(p3fd); 635 close(p2fd); 636 close(p1fd); 637 return mfd; 638 } 639 640 static int create_map_in_map(void) 641 { 642 LIBBPF_OPTS(bpf_map_create_opts, opts); 643 int inner_map_fd, outer_map_fd; 644 645 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 646 sizeof(int), 1, NULL); 647 if (inner_map_fd < 0) { 648 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 649 return -1; 650 printf("Failed to create array '%s'!\n", strerror(errno)); 651 return inner_map_fd; 652 } 653 654 opts.inner_map_fd = inner_map_fd; 655 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 656 sizeof(int), sizeof(int), 1, &opts); 657 if (outer_map_fd < 0) { 658 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 659 return -1; 660 printf("Failed to create array of maps '%s'!\n", 661 strerror(errno)); 662 } 663 664 close(inner_map_fd); 665 666 return outer_map_fd; 667 } 668 669 static int create_cgroup_storage(bool percpu) 670 { 671 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 672 BPF_MAP_TYPE_CGROUP_STORAGE; 673 int fd; 674 675 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), 676 TEST_DATA_LEN, 0, NULL); 677 if (fd < 0) { 678 if (skip_unsupported_map(type)) 679 return -1; 680 printf("Failed to create cgroup storage '%s'!\n", 681 strerror(errno)); 682 } 683 684 return fd; 685 } 686 687 /* struct bpf_spin_lock { 688 * int val; 689 * }; 690 * struct val { 691 * int cnt; 692 * struct bpf_spin_lock l; 693 * }; 694 * struct bpf_timer { 695 * __u64 :64; 696 * __u64 :64; 697 * } __attribute__((aligned(8))); 698 * struct timer { 699 * struct bpf_timer t; 700 * }; 701 * struct btf_ptr { 702 * struct prog_test_ref_kfunc __kptr *ptr; 703 * struct prog_test_ref_kfunc __kptr_ref *ptr; 704 * struct prog_test_member __kptr_ref *ptr; 705 * } 706 */ 707 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" 708 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_ref" 709 "\0prog_test_member"; 710 static __u32 btf_raw_types[] = { 711 /* int */ 712 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 713 /* struct bpf_spin_lock */ /* [2] */ 714 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 715 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 716 /* struct val */ /* [3] */ 717 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 718 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 719 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 720 /* struct bpf_timer */ /* [4] */ 721 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), 722 /* struct timer */ /* [5] */ 723 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), 724 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ 725 /* struct prog_test_ref_kfunc */ /* [6] */ 726 BTF_STRUCT_ENC(51, 0, 0), 727 BTF_STRUCT_ENC(89, 0, 0), /* [7] */ 728 /* type tag "kptr" */ 729 BTF_TYPE_TAG_ENC(75, 6), /* [8] */ 730 /* type tag "kptr_ref" */ 731 BTF_TYPE_TAG_ENC(80, 6), /* [9] */ 732 BTF_TYPE_TAG_ENC(80, 7), /* [10] */ 733 BTF_PTR_ENC(8), /* [11] */ 734 BTF_PTR_ENC(9), /* [12] */ 735 BTF_PTR_ENC(10), /* [13] */ 736 /* struct btf_ptr */ /* [14] */ 737 BTF_STRUCT_ENC(43, 3, 24), 738 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr *ptr; */ 739 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr_ref *ptr; */ 740 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr_ref *ptr; */ 741 }; 742 743 static char bpf_vlog[UINT_MAX >> 8]; 744 745 static int load_btf_spec(__u32 *types, int types_len, 746 const char *strings, int strings_len) 747 { 748 struct btf_header hdr = { 749 .magic = BTF_MAGIC, 750 .version = BTF_VERSION, 751 .hdr_len = sizeof(struct btf_header), 752 .type_len = types_len, 753 .str_off = types_len, 754 .str_len = strings_len, 755 }; 756 void *ptr, *raw_btf; 757 int btf_fd; 758 LIBBPF_OPTS(bpf_btf_load_opts, opts, 759 .log_buf = bpf_vlog, 760 .log_size = sizeof(bpf_vlog), 761 .log_level = (verbose 762 ? verif_log_level 763 : DEFAULT_LIBBPF_LOG_LEVEL), 764 ); 765 766 raw_btf = malloc(sizeof(hdr) + types_len + strings_len); 767 768 ptr = raw_btf; 769 memcpy(ptr, &hdr, sizeof(hdr)); 770 ptr += sizeof(hdr); 771 memcpy(ptr, types, hdr.type_len); 772 ptr += hdr.type_len; 773 memcpy(ptr, strings, hdr.str_len); 774 ptr += hdr.str_len; 775 776 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts); 777 if (btf_fd < 0) 778 printf("Failed to load BTF spec: '%s'\n", strerror(errno)); 779 780 free(raw_btf); 781 782 return btf_fd < 0 ? -1 : btf_fd; 783 } 784 785 static int load_btf(void) 786 { 787 return load_btf_spec(btf_raw_types, sizeof(btf_raw_types), 788 btf_str_sec, sizeof(btf_str_sec)); 789 } 790 791 static int load_btf_for_test(struct bpf_test *test) 792 { 793 int types_num = 0; 794 795 while (types_num < MAX_BTF_TYPES && 796 test->btf_types[types_num] != BTF_END_RAW) 797 ++types_num; 798 799 int types_len = types_num * sizeof(test->btf_types[0]); 800 801 return load_btf_spec(test->btf_types, types_len, 802 test->btf_strings, sizeof(test->btf_strings)); 803 } 804 805 static int create_map_spin_lock(void) 806 { 807 LIBBPF_OPTS(bpf_map_create_opts, opts, 808 .btf_key_type_id = 1, 809 .btf_value_type_id = 3, 810 ); 811 int fd, btf_fd; 812 813 btf_fd = load_btf(); 814 if (btf_fd < 0) 815 return -1; 816 opts.btf_fd = btf_fd; 817 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); 818 if (fd < 0) 819 printf("Failed to create map with spin_lock\n"); 820 return fd; 821 } 822 823 static int create_sk_storage_map(void) 824 { 825 LIBBPF_OPTS(bpf_map_create_opts, opts, 826 .map_flags = BPF_F_NO_PREALLOC, 827 .btf_key_type_id = 1, 828 .btf_value_type_id = 3, 829 ); 830 int fd, btf_fd; 831 832 btf_fd = load_btf(); 833 if (btf_fd < 0) 834 return -1; 835 opts.btf_fd = btf_fd; 836 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); 837 close(opts.btf_fd); 838 if (fd < 0) 839 printf("Failed to create sk_storage_map\n"); 840 return fd; 841 } 842 843 static int create_map_timer(void) 844 { 845 LIBBPF_OPTS(bpf_map_create_opts, opts, 846 .btf_key_type_id = 1, 847 .btf_value_type_id = 5, 848 ); 849 int fd, btf_fd; 850 851 btf_fd = load_btf(); 852 if (btf_fd < 0) 853 return -1; 854 855 opts.btf_fd = btf_fd; 856 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); 857 if (fd < 0) 858 printf("Failed to create map with timer\n"); 859 return fd; 860 } 861 862 static int create_map_kptr(void) 863 { 864 LIBBPF_OPTS(bpf_map_create_opts, opts, 865 .btf_key_type_id = 1, 866 .btf_value_type_id = 14, 867 ); 868 int fd, btf_fd; 869 870 btf_fd = load_btf(); 871 if (btf_fd < 0) 872 return -1; 873 874 opts.btf_fd = btf_fd; 875 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); 876 if (fd < 0) 877 printf("Failed to create map with btf_id pointer\n"); 878 return fd; 879 } 880 881 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 882 struct bpf_insn *prog, int *map_fds) 883 { 884 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 885 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 886 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 887 int *fixup_map_array_48b = test->fixup_map_array_48b; 888 int *fixup_map_sockmap = test->fixup_map_sockmap; 889 int *fixup_map_sockhash = test->fixup_map_sockhash; 890 int *fixup_map_xskmap = test->fixup_map_xskmap; 891 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 892 int *fixup_prog1 = test->fixup_prog1; 893 int *fixup_prog2 = test->fixup_prog2; 894 int *fixup_map_in_map = test->fixup_map_in_map; 895 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 896 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 897 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 898 int *fixup_map_array_ro = test->fixup_map_array_ro; 899 int *fixup_map_array_wo = test->fixup_map_array_wo; 900 int *fixup_map_array_small = test->fixup_map_array_small; 901 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 902 int *fixup_map_event_output = test->fixup_map_event_output; 903 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 904 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 905 int *fixup_map_timer = test->fixup_map_timer; 906 int *fixup_map_kptr = test->fixup_map_kptr; 907 struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id; 908 909 if (test->fill_helper) { 910 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 911 test->fill_helper(test); 912 } 913 914 /* Allocating HTs with 1 elem is fine here, since we only test 915 * for verifier and not do a runtime lookup, so the only thing 916 * that really matters is value size in this case. 917 */ 918 if (*fixup_map_hash_8b) { 919 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 920 sizeof(long long), 1); 921 do { 922 prog[*fixup_map_hash_8b].imm = map_fds[0]; 923 fixup_map_hash_8b++; 924 } while (*fixup_map_hash_8b); 925 } 926 927 if (*fixup_map_hash_48b) { 928 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 929 sizeof(struct test_val), 1); 930 do { 931 prog[*fixup_map_hash_48b].imm = map_fds[1]; 932 fixup_map_hash_48b++; 933 } while (*fixup_map_hash_48b); 934 } 935 936 if (*fixup_map_hash_16b) { 937 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 938 sizeof(struct other_val), 1); 939 do { 940 prog[*fixup_map_hash_16b].imm = map_fds[2]; 941 fixup_map_hash_16b++; 942 } while (*fixup_map_hash_16b); 943 } 944 945 if (*fixup_map_array_48b) { 946 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 947 sizeof(struct test_val), 1); 948 update_map(map_fds[3], 0); 949 do { 950 prog[*fixup_map_array_48b].imm = map_fds[3]; 951 fixup_map_array_48b++; 952 } while (*fixup_map_array_48b); 953 } 954 955 if (*fixup_prog1) { 956 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 957 do { 958 prog[*fixup_prog1].imm = map_fds[4]; 959 fixup_prog1++; 960 } while (*fixup_prog1); 961 } 962 963 if (*fixup_prog2) { 964 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 965 do { 966 prog[*fixup_prog2].imm = map_fds[5]; 967 fixup_prog2++; 968 } while (*fixup_prog2); 969 } 970 971 if (*fixup_map_in_map) { 972 map_fds[6] = create_map_in_map(); 973 do { 974 prog[*fixup_map_in_map].imm = map_fds[6]; 975 fixup_map_in_map++; 976 } while (*fixup_map_in_map); 977 } 978 979 if (*fixup_cgroup_storage) { 980 map_fds[7] = create_cgroup_storage(false); 981 do { 982 prog[*fixup_cgroup_storage].imm = map_fds[7]; 983 fixup_cgroup_storage++; 984 } while (*fixup_cgroup_storage); 985 } 986 987 if (*fixup_percpu_cgroup_storage) { 988 map_fds[8] = create_cgroup_storage(true); 989 do { 990 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 991 fixup_percpu_cgroup_storage++; 992 } while (*fixup_percpu_cgroup_storage); 993 } 994 if (*fixup_map_sockmap) { 995 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 996 sizeof(int), 1); 997 do { 998 prog[*fixup_map_sockmap].imm = map_fds[9]; 999 fixup_map_sockmap++; 1000 } while (*fixup_map_sockmap); 1001 } 1002 if (*fixup_map_sockhash) { 1003 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 1004 sizeof(int), 1); 1005 do { 1006 prog[*fixup_map_sockhash].imm = map_fds[10]; 1007 fixup_map_sockhash++; 1008 } while (*fixup_map_sockhash); 1009 } 1010 if (*fixup_map_xskmap) { 1011 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 1012 sizeof(int), 1); 1013 do { 1014 prog[*fixup_map_xskmap].imm = map_fds[11]; 1015 fixup_map_xskmap++; 1016 } while (*fixup_map_xskmap); 1017 } 1018 if (*fixup_map_stacktrace) { 1019 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 1020 sizeof(u64), 1); 1021 do { 1022 prog[*fixup_map_stacktrace].imm = map_fds[12]; 1023 fixup_map_stacktrace++; 1024 } while (*fixup_map_stacktrace); 1025 } 1026 if (*fixup_map_spin_lock) { 1027 map_fds[13] = create_map_spin_lock(); 1028 do { 1029 prog[*fixup_map_spin_lock].imm = map_fds[13]; 1030 fixup_map_spin_lock++; 1031 } while (*fixup_map_spin_lock); 1032 } 1033 if (*fixup_map_array_ro) { 1034 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1035 sizeof(struct test_val), 1, 1036 BPF_F_RDONLY_PROG); 1037 update_map(map_fds[14], 0); 1038 do { 1039 prog[*fixup_map_array_ro].imm = map_fds[14]; 1040 fixup_map_array_ro++; 1041 } while (*fixup_map_array_ro); 1042 } 1043 if (*fixup_map_array_wo) { 1044 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1045 sizeof(struct test_val), 1, 1046 BPF_F_WRONLY_PROG); 1047 update_map(map_fds[15], 0); 1048 do { 1049 prog[*fixup_map_array_wo].imm = map_fds[15]; 1050 fixup_map_array_wo++; 1051 } while (*fixup_map_array_wo); 1052 } 1053 if (*fixup_map_array_small) { 1054 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1055 1, 1, 0); 1056 update_map(map_fds[16], 0); 1057 do { 1058 prog[*fixup_map_array_small].imm = map_fds[16]; 1059 fixup_map_array_small++; 1060 } while (*fixup_map_array_small); 1061 } 1062 if (*fixup_sk_storage_map) { 1063 map_fds[17] = create_sk_storage_map(); 1064 do { 1065 prog[*fixup_sk_storage_map].imm = map_fds[17]; 1066 fixup_sk_storage_map++; 1067 } while (*fixup_sk_storage_map); 1068 } 1069 if (*fixup_map_event_output) { 1070 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 1071 sizeof(int), sizeof(int), 1, 0); 1072 do { 1073 prog[*fixup_map_event_output].imm = map_fds[18]; 1074 fixup_map_event_output++; 1075 } while (*fixup_map_event_output); 1076 } 1077 if (*fixup_map_reuseport_array) { 1078 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 1079 sizeof(u32), sizeof(u64), 1, 0); 1080 do { 1081 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 1082 fixup_map_reuseport_array++; 1083 } while (*fixup_map_reuseport_array); 1084 } 1085 if (*fixup_map_ringbuf) { 1086 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 1087 0, 4096); 1088 do { 1089 prog[*fixup_map_ringbuf].imm = map_fds[20]; 1090 fixup_map_ringbuf++; 1091 } while (*fixup_map_ringbuf); 1092 } 1093 if (*fixup_map_timer) { 1094 map_fds[21] = create_map_timer(); 1095 do { 1096 prog[*fixup_map_timer].imm = map_fds[21]; 1097 fixup_map_timer++; 1098 } while (*fixup_map_timer); 1099 } 1100 if (*fixup_map_kptr) { 1101 map_fds[22] = create_map_kptr(); 1102 do { 1103 prog[*fixup_map_kptr].imm = map_fds[22]; 1104 fixup_map_kptr++; 1105 } while (*fixup_map_kptr); 1106 } 1107 1108 /* Patch in kfunc BTF IDs */ 1109 if (fixup_kfunc_btf_id->kfunc) { 1110 struct btf *btf; 1111 int btf_id; 1112 1113 do { 1114 btf_id = 0; 1115 btf = btf__load_vmlinux_btf(); 1116 if (btf) { 1117 btf_id = btf__find_by_name_kind(btf, 1118 fixup_kfunc_btf_id->kfunc, 1119 BTF_KIND_FUNC); 1120 btf_id = btf_id < 0 ? 0 : btf_id; 1121 } 1122 btf__free(btf); 1123 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; 1124 fixup_kfunc_btf_id++; 1125 } while (fixup_kfunc_btf_id->kfunc); 1126 } 1127 } 1128 1129 struct libcap { 1130 struct __user_cap_header_struct hdr; 1131 struct __user_cap_data_struct data[2]; 1132 }; 1133 1134 static int set_admin(bool admin) 1135 { 1136 int err; 1137 1138 if (admin) { 1139 err = cap_enable_effective(ADMIN_CAPS, NULL); 1140 if (err) 1141 perror("cap_enable_effective(ADMIN_CAPS)"); 1142 } else { 1143 err = cap_disable_effective(ADMIN_CAPS, NULL); 1144 if (err) 1145 perror("cap_disable_effective(ADMIN_CAPS)"); 1146 } 1147 1148 return err; 1149 } 1150 1151 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 1152 void *data, size_t size_data) 1153 { 1154 __u8 tmp[TEST_DATA_LEN << 2]; 1155 __u32 size_tmp = sizeof(tmp); 1156 int err, saved_errno; 1157 LIBBPF_OPTS(bpf_test_run_opts, topts, 1158 .data_in = data, 1159 .data_size_in = size_data, 1160 .data_out = tmp, 1161 .data_size_out = size_tmp, 1162 .repeat = 1, 1163 ); 1164 1165 if (unpriv) 1166 set_admin(true); 1167 err = bpf_prog_test_run_opts(fd_prog, &topts); 1168 saved_errno = errno; 1169 1170 if (unpriv) 1171 set_admin(false); 1172 1173 if (err) { 1174 switch (saved_errno) { 1175 case ENOTSUPP: 1176 printf("Did not run the program (not supported) "); 1177 return 0; 1178 case EPERM: 1179 if (unpriv) { 1180 printf("Did not run the program (no permission) "); 1181 return 0; 1182 } 1183 /* fallthrough; */ 1184 default: 1185 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 1186 strerror(saved_errno)); 1187 return err; 1188 } 1189 } 1190 1191 if (topts.retval != expected_val && expected_val != POINTER_VALUE) { 1192 printf("FAIL retval %d != %d ", topts.retval, expected_val); 1193 return 1; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1200 * 1201 * If exp is an empty string, returns true. 1202 */ 1203 static bool cmp_str_seq(const char *log, const char *exp) 1204 { 1205 char needle[200]; 1206 const char *p, *q; 1207 int len; 1208 1209 do { 1210 if (!strlen(exp)) 1211 break; 1212 p = strchr(exp, '\t'); 1213 if (!p) 1214 p = exp + strlen(exp); 1215 1216 len = p - exp; 1217 if (len >= sizeof(needle) || !len) { 1218 printf("FAIL\nTestcase bug\n"); 1219 return false; 1220 } 1221 strncpy(needle, exp, len); 1222 needle[len] = 0; 1223 q = strstr(log, needle); 1224 if (!q) { 1225 printf("FAIL\nUnexpected verifier log!\n" 1226 "EXP: %s\nRES:\n", needle); 1227 return false; 1228 } 1229 log = q + len; 1230 exp = p + 1; 1231 } while (*p); 1232 return true; 1233 } 1234 1235 static int get_xlated_program(int fd_prog, struct bpf_insn **buf, int *cnt) 1236 { 1237 struct bpf_prog_info info = {}; 1238 __u32 info_len = sizeof(info); 1239 __u32 xlated_prog_len; 1240 __u32 buf_element_size = sizeof(struct bpf_insn); 1241 1242 if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) { 1243 perror("bpf_prog_get_info_by_fd failed"); 1244 return -1; 1245 } 1246 1247 xlated_prog_len = info.xlated_prog_len; 1248 if (xlated_prog_len % buf_element_size) { 1249 printf("Program length %d is not multiple of %d\n", 1250 xlated_prog_len, buf_element_size); 1251 return -1; 1252 } 1253 1254 *cnt = xlated_prog_len / buf_element_size; 1255 *buf = calloc(*cnt, buf_element_size); 1256 if (!buf) { 1257 perror("can't allocate xlated program buffer"); 1258 return -ENOMEM; 1259 } 1260 1261 bzero(&info, sizeof(info)); 1262 info.xlated_prog_len = xlated_prog_len; 1263 info.xlated_prog_insns = (__u64)(unsigned long)*buf; 1264 if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) { 1265 perror("second bpf_prog_get_info_by_fd failed"); 1266 goto out_free_buf; 1267 } 1268 1269 return 0; 1270 1271 out_free_buf: 1272 free(*buf); 1273 return -1; 1274 } 1275 1276 static bool is_null_insn(struct bpf_insn *insn) 1277 { 1278 struct bpf_insn null_insn = {}; 1279 1280 return memcmp(insn, &null_insn, sizeof(null_insn)) == 0; 1281 } 1282 1283 static bool is_skip_insn(struct bpf_insn *insn) 1284 { 1285 struct bpf_insn skip_insn = SKIP_INSNS(); 1286 1287 return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0; 1288 } 1289 1290 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len) 1291 { 1292 int i; 1293 1294 for (i = 0; i < max_len; ++i) { 1295 if (is_null_insn(&seq[i])) 1296 return i; 1297 } 1298 return max_len; 1299 } 1300 1301 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked) 1302 { 1303 struct bpf_insn orig_masked; 1304 1305 memcpy(&orig_masked, orig, sizeof(orig_masked)); 1306 if (masked->imm == INSN_IMM_MASK) 1307 orig_masked.imm = INSN_IMM_MASK; 1308 if (masked->off == INSN_OFF_MASK) 1309 orig_masked.off = INSN_OFF_MASK; 1310 1311 return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0; 1312 } 1313 1314 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq, 1315 int seq_len, int subseq_len) 1316 { 1317 int i, j; 1318 1319 if (subseq_len > seq_len) 1320 return -1; 1321 1322 for (i = 0; i < seq_len - subseq_len + 1; ++i) { 1323 bool found = true; 1324 1325 for (j = 0; j < subseq_len; ++j) { 1326 if (!compare_masked_insn(&seq[i + j], &subseq[j])) { 1327 found = false; 1328 break; 1329 } 1330 } 1331 if (found) 1332 return i; 1333 } 1334 1335 return -1; 1336 } 1337 1338 static int find_skip_insn_marker(struct bpf_insn *seq, int len) 1339 { 1340 int i; 1341 1342 for (i = 0; i < len; ++i) 1343 if (is_skip_insn(&seq[i])) 1344 return i; 1345 1346 return -1; 1347 } 1348 1349 /* Return true if all sub-sequences in `subseqs` could be found in 1350 * `seq` one after another. Sub-sequences are separated by a single 1351 * nil instruction. 1352 */ 1353 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs, 1354 int seq_len, int max_subseqs_len) 1355 { 1356 int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len); 1357 1358 while (subseqs_len > 0) { 1359 int skip_idx = find_skip_insn_marker(subseqs, subseqs_len); 1360 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx; 1361 int subseq_idx = find_insn_subseq(seq, subseqs, 1362 seq_len, cur_subseq_len); 1363 1364 if (subseq_idx < 0) 1365 return false; 1366 seq += subseq_idx + cur_subseq_len; 1367 seq_len -= subseq_idx + cur_subseq_len; 1368 subseqs += cur_subseq_len + 1; 1369 subseqs_len -= cur_subseq_len + 1; 1370 } 1371 1372 return true; 1373 } 1374 1375 static void print_insn(struct bpf_insn *buf, int cnt) 1376 { 1377 int i; 1378 1379 printf(" addr op d s off imm\n"); 1380 for (i = 0; i < cnt; ++i) { 1381 struct bpf_insn *insn = &buf[i]; 1382 1383 if (is_null_insn(insn)) 1384 break; 1385 1386 if (is_skip_insn(insn)) 1387 printf(" ...\n"); 1388 else 1389 printf(" %04x: %02x %1x %x %04hx %08x\n", 1390 i, insn->code, insn->dst_reg, 1391 insn->src_reg, insn->off, insn->imm); 1392 } 1393 } 1394 1395 static bool check_xlated_program(struct bpf_test *test, int fd_prog) 1396 { 1397 struct bpf_insn *buf; 1398 int cnt; 1399 bool result = true; 1400 bool check_expected = !is_null_insn(test->expected_insns); 1401 bool check_unexpected = !is_null_insn(test->unexpected_insns); 1402 1403 if (!check_expected && !check_unexpected) 1404 goto out; 1405 1406 if (get_xlated_program(fd_prog, &buf, &cnt)) { 1407 printf("FAIL: can't get xlated program\n"); 1408 result = false; 1409 goto out; 1410 } 1411 1412 if (check_expected && 1413 !find_all_insn_subseqs(buf, test->expected_insns, 1414 cnt, MAX_EXPECTED_INSNS)) { 1415 printf("FAIL: can't find expected subsequence of instructions\n"); 1416 result = false; 1417 if (verbose) { 1418 printf("Program:\n"); 1419 print_insn(buf, cnt); 1420 printf("Expected subsequence:\n"); 1421 print_insn(test->expected_insns, MAX_EXPECTED_INSNS); 1422 } 1423 } 1424 1425 if (check_unexpected && 1426 find_all_insn_subseqs(buf, test->unexpected_insns, 1427 cnt, MAX_UNEXPECTED_INSNS)) { 1428 printf("FAIL: found unexpected subsequence of instructions\n"); 1429 result = false; 1430 if (verbose) { 1431 printf("Program:\n"); 1432 print_insn(buf, cnt); 1433 printf("Un-expected subsequence:\n"); 1434 print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS); 1435 } 1436 } 1437 1438 free(buf); 1439 out: 1440 return result; 1441 } 1442 1443 static void do_test_single(struct bpf_test *test, bool unpriv, 1444 int *passes, int *errors) 1445 { 1446 int fd_prog, btf_fd, expected_ret, alignment_prevented_execution; 1447 int prog_len, prog_type = test->prog_type; 1448 struct bpf_insn *prog = test->insns; 1449 LIBBPF_OPTS(bpf_prog_load_opts, opts); 1450 int run_errs, run_successes; 1451 int map_fds[MAX_NR_MAPS]; 1452 const char *expected_err; 1453 int saved_errno; 1454 int fixup_skips; 1455 __u32 pflags; 1456 int i, err; 1457 1458 fd_prog = -1; 1459 for (i = 0; i < MAX_NR_MAPS; i++) 1460 map_fds[i] = -1; 1461 btf_fd = -1; 1462 1463 if (!prog_type) 1464 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1465 fixup_skips = skips; 1466 do_test_fixup(test, prog_type, prog, map_fds); 1467 if (test->fill_insns) { 1468 prog = test->fill_insns; 1469 prog_len = test->prog_len; 1470 } else { 1471 prog_len = probe_filter_length(prog); 1472 } 1473 /* If there were some map skips during fixup due to missing bpf 1474 * features, skip this test. 1475 */ 1476 if (fixup_skips != skips) 1477 return; 1478 1479 pflags = BPF_F_TEST_RND_HI32; 1480 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1481 pflags |= BPF_F_STRICT_ALIGNMENT; 1482 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1483 pflags |= BPF_F_ANY_ALIGNMENT; 1484 if (test->flags & ~3) 1485 pflags |= test->flags; 1486 1487 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1488 test->result_unpriv : test->result; 1489 expected_err = unpriv && test->errstr_unpriv ? 1490 test->errstr_unpriv : test->errstr; 1491 1492 opts.expected_attach_type = test->expected_attach_type; 1493 if (verbose) 1494 opts.log_level = verif_log_level | 4; /* force stats */ 1495 else if (expected_ret == VERBOSE_ACCEPT) 1496 opts.log_level = 2; 1497 else 1498 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL; 1499 opts.prog_flags = pflags; 1500 1501 if ((prog_type == BPF_PROG_TYPE_TRACING || 1502 prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) { 1503 int attach_btf_id; 1504 1505 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1506 opts.expected_attach_type); 1507 if (attach_btf_id < 0) { 1508 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1509 test->kfunc); 1510 (*errors)++; 1511 return; 1512 } 1513 1514 opts.attach_btf_id = attach_btf_id; 1515 } 1516 1517 if (test->btf_types[0] != 0) { 1518 btf_fd = load_btf_for_test(test); 1519 if (btf_fd < 0) 1520 goto fail_log; 1521 opts.prog_btf_fd = btf_fd; 1522 } 1523 1524 if (test->func_info_cnt != 0) { 1525 opts.func_info = test->func_info; 1526 opts.func_info_cnt = test->func_info_cnt; 1527 opts.func_info_rec_size = sizeof(test->func_info[0]); 1528 } 1529 1530 opts.log_buf = bpf_vlog; 1531 opts.log_size = sizeof(bpf_vlog); 1532 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); 1533 saved_errno = errno; 1534 1535 /* BPF_PROG_TYPE_TRACING requires more setup and 1536 * bpf_probe_prog_type won't give correct answer 1537 */ 1538 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1539 !libbpf_probe_bpf_prog_type(prog_type, NULL)) { 1540 printf("SKIP (unsupported program type %d)\n", prog_type); 1541 skips++; 1542 goto close_fds; 1543 } 1544 1545 if (fd_prog < 0 && saved_errno == ENOTSUPP) { 1546 printf("SKIP (program uses an unsupported feature)\n"); 1547 skips++; 1548 goto close_fds; 1549 } 1550 1551 alignment_prevented_execution = 0; 1552 1553 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1554 if (fd_prog < 0) { 1555 printf("FAIL\nFailed to load prog '%s'!\n", 1556 strerror(saved_errno)); 1557 goto fail_log; 1558 } 1559 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1560 if (fd_prog >= 0 && 1561 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1562 alignment_prevented_execution = 1; 1563 #endif 1564 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1565 goto fail_log; 1566 } 1567 } else { 1568 if (fd_prog >= 0) { 1569 printf("FAIL\nUnexpected success to load!\n"); 1570 goto fail_log; 1571 } 1572 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1573 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1574 expected_err, bpf_vlog); 1575 goto fail_log; 1576 } 1577 } 1578 1579 if (!unpriv && test->insn_processed) { 1580 uint32_t insn_processed; 1581 char *proc; 1582 1583 proc = strstr(bpf_vlog, "processed "); 1584 insn_processed = atoi(proc + 10); 1585 if (test->insn_processed != insn_processed) { 1586 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1587 insn_processed, test->insn_processed); 1588 goto fail_log; 1589 } 1590 } 1591 1592 if (verbose) 1593 printf(", verifier log:\n%s", bpf_vlog); 1594 1595 if (!check_xlated_program(test, fd_prog)) 1596 goto fail_log; 1597 1598 run_errs = 0; 1599 run_successes = 0; 1600 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1601 uint32_t expected_val; 1602 int i; 1603 1604 if (!test->runs) 1605 test->runs = 1; 1606 1607 for (i = 0; i < test->runs; i++) { 1608 if (unpriv && test->retvals[i].retval_unpriv) 1609 expected_val = test->retvals[i].retval_unpriv; 1610 else 1611 expected_val = test->retvals[i].retval; 1612 1613 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1614 test->retvals[i].data, 1615 sizeof(test->retvals[i].data)); 1616 if (err) { 1617 printf("(run %d/%d) ", i + 1, test->runs); 1618 run_errs++; 1619 } else { 1620 run_successes++; 1621 } 1622 } 1623 } 1624 1625 if (!run_errs) { 1626 (*passes)++; 1627 if (run_successes > 1) 1628 printf("%d cases ", run_successes); 1629 printf("OK"); 1630 if (alignment_prevented_execution) 1631 printf(" (NOTE: not executed due to unknown alignment)"); 1632 printf("\n"); 1633 } else { 1634 printf("\n"); 1635 goto fail_log; 1636 } 1637 close_fds: 1638 if (test->fill_insns) 1639 free(test->fill_insns); 1640 close(fd_prog); 1641 close(btf_fd); 1642 for (i = 0; i < MAX_NR_MAPS; i++) 1643 close(map_fds[i]); 1644 sched_yield(); 1645 return; 1646 fail_log: 1647 (*errors)++; 1648 printf("%s", bpf_vlog); 1649 goto close_fds; 1650 } 1651 1652 static bool is_admin(void) 1653 { 1654 __u64 caps; 1655 1656 /* The test checks for finer cap as CAP_NET_ADMIN, 1657 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. 1658 * Thus, disable CAP_SYS_ADMIN at the beginning. 1659 */ 1660 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { 1661 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 1662 return false; 1663 } 1664 1665 return (caps & ADMIN_CAPS) == ADMIN_CAPS; 1666 } 1667 1668 static void get_unpriv_disabled() 1669 { 1670 char buf[2]; 1671 FILE *fd; 1672 1673 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1674 if (!fd) { 1675 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1676 unpriv_disabled = true; 1677 return; 1678 } 1679 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1680 unpriv_disabled = true; 1681 fclose(fd); 1682 } 1683 1684 static bool test_as_unpriv(struct bpf_test *test) 1685 { 1686 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1687 /* Some architectures have strict alignment requirements. In 1688 * that case, the BPF verifier detects if a program has 1689 * unaligned accesses and rejects them. A user can pass 1690 * BPF_F_ANY_ALIGNMENT to a program to override this 1691 * check. That, however, will only work when a privileged user 1692 * loads a program. An unprivileged user loading a program 1693 * with this flag will be rejected prior entering the 1694 * verifier. 1695 */ 1696 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1697 return false; 1698 #endif 1699 return !test->prog_type || 1700 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1701 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1702 } 1703 1704 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1705 { 1706 int i, passes = 0, errors = 0; 1707 1708 for (i = from; i < to; i++) { 1709 struct bpf_test *test = &tests[i]; 1710 1711 /* Program types that are not supported by non-root we 1712 * skip right away. 1713 */ 1714 if (test_as_unpriv(test) && unpriv_disabled) { 1715 printf("#%d/u %s SKIP\n", i, test->descr); 1716 skips++; 1717 } else if (test_as_unpriv(test)) { 1718 if (!unpriv) 1719 set_admin(false); 1720 printf("#%d/u %s ", i, test->descr); 1721 do_test_single(test, true, &passes, &errors); 1722 if (!unpriv) 1723 set_admin(true); 1724 } 1725 1726 if (unpriv) { 1727 printf("#%d/p %s SKIP\n", i, test->descr); 1728 skips++; 1729 } else { 1730 printf("#%d/p %s ", i, test->descr); 1731 do_test_single(test, false, &passes, &errors); 1732 } 1733 } 1734 1735 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1736 skips, errors); 1737 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1738 } 1739 1740 int main(int argc, char **argv) 1741 { 1742 unsigned int from = 0, to = ARRAY_SIZE(tests); 1743 bool unpriv = !is_admin(); 1744 int arg = 1; 1745 1746 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1747 arg++; 1748 verbose = true; 1749 verif_log_level = 1; 1750 argc--; 1751 } 1752 if (argc > 1 && strcmp(argv[1], "-vv") == 0) { 1753 arg++; 1754 verbose = true; 1755 verif_log_level = 2; 1756 argc--; 1757 } 1758 1759 if (argc == 3) { 1760 unsigned int l = atoi(argv[arg]); 1761 unsigned int u = atoi(argv[arg + 1]); 1762 1763 if (l < to && u < to) { 1764 from = l; 1765 to = u + 1; 1766 } 1767 } else if (argc == 2) { 1768 unsigned int t = atoi(argv[arg]); 1769 1770 if (t < to) { 1771 from = t; 1772 to = t + 1; 1773 } 1774 } 1775 1776 get_unpriv_disabled(); 1777 if (unpriv && unpriv_disabled) { 1778 printf("Cannot run as unprivileged user with sysctl %s.\n", 1779 UNPRIV_SYSCTL); 1780 return EXIT_FAILURE; 1781 } 1782 1783 /* Use libbpf 1.0 API mode */ 1784 libbpf_set_strict_mode(LIBBPF_STRICT_ALL); 1785 1786 bpf_semi_rand_init(); 1787 return do_test(unpriv, from, to); 1788 } 1789