1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rlimit.h" 45 #include "bpf_rand.h" 46 #include "bpf_util.h" 47 #include "test_btf.h" 48 #include "../../../include/linux/filter.h" 49 50 #ifndef ENOTSUPP 51 #define ENOTSUPP 524 52 #endif 53 54 #define MAX_INSNS BPF_MAXINSNS 55 #define MAX_TEST_INSNS 1000000 56 #define MAX_FIXUPS 8 57 #define MAX_NR_MAPS 21 58 #define MAX_TEST_RUNS 8 59 #define POINTER_VALUE 0xcafe4all 60 #define TEST_DATA_LEN 64 61 62 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 63 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 64 65 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 66 static bool unpriv_disabled = false; 67 static int skips; 68 static bool verbose = false; 69 70 struct bpf_test { 71 const char *descr; 72 struct bpf_insn insns[MAX_INSNS]; 73 struct bpf_insn *fill_insns; 74 int fixup_map_hash_8b[MAX_FIXUPS]; 75 int fixup_map_hash_48b[MAX_FIXUPS]; 76 int fixup_map_hash_16b[MAX_FIXUPS]; 77 int fixup_map_array_48b[MAX_FIXUPS]; 78 int fixup_map_sockmap[MAX_FIXUPS]; 79 int fixup_map_sockhash[MAX_FIXUPS]; 80 int fixup_map_xskmap[MAX_FIXUPS]; 81 int fixup_map_stacktrace[MAX_FIXUPS]; 82 int fixup_prog1[MAX_FIXUPS]; 83 int fixup_prog2[MAX_FIXUPS]; 84 int fixup_map_in_map[MAX_FIXUPS]; 85 int fixup_cgroup_storage[MAX_FIXUPS]; 86 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 87 int fixup_map_spin_lock[MAX_FIXUPS]; 88 int fixup_map_array_ro[MAX_FIXUPS]; 89 int fixup_map_array_wo[MAX_FIXUPS]; 90 int fixup_map_array_small[MAX_FIXUPS]; 91 int fixup_sk_storage_map[MAX_FIXUPS]; 92 int fixup_map_event_output[MAX_FIXUPS]; 93 int fixup_map_reuseport_array[MAX_FIXUPS]; 94 int fixup_map_ringbuf[MAX_FIXUPS]; 95 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 96 * Can be a tab-separated sequence of expected strings. An empty string 97 * means no log verification. 98 */ 99 const char *errstr; 100 const char *errstr_unpriv; 101 uint32_t insn_processed; 102 int prog_len; 103 enum { 104 UNDEF, 105 ACCEPT, 106 REJECT, 107 VERBOSE_ACCEPT, 108 } result, result_unpriv; 109 enum bpf_prog_type prog_type; 110 uint8_t flags; 111 void (*fill_helper)(struct bpf_test *self); 112 int runs; 113 #define bpf_testdata_struct_t \ 114 struct { \ 115 uint32_t retval, retval_unpriv; \ 116 union { \ 117 __u8 data[TEST_DATA_LEN]; \ 118 __u64 data64[TEST_DATA_LEN / 8]; \ 119 }; \ 120 } 121 union { 122 bpf_testdata_struct_t; 123 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 124 }; 125 enum bpf_attach_type expected_attach_type; 126 const char *kfunc; 127 }; 128 129 /* Note we want this to be 64 bit aligned so that the end of our array is 130 * actually the end of the structure. 131 */ 132 #define MAX_ENTRIES 11 133 134 struct test_val { 135 unsigned int index; 136 int foo[MAX_ENTRIES]; 137 }; 138 139 struct other_val { 140 long long foo; 141 long long bar; 142 }; 143 144 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 145 { 146 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 147 #define PUSH_CNT 51 148 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 149 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 150 struct bpf_insn *insn = self->fill_insns; 151 int i = 0, j, k = 0; 152 153 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 154 loop: 155 for (j = 0; j < PUSH_CNT; j++) { 156 insn[i++] = BPF_LD_ABS(BPF_B, 0); 157 /* jump to error label */ 158 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 159 i++; 160 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 161 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 162 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 163 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 164 BPF_FUNC_skb_vlan_push), 165 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 166 i++; 167 } 168 169 for (j = 0; j < PUSH_CNT; j++) { 170 insn[i++] = BPF_LD_ABS(BPF_B, 0); 171 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 172 i++; 173 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 174 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 175 BPF_FUNC_skb_vlan_pop), 176 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 177 i++; 178 } 179 if (++k < 5) 180 goto loop; 181 182 for (; i < len - 3; i++) 183 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 184 insn[len - 3] = BPF_JMP_A(1); 185 /* error label */ 186 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 187 insn[len - 1] = BPF_EXIT_INSN(); 188 self->prog_len = len; 189 } 190 191 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 192 { 193 struct bpf_insn *insn = self->fill_insns; 194 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 195 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 196 * to extend the error value of the inlined ld_abs sequence which then 197 * contains 7 insns. so, set the dividend to 7 so the testcase could 198 * work on all arches. 199 */ 200 unsigned int len = (1 << 15) / 7; 201 int i = 0; 202 203 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 204 insn[i++] = BPF_LD_ABS(BPF_B, 0); 205 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 206 i++; 207 while (i < len - 1) 208 insn[i++] = BPF_LD_ABS(BPF_B, 1); 209 insn[i] = BPF_EXIT_INSN(); 210 self->prog_len = i + 1; 211 } 212 213 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 214 { 215 struct bpf_insn *insn = self->fill_insns; 216 uint64_t res = 0; 217 int i = 0; 218 219 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 220 while (i < self->retval) { 221 uint64_t val = bpf_semi_rand_get(); 222 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 223 224 res ^= val; 225 insn[i++] = tmp[0]; 226 insn[i++] = tmp[1]; 227 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 228 } 229 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 230 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 231 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 232 insn[i] = BPF_EXIT_INSN(); 233 self->prog_len = i + 1; 234 res ^= (res >> 32); 235 self->retval = (uint32_t)res; 236 } 237 238 #define MAX_JMP_SEQ 8192 239 240 /* test the sequence of 8k jumps */ 241 static void bpf_fill_scale1(struct bpf_test *self) 242 { 243 struct bpf_insn *insn = self->fill_insns; 244 int i = 0, k = 0; 245 246 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 247 /* test to check that the long sequence of jumps is acceptable */ 248 while (k++ < MAX_JMP_SEQ) { 249 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 250 BPF_FUNC_get_prandom_u32); 251 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 252 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 253 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 254 -8 * (k % 64 + 1)); 255 } 256 /* is_state_visited() doesn't allocate state for pruning for every jump. 257 * Hence multiply jmps by 4 to accommodate that heuristic 258 */ 259 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 260 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 261 insn[i] = BPF_EXIT_INSN(); 262 self->prog_len = i + 1; 263 self->retval = 42; 264 } 265 266 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 267 static void bpf_fill_scale2(struct bpf_test *self) 268 { 269 struct bpf_insn *insn = self->fill_insns; 270 int i = 0, k = 0; 271 272 #define FUNC_NEST 7 273 for (k = 0; k < FUNC_NEST; k++) { 274 insn[i++] = BPF_CALL_REL(1); 275 insn[i++] = BPF_EXIT_INSN(); 276 } 277 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 278 /* test to check that the long sequence of jumps is acceptable */ 279 k = 0; 280 while (k++ < MAX_JMP_SEQ) { 281 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 282 BPF_FUNC_get_prandom_u32); 283 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 284 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 285 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 286 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 287 } 288 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 289 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 290 insn[i] = BPF_EXIT_INSN(); 291 self->prog_len = i + 1; 292 self->retval = 42; 293 } 294 295 static void bpf_fill_scale(struct bpf_test *self) 296 { 297 switch (self->retval) { 298 case 1: 299 return bpf_fill_scale1(self); 300 case 2: 301 return bpf_fill_scale2(self); 302 default: 303 self->prog_len = 0; 304 break; 305 } 306 } 307 308 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 309 { 310 unsigned int len = 259, hlen = 128; 311 int i; 312 313 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 314 for (i = 1; i <= hlen; i++) { 315 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 316 insn[i + hlen] = BPF_JMP_A(hlen - i); 317 } 318 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 319 insn[len - 1] = BPF_EXIT_INSN(); 320 321 return len; 322 } 323 324 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 325 { 326 unsigned int len = 4100, jmp_off = 2048; 327 int i, j; 328 329 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 330 for (i = 1; i <= jmp_off; i++) { 331 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 332 } 333 insn[i++] = BPF_JMP_A(jmp_off); 334 for (; i <= jmp_off * 2 + 1; i+=16) { 335 for (j = 0; j < 16; j++) { 336 insn[i + j] = BPF_JMP_A(16 - j - 1); 337 } 338 } 339 340 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 341 insn[len - 1] = BPF_EXIT_INSN(); 342 343 return len; 344 } 345 346 static void bpf_fill_torturous_jumps(struct bpf_test *self) 347 { 348 struct bpf_insn *insn = self->fill_insns; 349 int i = 0; 350 351 switch (self->retval) { 352 case 1: 353 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 354 return; 355 case 2: 356 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 357 return; 358 case 3: 359 /* main */ 360 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 361 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 362 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 363 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 364 insn[i++] = BPF_EXIT_INSN(); 365 366 /* subprog 1 */ 367 i += bpf_fill_torturous_jumps_insn_1(insn + i); 368 369 /* subprog 2 */ 370 i += bpf_fill_torturous_jumps_insn_2(insn + i); 371 372 self->prog_len = i; 373 return; 374 default: 375 self->prog_len = 0; 376 break; 377 } 378 } 379 380 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 381 #define BPF_SK_LOOKUP(func) \ 382 /* struct bpf_sock_tuple tuple = {} */ \ 383 BPF_MOV64_IMM(BPF_REG_2, 0), \ 384 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 385 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 386 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 387 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 388 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 389 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 390 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 391 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 392 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 393 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 394 BPF_MOV64_IMM(BPF_REG_4, 0), \ 395 BPF_MOV64_IMM(BPF_REG_5, 0), \ 396 BPF_EMIT_CALL(BPF_FUNC_ ## func) 397 398 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 399 * value into 0 and does necessary preparation for direct packet access 400 * through r2. The allowed access range is 8 bytes. 401 */ 402 #define BPF_DIRECT_PKT_R2 \ 403 BPF_MOV64_IMM(BPF_REG_0, 0), \ 404 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 405 offsetof(struct __sk_buff, data)), \ 406 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 407 offsetof(struct __sk_buff, data_end)), \ 408 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 409 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 410 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 411 BPF_EXIT_INSN() 412 413 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 414 * positive u32, and zero-extend it into 64-bit. 415 */ 416 #define BPF_RAND_UEXT_R7 \ 417 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 418 BPF_FUNC_get_prandom_u32), \ 419 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 420 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 421 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 422 423 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 424 * negative u32, and sign-extend it into 64-bit. 425 */ 426 #define BPF_RAND_SEXT_R7 \ 427 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 428 BPF_FUNC_get_prandom_u32), \ 429 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 430 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 431 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 432 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 433 434 static struct bpf_test tests[] = { 435 #define FILL_ARRAY 436 #include <verifier/tests.h> 437 #undef FILL_ARRAY 438 }; 439 440 static int probe_filter_length(const struct bpf_insn *fp) 441 { 442 int len; 443 444 for (len = MAX_INSNS - 1; len > 0; --len) 445 if (fp[len].code != 0 || fp[len].imm != 0) 446 break; 447 return len + 1; 448 } 449 450 static bool skip_unsupported_map(enum bpf_map_type map_type) 451 { 452 if (!bpf_probe_map_type(map_type, 0)) { 453 printf("SKIP (unsupported map type %d)\n", map_type); 454 skips++; 455 return true; 456 } 457 return false; 458 } 459 460 static int __create_map(uint32_t type, uint32_t size_key, 461 uint32_t size_value, uint32_t max_elem, 462 uint32_t extra_flags) 463 { 464 int fd; 465 466 fd = bpf_create_map(type, size_key, size_value, max_elem, 467 (type == BPF_MAP_TYPE_HASH ? 468 BPF_F_NO_PREALLOC : 0) | extra_flags); 469 if (fd < 0) { 470 if (skip_unsupported_map(type)) 471 return -1; 472 printf("Failed to create hash map '%s'!\n", strerror(errno)); 473 } 474 475 return fd; 476 } 477 478 static int create_map(uint32_t type, uint32_t size_key, 479 uint32_t size_value, uint32_t max_elem) 480 { 481 return __create_map(type, size_key, size_value, max_elem, 0); 482 } 483 484 static void update_map(int fd, int index) 485 { 486 struct test_val value = { 487 .index = (6 + 1) * sizeof(int), 488 .foo[6] = 0xabcdef12, 489 }; 490 491 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 492 } 493 494 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 495 { 496 struct bpf_insn prog[] = { 497 BPF_MOV64_IMM(BPF_REG_0, ret), 498 BPF_EXIT_INSN(), 499 }; 500 501 return bpf_load_program(prog_type, prog, 502 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 503 } 504 505 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 506 int idx, int ret) 507 { 508 struct bpf_insn prog[] = { 509 BPF_MOV64_IMM(BPF_REG_3, idx), 510 BPF_LD_MAP_FD(BPF_REG_2, mfd), 511 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 512 BPF_FUNC_tail_call), 513 BPF_MOV64_IMM(BPF_REG_0, ret), 514 BPF_EXIT_INSN(), 515 }; 516 517 return bpf_load_program(prog_type, prog, 518 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 519 } 520 521 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 522 int p1key, int p2key, int p3key) 523 { 524 int mfd, p1fd, p2fd, p3fd; 525 526 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 527 sizeof(int), max_elem, 0); 528 if (mfd < 0) { 529 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 530 return -1; 531 printf("Failed to create prog array '%s'!\n", strerror(errno)); 532 return -1; 533 } 534 535 p1fd = create_prog_dummy_simple(prog_type, 42); 536 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 537 p3fd = create_prog_dummy_simple(prog_type, 24); 538 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 539 goto err; 540 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 541 goto err; 542 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 543 goto err; 544 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 545 err: 546 close(mfd); 547 mfd = -1; 548 } 549 close(p3fd); 550 close(p2fd); 551 close(p1fd); 552 return mfd; 553 } 554 555 static int create_map_in_map(void) 556 { 557 int inner_map_fd, outer_map_fd; 558 559 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 560 sizeof(int), 1, 0); 561 if (inner_map_fd < 0) { 562 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 563 return -1; 564 printf("Failed to create array '%s'!\n", strerror(errno)); 565 return inner_map_fd; 566 } 567 568 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 569 sizeof(int), inner_map_fd, 1, 0); 570 if (outer_map_fd < 0) { 571 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 572 return -1; 573 printf("Failed to create array of maps '%s'!\n", 574 strerror(errno)); 575 } 576 577 close(inner_map_fd); 578 579 return outer_map_fd; 580 } 581 582 static int create_cgroup_storage(bool percpu) 583 { 584 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 585 BPF_MAP_TYPE_CGROUP_STORAGE; 586 int fd; 587 588 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 589 TEST_DATA_LEN, 0, 0); 590 if (fd < 0) { 591 if (skip_unsupported_map(type)) 592 return -1; 593 printf("Failed to create cgroup storage '%s'!\n", 594 strerror(errno)); 595 } 596 597 return fd; 598 } 599 600 /* struct bpf_spin_lock { 601 * int val; 602 * }; 603 * struct val { 604 * int cnt; 605 * struct bpf_spin_lock l; 606 * }; 607 */ 608 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 609 static __u32 btf_raw_types[] = { 610 /* int */ 611 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 612 /* struct bpf_spin_lock */ /* [2] */ 613 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 614 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 615 /* struct val */ /* [3] */ 616 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 617 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 618 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 619 }; 620 621 static int load_btf(void) 622 { 623 struct btf_header hdr = { 624 .magic = BTF_MAGIC, 625 .version = BTF_VERSION, 626 .hdr_len = sizeof(struct btf_header), 627 .type_len = sizeof(btf_raw_types), 628 .str_off = sizeof(btf_raw_types), 629 .str_len = sizeof(btf_str_sec), 630 }; 631 void *ptr, *raw_btf; 632 int btf_fd; 633 634 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 635 sizeof(btf_str_sec)); 636 637 memcpy(ptr, &hdr, sizeof(hdr)); 638 ptr += sizeof(hdr); 639 memcpy(ptr, btf_raw_types, hdr.type_len); 640 ptr += hdr.type_len; 641 memcpy(ptr, btf_str_sec, hdr.str_len); 642 ptr += hdr.str_len; 643 644 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 645 free(raw_btf); 646 if (btf_fd < 0) 647 return -1; 648 return btf_fd; 649 } 650 651 static int create_map_spin_lock(void) 652 { 653 struct bpf_create_map_attr attr = { 654 .name = "test_map", 655 .map_type = BPF_MAP_TYPE_ARRAY, 656 .key_size = 4, 657 .value_size = 8, 658 .max_entries = 1, 659 .btf_key_type_id = 1, 660 .btf_value_type_id = 3, 661 }; 662 int fd, btf_fd; 663 664 btf_fd = load_btf(); 665 if (btf_fd < 0) 666 return -1; 667 attr.btf_fd = btf_fd; 668 fd = bpf_create_map_xattr(&attr); 669 if (fd < 0) 670 printf("Failed to create map with spin_lock\n"); 671 return fd; 672 } 673 674 static int create_sk_storage_map(void) 675 { 676 struct bpf_create_map_attr attr = { 677 .name = "test_map", 678 .map_type = BPF_MAP_TYPE_SK_STORAGE, 679 .key_size = 4, 680 .value_size = 8, 681 .max_entries = 0, 682 .map_flags = BPF_F_NO_PREALLOC, 683 .btf_key_type_id = 1, 684 .btf_value_type_id = 3, 685 }; 686 int fd, btf_fd; 687 688 btf_fd = load_btf(); 689 if (btf_fd < 0) 690 return -1; 691 attr.btf_fd = btf_fd; 692 fd = bpf_create_map_xattr(&attr); 693 close(attr.btf_fd); 694 if (fd < 0) 695 printf("Failed to create sk_storage_map\n"); 696 return fd; 697 } 698 699 static char bpf_vlog[UINT_MAX >> 8]; 700 701 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 702 struct bpf_insn *prog, int *map_fds) 703 { 704 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 705 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 706 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 707 int *fixup_map_array_48b = test->fixup_map_array_48b; 708 int *fixup_map_sockmap = test->fixup_map_sockmap; 709 int *fixup_map_sockhash = test->fixup_map_sockhash; 710 int *fixup_map_xskmap = test->fixup_map_xskmap; 711 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 712 int *fixup_prog1 = test->fixup_prog1; 713 int *fixup_prog2 = test->fixup_prog2; 714 int *fixup_map_in_map = test->fixup_map_in_map; 715 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 716 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 717 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 718 int *fixup_map_array_ro = test->fixup_map_array_ro; 719 int *fixup_map_array_wo = test->fixup_map_array_wo; 720 int *fixup_map_array_small = test->fixup_map_array_small; 721 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 722 int *fixup_map_event_output = test->fixup_map_event_output; 723 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 724 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 725 726 if (test->fill_helper) { 727 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 728 test->fill_helper(test); 729 } 730 731 /* Allocating HTs with 1 elem is fine here, since we only test 732 * for verifier and not do a runtime lookup, so the only thing 733 * that really matters is value size in this case. 734 */ 735 if (*fixup_map_hash_8b) { 736 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 737 sizeof(long long), 1); 738 do { 739 prog[*fixup_map_hash_8b].imm = map_fds[0]; 740 fixup_map_hash_8b++; 741 } while (*fixup_map_hash_8b); 742 } 743 744 if (*fixup_map_hash_48b) { 745 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 746 sizeof(struct test_val), 1); 747 do { 748 prog[*fixup_map_hash_48b].imm = map_fds[1]; 749 fixup_map_hash_48b++; 750 } while (*fixup_map_hash_48b); 751 } 752 753 if (*fixup_map_hash_16b) { 754 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 755 sizeof(struct other_val), 1); 756 do { 757 prog[*fixup_map_hash_16b].imm = map_fds[2]; 758 fixup_map_hash_16b++; 759 } while (*fixup_map_hash_16b); 760 } 761 762 if (*fixup_map_array_48b) { 763 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 764 sizeof(struct test_val), 1); 765 update_map(map_fds[3], 0); 766 do { 767 prog[*fixup_map_array_48b].imm = map_fds[3]; 768 fixup_map_array_48b++; 769 } while (*fixup_map_array_48b); 770 } 771 772 if (*fixup_prog1) { 773 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 774 do { 775 prog[*fixup_prog1].imm = map_fds[4]; 776 fixup_prog1++; 777 } while (*fixup_prog1); 778 } 779 780 if (*fixup_prog2) { 781 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 782 do { 783 prog[*fixup_prog2].imm = map_fds[5]; 784 fixup_prog2++; 785 } while (*fixup_prog2); 786 } 787 788 if (*fixup_map_in_map) { 789 map_fds[6] = create_map_in_map(); 790 do { 791 prog[*fixup_map_in_map].imm = map_fds[6]; 792 fixup_map_in_map++; 793 } while (*fixup_map_in_map); 794 } 795 796 if (*fixup_cgroup_storage) { 797 map_fds[7] = create_cgroup_storage(false); 798 do { 799 prog[*fixup_cgroup_storage].imm = map_fds[7]; 800 fixup_cgroup_storage++; 801 } while (*fixup_cgroup_storage); 802 } 803 804 if (*fixup_percpu_cgroup_storage) { 805 map_fds[8] = create_cgroup_storage(true); 806 do { 807 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 808 fixup_percpu_cgroup_storage++; 809 } while (*fixup_percpu_cgroup_storage); 810 } 811 if (*fixup_map_sockmap) { 812 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 813 sizeof(int), 1); 814 do { 815 prog[*fixup_map_sockmap].imm = map_fds[9]; 816 fixup_map_sockmap++; 817 } while (*fixup_map_sockmap); 818 } 819 if (*fixup_map_sockhash) { 820 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 821 sizeof(int), 1); 822 do { 823 prog[*fixup_map_sockhash].imm = map_fds[10]; 824 fixup_map_sockhash++; 825 } while (*fixup_map_sockhash); 826 } 827 if (*fixup_map_xskmap) { 828 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 829 sizeof(int), 1); 830 do { 831 prog[*fixup_map_xskmap].imm = map_fds[11]; 832 fixup_map_xskmap++; 833 } while (*fixup_map_xskmap); 834 } 835 if (*fixup_map_stacktrace) { 836 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 837 sizeof(u64), 1); 838 do { 839 prog[*fixup_map_stacktrace].imm = map_fds[12]; 840 fixup_map_stacktrace++; 841 } while (*fixup_map_stacktrace); 842 } 843 if (*fixup_map_spin_lock) { 844 map_fds[13] = create_map_spin_lock(); 845 do { 846 prog[*fixup_map_spin_lock].imm = map_fds[13]; 847 fixup_map_spin_lock++; 848 } while (*fixup_map_spin_lock); 849 } 850 if (*fixup_map_array_ro) { 851 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 852 sizeof(struct test_val), 1, 853 BPF_F_RDONLY_PROG); 854 update_map(map_fds[14], 0); 855 do { 856 prog[*fixup_map_array_ro].imm = map_fds[14]; 857 fixup_map_array_ro++; 858 } while (*fixup_map_array_ro); 859 } 860 if (*fixup_map_array_wo) { 861 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 862 sizeof(struct test_val), 1, 863 BPF_F_WRONLY_PROG); 864 update_map(map_fds[15], 0); 865 do { 866 prog[*fixup_map_array_wo].imm = map_fds[15]; 867 fixup_map_array_wo++; 868 } while (*fixup_map_array_wo); 869 } 870 if (*fixup_map_array_small) { 871 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 872 1, 1, 0); 873 update_map(map_fds[16], 0); 874 do { 875 prog[*fixup_map_array_small].imm = map_fds[16]; 876 fixup_map_array_small++; 877 } while (*fixup_map_array_small); 878 } 879 if (*fixup_sk_storage_map) { 880 map_fds[17] = create_sk_storage_map(); 881 do { 882 prog[*fixup_sk_storage_map].imm = map_fds[17]; 883 fixup_sk_storage_map++; 884 } while (*fixup_sk_storage_map); 885 } 886 if (*fixup_map_event_output) { 887 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 888 sizeof(int), sizeof(int), 1, 0); 889 do { 890 prog[*fixup_map_event_output].imm = map_fds[18]; 891 fixup_map_event_output++; 892 } while (*fixup_map_event_output); 893 } 894 if (*fixup_map_reuseport_array) { 895 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 896 sizeof(u32), sizeof(u64), 1, 0); 897 do { 898 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 899 fixup_map_reuseport_array++; 900 } while (*fixup_map_reuseport_array); 901 } 902 if (*fixup_map_ringbuf) { 903 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 904 0, 4096); 905 do { 906 prog[*fixup_map_ringbuf].imm = map_fds[20]; 907 fixup_map_ringbuf++; 908 } while (*fixup_map_ringbuf); 909 } 910 } 911 912 struct libcap { 913 struct __user_cap_header_struct hdr; 914 struct __user_cap_data_struct data[2]; 915 }; 916 917 static int set_admin(bool admin) 918 { 919 cap_t caps; 920 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 921 const cap_value_t cap_net_admin = CAP_NET_ADMIN; 922 const cap_value_t cap_sys_admin = CAP_SYS_ADMIN; 923 struct libcap *cap; 924 int ret = -1; 925 926 caps = cap_get_proc(); 927 if (!caps) { 928 perror("cap_get_proc"); 929 return -1; 930 } 931 cap = (struct libcap *)caps; 932 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) { 933 perror("cap_set_flag clear admin"); 934 goto out; 935 } 936 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin, 937 admin ? CAP_SET : CAP_CLEAR)) { 938 perror("cap_set_flag set_or_clear net"); 939 goto out; 940 } 941 /* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON, 942 * so update effective bits manually 943 */ 944 if (admin) { 945 cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32); 946 cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32); 947 } else { 948 cap->data[1].effective &= ~(1 << (38 - 32)); 949 cap->data[1].effective &= ~(1 << (39 - 32)); 950 } 951 if (cap_set_proc(caps)) { 952 perror("cap_set_proc"); 953 goto out; 954 } 955 ret = 0; 956 out: 957 if (cap_free(caps)) 958 perror("cap_free"); 959 return ret; 960 } 961 962 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 963 void *data, size_t size_data) 964 { 965 __u8 tmp[TEST_DATA_LEN << 2]; 966 __u32 size_tmp = sizeof(tmp); 967 uint32_t retval; 968 int err, saved_errno; 969 970 if (unpriv) 971 set_admin(true); 972 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 973 tmp, &size_tmp, &retval, NULL); 974 saved_errno = errno; 975 976 if (unpriv) 977 set_admin(false); 978 979 if (err) { 980 switch (saved_errno) { 981 case ENOTSUPP: 982 printf("Did not run the program (not supported) "); 983 return 0; 984 case EPERM: 985 if (unpriv) { 986 printf("Did not run the program (no permission) "); 987 return 0; 988 } 989 /* fallthrough; */ 990 default: 991 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 992 strerror(saved_errno)); 993 return err; 994 } 995 } 996 997 if (retval != expected_val && 998 expected_val != POINTER_VALUE) { 999 printf("FAIL retval %d != %d ", retval, expected_val); 1000 return 1; 1001 } 1002 1003 return 0; 1004 } 1005 1006 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1007 * 1008 * If exp is an empty string, returns true. 1009 */ 1010 static bool cmp_str_seq(const char *log, const char *exp) 1011 { 1012 char needle[200]; 1013 const char *p, *q; 1014 int len; 1015 1016 do { 1017 if (!strlen(exp)) 1018 break; 1019 p = strchr(exp, '\t'); 1020 if (!p) 1021 p = exp + strlen(exp); 1022 1023 len = p - exp; 1024 if (len >= sizeof(needle) || !len) { 1025 printf("FAIL\nTestcase bug\n"); 1026 return false; 1027 } 1028 strncpy(needle, exp, len); 1029 needle[len] = 0; 1030 q = strstr(log, needle); 1031 if (!q) { 1032 printf("FAIL\nUnexpected verifier log!\n" 1033 "EXP: %s\nRES:\n", needle); 1034 return false; 1035 } 1036 log = q + len; 1037 exp = p + 1; 1038 } while (*p); 1039 return true; 1040 } 1041 1042 static void do_test_single(struct bpf_test *test, bool unpriv, 1043 int *passes, int *errors) 1044 { 1045 int fd_prog, expected_ret, alignment_prevented_execution; 1046 int prog_len, prog_type = test->prog_type; 1047 struct bpf_insn *prog = test->insns; 1048 struct bpf_load_program_attr attr; 1049 int run_errs, run_successes; 1050 int map_fds[MAX_NR_MAPS]; 1051 const char *expected_err; 1052 int saved_errno; 1053 int fixup_skips; 1054 __u32 pflags; 1055 int i, err; 1056 1057 for (i = 0; i < MAX_NR_MAPS; i++) 1058 map_fds[i] = -1; 1059 1060 if (!prog_type) 1061 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1062 fixup_skips = skips; 1063 do_test_fixup(test, prog_type, prog, map_fds); 1064 if (test->fill_insns) { 1065 prog = test->fill_insns; 1066 prog_len = test->prog_len; 1067 } else { 1068 prog_len = probe_filter_length(prog); 1069 } 1070 /* If there were some map skips during fixup due to missing bpf 1071 * features, skip this test. 1072 */ 1073 if (fixup_skips != skips) 1074 return; 1075 1076 pflags = BPF_F_TEST_RND_HI32; 1077 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1078 pflags |= BPF_F_STRICT_ALIGNMENT; 1079 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1080 pflags |= BPF_F_ANY_ALIGNMENT; 1081 if (test->flags & ~3) 1082 pflags |= test->flags; 1083 1084 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1085 test->result_unpriv : test->result; 1086 expected_err = unpriv && test->errstr_unpriv ? 1087 test->errstr_unpriv : test->errstr; 1088 memset(&attr, 0, sizeof(attr)); 1089 attr.prog_type = prog_type; 1090 attr.expected_attach_type = test->expected_attach_type; 1091 attr.insns = prog; 1092 attr.insns_cnt = prog_len; 1093 attr.license = "GPL"; 1094 if (verbose) 1095 attr.log_level = 1; 1096 else if (expected_ret == VERBOSE_ACCEPT) 1097 attr.log_level = 2; 1098 else 1099 attr.log_level = 4; 1100 attr.prog_flags = pflags; 1101 1102 if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) { 1103 attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1104 attr.expected_attach_type); 1105 if (attr.attach_btf_id < 0) { 1106 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1107 test->kfunc); 1108 (*errors)++; 1109 return; 1110 } 1111 } 1112 1113 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); 1114 saved_errno = errno; 1115 1116 /* BPF_PROG_TYPE_TRACING requires more setup and 1117 * bpf_probe_prog_type won't give correct answer 1118 */ 1119 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1120 !bpf_probe_prog_type(prog_type, 0)) { 1121 printf("SKIP (unsupported program type %d)\n", prog_type); 1122 skips++; 1123 goto close_fds; 1124 } 1125 1126 if (fd_prog < 0 && saved_errno == ENOTSUPP) { 1127 printf("SKIP (program uses an unsupported feature)\n"); 1128 skips++; 1129 goto close_fds; 1130 } 1131 1132 alignment_prevented_execution = 0; 1133 1134 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1135 if (fd_prog < 0) { 1136 printf("FAIL\nFailed to load prog '%s'!\n", 1137 strerror(saved_errno)); 1138 goto fail_log; 1139 } 1140 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1141 if (fd_prog >= 0 && 1142 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1143 alignment_prevented_execution = 1; 1144 #endif 1145 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1146 goto fail_log; 1147 } 1148 } else { 1149 if (fd_prog >= 0) { 1150 printf("FAIL\nUnexpected success to load!\n"); 1151 goto fail_log; 1152 } 1153 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1154 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1155 expected_err, bpf_vlog); 1156 goto fail_log; 1157 } 1158 } 1159 1160 if (!unpriv && test->insn_processed) { 1161 uint32_t insn_processed; 1162 char *proc; 1163 1164 proc = strstr(bpf_vlog, "processed "); 1165 insn_processed = atoi(proc + 10); 1166 if (test->insn_processed != insn_processed) { 1167 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1168 insn_processed, test->insn_processed); 1169 goto fail_log; 1170 } 1171 } 1172 1173 if (verbose) 1174 printf(", verifier log:\n%s", bpf_vlog); 1175 1176 run_errs = 0; 1177 run_successes = 0; 1178 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1179 uint32_t expected_val; 1180 int i; 1181 1182 if (!test->runs) 1183 test->runs = 1; 1184 1185 for (i = 0; i < test->runs; i++) { 1186 if (unpriv && test->retvals[i].retval_unpriv) 1187 expected_val = test->retvals[i].retval_unpriv; 1188 else 1189 expected_val = test->retvals[i].retval; 1190 1191 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1192 test->retvals[i].data, 1193 sizeof(test->retvals[i].data)); 1194 if (err) { 1195 printf("(run %d/%d) ", i + 1, test->runs); 1196 run_errs++; 1197 } else { 1198 run_successes++; 1199 } 1200 } 1201 } 1202 1203 if (!run_errs) { 1204 (*passes)++; 1205 if (run_successes > 1) 1206 printf("%d cases ", run_successes); 1207 printf("OK"); 1208 if (alignment_prevented_execution) 1209 printf(" (NOTE: not executed due to unknown alignment)"); 1210 printf("\n"); 1211 } else { 1212 printf("\n"); 1213 goto fail_log; 1214 } 1215 close_fds: 1216 if (test->fill_insns) 1217 free(test->fill_insns); 1218 close(fd_prog); 1219 for (i = 0; i < MAX_NR_MAPS; i++) 1220 close(map_fds[i]); 1221 sched_yield(); 1222 return; 1223 fail_log: 1224 (*errors)++; 1225 printf("%s", bpf_vlog); 1226 goto close_fds; 1227 } 1228 1229 static bool is_admin(void) 1230 { 1231 cap_flag_value_t net_priv = CAP_CLEAR; 1232 bool perfmon_priv = false; 1233 bool bpf_priv = false; 1234 struct libcap *cap; 1235 cap_t caps; 1236 1237 #ifdef CAP_IS_SUPPORTED 1238 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1239 perror("cap_get_flag"); 1240 return false; 1241 } 1242 #endif 1243 caps = cap_get_proc(); 1244 if (!caps) { 1245 perror("cap_get_proc"); 1246 return false; 1247 } 1248 cap = (struct libcap *)caps; 1249 bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32)); 1250 perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32)); 1251 if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv)) 1252 perror("cap_get_flag NET"); 1253 if (cap_free(caps)) 1254 perror("cap_free"); 1255 return bpf_priv && perfmon_priv && net_priv == CAP_SET; 1256 } 1257 1258 static void get_unpriv_disabled() 1259 { 1260 char buf[2]; 1261 FILE *fd; 1262 1263 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1264 if (!fd) { 1265 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1266 unpriv_disabled = true; 1267 return; 1268 } 1269 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1270 unpriv_disabled = true; 1271 fclose(fd); 1272 } 1273 1274 static bool test_as_unpriv(struct bpf_test *test) 1275 { 1276 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1277 /* Some architectures have strict alignment requirements. In 1278 * that case, the BPF verifier detects if a program has 1279 * unaligned accesses and rejects them. A user can pass 1280 * BPF_F_ANY_ALIGNMENT to a program to override this 1281 * check. That, however, will only work when a privileged user 1282 * loads a program. An unprivileged user loading a program 1283 * with this flag will be rejected prior entering the 1284 * verifier. 1285 */ 1286 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1287 return false; 1288 #endif 1289 return !test->prog_type || 1290 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1291 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1292 } 1293 1294 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1295 { 1296 int i, passes = 0, errors = 0; 1297 1298 for (i = from; i < to; i++) { 1299 struct bpf_test *test = &tests[i]; 1300 1301 /* Program types that are not supported by non-root we 1302 * skip right away. 1303 */ 1304 if (test_as_unpriv(test) && unpriv_disabled) { 1305 printf("#%d/u %s SKIP\n", i, test->descr); 1306 skips++; 1307 } else if (test_as_unpriv(test)) { 1308 if (!unpriv) 1309 set_admin(false); 1310 printf("#%d/u %s ", i, test->descr); 1311 do_test_single(test, true, &passes, &errors); 1312 if (!unpriv) 1313 set_admin(true); 1314 } 1315 1316 if (unpriv) { 1317 printf("#%d/p %s SKIP\n", i, test->descr); 1318 skips++; 1319 } else { 1320 printf("#%d/p %s ", i, test->descr); 1321 do_test_single(test, false, &passes, &errors); 1322 } 1323 } 1324 1325 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1326 skips, errors); 1327 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1328 } 1329 1330 int main(int argc, char **argv) 1331 { 1332 unsigned int from = 0, to = ARRAY_SIZE(tests); 1333 bool unpriv = !is_admin(); 1334 int arg = 1; 1335 1336 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1337 arg++; 1338 verbose = true; 1339 argc--; 1340 } 1341 1342 if (argc == 3) { 1343 unsigned int l = atoi(argv[arg]); 1344 unsigned int u = atoi(argv[arg + 1]); 1345 1346 if (l < to && u < to) { 1347 from = l; 1348 to = u + 1; 1349 } 1350 } else if (argc == 2) { 1351 unsigned int t = atoi(argv[arg]); 1352 1353 if (t < to) { 1354 from = t; 1355 to = t + 1; 1356 } 1357 } 1358 1359 get_unpriv_disabled(); 1360 if (unpriv && unpriv_disabled) { 1361 printf("Cannot run as unprivileged user with sysctl %s.\n", 1362 UNPRIV_SYSCTL); 1363 return EXIT_FAILURE; 1364 } 1365 1366 bpf_semi_rand_init(); 1367 return do_test(unpriv, from, to); 1368 } 1369