xref: /linux/tools/testing/selftests/bpf/test_verifier.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <sys/capability.h>
26 
27 #include <linux/unistd.h>
28 #include <linux/filter.h>
29 #include <linux/bpf_perf_event.h>
30 #include <linux/bpf.h>
31 #include <linux/if_ether.h>
32 #include <linux/btf.h>
33 
34 #include <bpf/bpf.h>
35 #include <bpf/libbpf.h>
36 
37 #ifdef HAVE_GENHDR
38 # include "autoconf.h"
39 #else
40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
41 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
42 # endif
43 #endif
44 #include "bpf_rlimit.h"
45 #include "bpf_rand.h"
46 #include "bpf_util.h"
47 #include "test_btf.h"
48 #include "../../../include/linux/filter.h"
49 
50 #ifndef ENOTSUPP
51 #define ENOTSUPP 524
52 #endif
53 
54 #define MAX_INSNS	BPF_MAXINSNS
55 #define MAX_TEST_INSNS	1000000
56 #define MAX_FIXUPS	8
57 #define MAX_NR_MAPS	21
58 #define MAX_TEST_RUNS	8
59 #define POINTER_VALUE	0xcafe4all
60 #define TEST_DATA_LEN	64
61 
62 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
63 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
64 
65 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
66 static bool unpriv_disabled = false;
67 static int skips;
68 static bool verbose = false;
69 
70 struct bpf_test {
71 	const char *descr;
72 	struct bpf_insn	insns[MAX_INSNS];
73 	struct bpf_insn	*fill_insns;
74 	int fixup_map_hash_8b[MAX_FIXUPS];
75 	int fixup_map_hash_48b[MAX_FIXUPS];
76 	int fixup_map_hash_16b[MAX_FIXUPS];
77 	int fixup_map_array_48b[MAX_FIXUPS];
78 	int fixup_map_sockmap[MAX_FIXUPS];
79 	int fixup_map_sockhash[MAX_FIXUPS];
80 	int fixup_map_xskmap[MAX_FIXUPS];
81 	int fixup_map_stacktrace[MAX_FIXUPS];
82 	int fixup_prog1[MAX_FIXUPS];
83 	int fixup_prog2[MAX_FIXUPS];
84 	int fixup_map_in_map[MAX_FIXUPS];
85 	int fixup_cgroup_storage[MAX_FIXUPS];
86 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
87 	int fixup_map_spin_lock[MAX_FIXUPS];
88 	int fixup_map_array_ro[MAX_FIXUPS];
89 	int fixup_map_array_wo[MAX_FIXUPS];
90 	int fixup_map_array_small[MAX_FIXUPS];
91 	int fixup_sk_storage_map[MAX_FIXUPS];
92 	int fixup_map_event_output[MAX_FIXUPS];
93 	int fixup_map_reuseport_array[MAX_FIXUPS];
94 	int fixup_map_ringbuf[MAX_FIXUPS];
95 	int fixup_map_timer[MAX_FIXUPS];
96 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
97 	 * Can be a tab-separated sequence of expected strings. An empty string
98 	 * means no log verification.
99 	 */
100 	const char *errstr;
101 	const char *errstr_unpriv;
102 	uint32_t insn_processed;
103 	int prog_len;
104 	enum {
105 		UNDEF,
106 		ACCEPT,
107 		REJECT,
108 		VERBOSE_ACCEPT,
109 	} result, result_unpriv;
110 	enum bpf_prog_type prog_type;
111 	uint8_t flags;
112 	void (*fill_helper)(struct bpf_test *self);
113 	int runs;
114 #define bpf_testdata_struct_t					\
115 	struct {						\
116 		uint32_t retval, retval_unpriv;			\
117 		union {						\
118 			__u8 data[TEST_DATA_LEN];		\
119 			__u64 data64[TEST_DATA_LEN / 8];	\
120 		};						\
121 	}
122 	union {
123 		bpf_testdata_struct_t;
124 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
125 	};
126 	enum bpf_attach_type expected_attach_type;
127 	const char *kfunc;
128 };
129 
130 /* Note we want this to be 64 bit aligned so that the end of our array is
131  * actually the end of the structure.
132  */
133 #define MAX_ENTRIES 11
134 
135 struct test_val {
136 	unsigned int index;
137 	int foo[MAX_ENTRIES];
138 };
139 
140 struct other_val {
141 	long long foo;
142 	long long bar;
143 };
144 
145 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
146 {
147 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
148 #define PUSH_CNT 51
149 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
150 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
151 	struct bpf_insn *insn = self->fill_insns;
152 	int i = 0, j, k = 0;
153 
154 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
155 loop:
156 	for (j = 0; j < PUSH_CNT; j++) {
157 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
158 		/* jump to error label */
159 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
160 		i++;
161 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
162 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
163 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
164 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
165 					 BPF_FUNC_skb_vlan_push),
166 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
167 		i++;
168 	}
169 
170 	for (j = 0; j < PUSH_CNT; j++) {
171 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
172 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
173 		i++;
174 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
175 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
176 					 BPF_FUNC_skb_vlan_pop),
177 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
178 		i++;
179 	}
180 	if (++k < 5)
181 		goto loop;
182 
183 	for (; i < len - 3; i++)
184 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
185 	insn[len - 3] = BPF_JMP_A(1);
186 	/* error label */
187 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
188 	insn[len - 1] = BPF_EXIT_INSN();
189 	self->prog_len = len;
190 }
191 
192 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
193 {
194 	struct bpf_insn *insn = self->fill_insns;
195 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
196 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
197 	 * to extend the error value of the inlined ld_abs sequence which then
198 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
199 	 * work on all arches.
200 	 */
201 	unsigned int len = (1 << 15) / 7;
202 	int i = 0;
203 
204 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
205 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
206 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
207 	i++;
208 	while (i < len - 1)
209 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
210 	insn[i] = BPF_EXIT_INSN();
211 	self->prog_len = i + 1;
212 }
213 
214 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
215 {
216 	struct bpf_insn *insn = self->fill_insns;
217 	uint64_t res = 0;
218 	int i = 0;
219 
220 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
221 	while (i < self->retval) {
222 		uint64_t val = bpf_semi_rand_get();
223 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
224 
225 		res ^= val;
226 		insn[i++] = tmp[0];
227 		insn[i++] = tmp[1];
228 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
229 	}
230 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
231 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
232 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
233 	insn[i] = BPF_EXIT_INSN();
234 	self->prog_len = i + 1;
235 	res ^= (res >> 32);
236 	self->retval = (uint32_t)res;
237 }
238 
239 #define MAX_JMP_SEQ 8192
240 
241 /* test the sequence of 8k jumps */
242 static void bpf_fill_scale1(struct bpf_test *self)
243 {
244 	struct bpf_insn *insn = self->fill_insns;
245 	int i = 0, k = 0;
246 
247 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
248 	/* test to check that the long sequence of jumps is acceptable */
249 	while (k++ < MAX_JMP_SEQ) {
250 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
251 					 BPF_FUNC_get_prandom_u32);
252 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
253 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
254 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
255 					-8 * (k % 64 + 1));
256 	}
257 	/* is_state_visited() doesn't allocate state for pruning for every jump.
258 	 * Hence multiply jmps by 4 to accommodate that heuristic
259 	 */
260 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
261 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
262 	insn[i] = BPF_EXIT_INSN();
263 	self->prog_len = i + 1;
264 	self->retval = 42;
265 }
266 
267 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
268 static void bpf_fill_scale2(struct bpf_test *self)
269 {
270 	struct bpf_insn *insn = self->fill_insns;
271 	int i = 0, k = 0;
272 
273 #define FUNC_NEST 7
274 	for (k = 0; k < FUNC_NEST; k++) {
275 		insn[i++] = BPF_CALL_REL(1);
276 		insn[i++] = BPF_EXIT_INSN();
277 	}
278 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
279 	/* test to check that the long sequence of jumps is acceptable */
280 	k = 0;
281 	while (k++ < MAX_JMP_SEQ) {
282 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
283 					 BPF_FUNC_get_prandom_u32);
284 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
285 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
286 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
287 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
288 	}
289 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
290 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
291 	insn[i] = BPF_EXIT_INSN();
292 	self->prog_len = i + 1;
293 	self->retval = 42;
294 }
295 
296 static void bpf_fill_scale(struct bpf_test *self)
297 {
298 	switch (self->retval) {
299 	case 1:
300 		return bpf_fill_scale1(self);
301 	case 2:
302 		return bpf_fill_scale2(self);
303 	default:
304 		self->prog_len = 0;
305 		break;
306 	}
307 }
308 
309 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
310 {
311 	unsigned int len = 259, hlen = 128;
312 	int i;
313 
314 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
315 	for (i = 1; i <= hlen; i++) {
316 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
317 		insn[i + hlen] = BPF_JMP_A(hlen - i);
318 	}
319 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
320 	insn[len - 1] = BPF_EXIT_INSN();
321 
322 	return len;
323 }
324 
325 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
326 {
327 	unsigned int len = 4100, jmp_off = 2048;
328 	int i, j;
329 
330 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
331 	for (i = 1; i <= jmp_off; i++) {
332 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
333 	}
334 	insn[i++] = BPF_JMP_A(jmp_off);
335 	for (; i <= jmp_off * 2 + 1; i+=16) {
336 		for (j = 0; j < 16; j++) {
337 			insn[i + j] = BPF_JMP_A(16 - j - 1);
338 		}
339 	}
340 
341 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
342 	insn[len - 1] = BPF_EXIT_INSN();
343 
344 	return len;
345 }
346 
347 static void bpf_fill_torturous_jumps(struct bpf_test *self)
348 {
349 	struct bpf_insn *insn = self->fill_insns;
350 	int i = 0;
351 
352 	switch (self->retval) {
353 	case 1:
354 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
355 		return;
356 	case 2:
357 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
358 		return;
359 	case 3:
360 		/* main */
361 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
362 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
363 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
364 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
365 		insn[i++] = BPF_EXIT_INSN();
366 
367 		/* subprog 1 */
368 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
369 
370 		/* subprog 2 */
371 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
372 
373 		self->prog_len = i;
374 		return;
375 	default:
376 		self->prog_len = 0;
377 		break;
378 	}
379 }
380 
381 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
382 #define BPF_SK_LOOKUP(func)						\
383 	/* struct bpf_sock_tuple tuple = {} */				\
384 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
385 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
386 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
387 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
388 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
389 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
390 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
391 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
392 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
393 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
394 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
395 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
396 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
397 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
398 
399 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
400  * value into 0 and does necessary preparation for direct packet access
401  * through r2. The allowed access range is 8 bytes.
402  */
403 #define BPF_DIRECT_PKT_R2						\
404 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
405 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
406 		    offsetof(struct __sk_buff, data)),			\
407 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
408 		    offsetof(struct __sk_buff, data_end)),		\
409 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
410 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
411 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
412 	BPF_EXIT_INSN()
413 
414 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
415  * positive u32, and zero-extend it into 64-bit.
416  */
417 #define BPF_RAND_UEXT_R7						\
418 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
419 		     BPF_FUNC_get_prandom_u32),				\
420 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
421 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
422 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
423 
424 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
425  * negative u32, and sign-extend it into 64-bit.
426  */
427 #define BPF_RAND_SEXT_R7						\
428 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
429 		     BPF_FUNC_get_prandom_u32),				\
430 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
431 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
432 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
433 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
434 
435 static struct bpf_test tests[] = {
436 #define FILL_ARRAY
437 #include <verifier/tests.h>
438 #undef FILL_ARRAY
439 };
440 
441 static int probe_filter_length(const struct bpf_insn *fp)
442 {
443 	int len;
444 
445 	for (len = MAX_INSNS - 1; len > 0; --len)
446 		if (fp[len].code != 0 || fp[len].imm != 0)
447 			break;
448 	return len + 1;
449 }
450 
451 static bool skip_unsupported_map(enum bpf_map_type map_type)
452 {
453 	if (!bpf_probe_map_type(map_type, 0)) {
454 		printf("SKIP (unsupported map type %d)\n", map_type);
455 		skips++;
456 		return true;
457 	}
458 	return false;
459 }
460 
461 static int __create_map(uint32_t type, uint32_t size_key,
462 			uint32_t size_value, uint32_t max_elem,
463 			uint32_t extra_flags)
464 {
465 	int fd;
466 
467 	fd = bpf_create_map(type, size_key, size_value, max_elem,
468 			    (type == BPF_MAP_TYPE_HASH ?
469 			     BPF_F_NO_PREALLOC : 0) | extra_flags);
470 	if (fd < 0) {
471 		if (skip_unsupported_map(type))
472 			return -1;
473 		printf("Failed to create hash map '%s'!\n", strerror(errno));
474 	}
475 
476 	return fd;
477 }
478 
479 static int create_map(uint32_t type, uint32_t size_key,
480 		      uint32_t size_value, uint32_t max_elem)
481 {
482 	return __create_map(type, size_key, size_value, max_elem, 0);
483 }
484 
485 static void update_map(int fd, int index)
486 {
487 	struct test_val value = {
488 		.index = (6 + 1) * sizeof(int),
489 		.foo[6] = 0xabcdef12,
490 	};
491 
492 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
493 }
494 
495 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
496 {
497 	struct bpf_insn prog[] = {
498 		BPF_MOV64_IMM(BPF_REG_0, ret),
499 		BPF_EXIT_INSN(),
500 	};
501 
502 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
503 }
504 
505 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
506 				  int idx, int ret)
507 {
508 	struct bpf_insn prog[] = {
509 		BPF_MOV64_IMM(BPF_REG_3, idx),
510 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
511 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
512 			     BPF_FUNC_tail_call),
513 		BPF_MOV64_IMM(BPF_REG_0, ret),
514 		BPF_EXIT_INSN(),
515 	};
516 
517 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
518 }
519 
520 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
521 			     int p1key, int p2key, int p3key)
522 {
523 	int mfd, p1fd, p2fd, p3fd;
524 
525 	mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
526 			     sizeof(int), max_elem, 0);
527 	if (mfd < 0) {
528 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
529 			return -1;
530 		printf("Failed to create prog array '%s'!\n", strerror(errno));
531 		return -1;
532 	}
533 
534 	p1fd = create_prog_dummy_simple(prog_type, 42);
535 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
536 	p3fd = create_prog_dummy_simple(prog_type, 24);
537 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
538 		goto err;
539 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
540 		goto err;
541 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
542 		goto err;
543 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
544 err:
545 		close(mfd);
546 		mfd = -1;
547 	}
548 	close(p3fd);
549 	close(p2fd);
550 	close(p1fd);
551 	return mfd;
552 }
553 
554 static int create_map_in_map(void)
555 {
556 	int inner_map_fd, outer_map_fd;
557 
558 	inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
559 				      sizeof(int), 1, 0);
560 	if (inner_map_fd < 0) {
561 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
562 			return -1;
563 		printf("Failed to create array '%s'!\n", strerror(errno));
564 		return inner_map_fd;
565 	}
566 
567 	outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
568 					     sizeof(int), inner_map_fd, 1, 0);
569 	if (outer_map_fd < 0) {
570 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
571 			return -1;
572 		printf("Failed to create array of maps '%s'!\n",
573 		       strerror(errno));
574 	}
575 
576 	close(inner_map_fd);
577 
578 	return outer_map_fd;
579 }
580 
581 static int create_cgroup_storage(bool percpu)
582 {
583 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
584 		BPF_MAP_TYPE_CGROUP_STORAGE;
585 	int fd;
586 
587 	fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
588 			    TEST_DATA_LEN, 0, 0);
589 	if (fd < 0) {
590 		if (skip_unsupported_map(type))
591 			return -1;
592 		printf("Failed to create cgroup storage '%s'!\n",
593 		       strerror(errno));
594 	}
595 
596 	return fd;
597 }
598 
599 /* struct bpf_spin_lock {
600  *   int val;
601  * };
602  * struct val {
603  *   int cnt;
604  *   struct bpf_spin_lock l;
605  * };
606  * struct bpf_timer {
607  *   __u64 :64;
608  *   __u64 :64;
609  * } __attribute__((aligned(8)));
610  * struct timer {
611  *   struct bpf_timer t;
612  * };
613  */
614 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t";
615 static __u32 btf_raw_types[] = {
616 	/* int */
617 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
618 	/* struct bpf_spin_lock */                      /* [2] */
619 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
620 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
621 	/* struct val */                                /* [3] */
622 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
623 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
624 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
625 	/* struct bpf_timer */                          /* [4] */
626 	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
627 	/* struct timer */                              /* [5] */
628 	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
629 	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
630 };
631 
632 static int load_btf(void)
633 {
634 	struct btf_header hdr = {
635 		.magic = BTF_MAGIC,
636 		.version = BTF_VERSION,
637 		.hdr_len = sizeof(struct btf_header),
638 		.type_len = sizeof(btf_raw_types),
639 		.str_off = sizeof(btf_raw_types),
640 		.str_len = sizeof(btf_str_sec),
641 	};
642 	void *ptr, *raw_btf;
643 	int btf_fd;
644 
645 	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
646 			       sizeof(btf_str_sec));
647 
648 	memcpy(ptr, &hdr, sizeof(hdr));
649 	ptr += sizeof(hdr);
650 	memcpy(ptr, btf_raw_types, hdr.type_len);
651 	ptr += hdr.type_len;
652 	memcpy(ptr, btf_str_sec, hdr.str_len);
653 	ptr += hdr.str_len;
654 
655 	btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
656 	free(raw_btf);
657 	if (btf_fd < 0)
658 		return -1;
659 	return btf_fd;
660 }
661 
662 static int create_map_spin_lock(void)
663 {
664 	struct bpf_create_map_attr attr = {
665 		.name = "test_map",
666 		.map_type = BPF_MAP_TYPE_ARRAY,
667 		.key_size = 4,
668 		.value_size = 8,
669 		.max_entries = 1,
670 		.btf_key_type_id = 1,
671 		.btf_value_type_id = 3,
672 	};
673 	int fd, btf_fd;
674 
675 	btf_fd = load_btf();
676 	if (btf_fd < 0)
677 		return -1;
678 	attr.btf_fd = btf_fd;
679 	fd = bpf_create_map_xattr(&attr);
680 	if (fd < 0)
681 		printf("Failed to create map with spin_lock\n");
682 	return fd;
683 }
684 
685 static int create_sk_storage_map(void)
686 {
687 	struct bpf_create_map_attr attr = {
688 		.name = "test_map",
689 		.map_type = BPF_MAP_TYPE_SK_STORAGE,
690 		.key_size = 4,
691 		.value_size = 8,
692 		.max_entries = 0,
693 		.map_flags = BPF_F_NO_PREALLOC,
694 		.btf_key_type_id = 1,
695 		.btf_value_type_id = 3,
696 	};
697 	int fd, btf_fd;
698 
699 	btf_fd = load_btf();
700 	if (btf_fd < 0)
701 		return -1;
702 	attr.btf_fd = btf_fd;
703 	fd = bpf_create_map_xattr(&attr);
704 	close(attr.btf_fd);
705 	if (fd < 0)
706 		printf("Failed to create sk_storage_map\n");
707 	return fd;
708 }
709 
710 static int create_map_timer(void)
711 {
712 	struct bpf_create_map_attr attr = {
713 		.name = "test_map",
714 		.map_type = BPF_MAP_TYPE_ARRAY,
715 		.key_size = 4,
716 		.value_size = 16,
717 		.max_entries = 1,
718 		.btf_key_type_id = 1,
719 		.btf_value_type_id = 5,
720 	};
721 	int fd, btf_fd;
722 
723 	btf_fd = load_btf();
724 	if (btf_fd < 0)
725 		return -1;
726 	attr.btf_fd = btf_fd;
727 	fd = bpf_create_map_xattr(&attr);
728 	if (fd < 0)
729 		printf("Failed to create map with timer\n");
730 	return fd;
731 }
732 
733 static char bpf_vlog[UINT_MAX >> 8];
734 
735 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
736 			  struct bpf_insn *prog, int *map_fds)
737 {
738 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
739 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
740 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
741 	int *fixup_map_array_48b = test->fixup_map_array_48b;
742 	int *fixup_map_sockmap = test->fixup_map_sockmap;
743 	int *fixup_map_sockhash = test->fixup_map_sockhash;
744 	int *fixup_map_xskmap = test->fixup_map_xskmap;
745 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
746 	int *fixup_prog1 = test->fixup_prog1;
747 	int *fixup_prog2 = test->fixup_prog2;
748 	int *fixup_map_in_map = test->fixup_map_in_map;
749 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
750 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
751 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
752 	int *fixup_map_array_ro = test->fixup_map_array_ro;
753 	int *fixup_map_array_wo = test->fixup_map_array_wo;
754 	int *fixup_map_array_small = test->fixup_map_array_small;
755 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
756 	int *fixup_map_event_output = test->fixup_map_event_output;
757 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
758 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
759 	int *fixup_map_timer = test->fixup_map_timer;
760 
761 	if (test->fill_helper) {
762 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
763 		test->fill_helper(test);
764 	}
765 
766 	/* Allocating HTs with 1 elem is fine here, since we only test
767 	 * for verifier and not do a runtime lookup, so the only thing
768 	 * that really matters is value size in this case.
769 	 */
770 	if (*fixup_map_hash_8b) {
771 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
772 					sizeof(long long), 1);
773 		do {
774 			prog[*fixup_map_hash_8b].imm = map_fds[0];
775 			fixup_map_hash_8b++;
776 		} while (*fixup_map_hash_8b);
777 	}
778 
779 	if (*fixup_map_hash_48b) {
780 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
781 					sizeof(struct test_val), 1);
782 		do {
783 			prog[*fixup_map_hash_48b].imm = map_fds[1];
784 			fixup_map_hash_48b++;
785 		} while (*fixup_map_hash_48b);
786 	}
787 
788 	if (*fixup_map_hash_16b) {
789 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
790 					sizeof(struct other_val), 1);
791 		do {
792 			prog[*fixup_map_hash_16b].imm = map_fds[2];
793 			fixup_map_hash_16b++;
794 		} while (*fixup_map_hash_16b);
795 	}
796 
797 	if (*fixup_map_array_48b) {
798 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
799 					sizeof(struct test_val), 1);
800 		update_map(map_fds[3], 0);
801 		do {
802 			prog[*fixup_map_array_48b].imm = map_fds[3];
803 			fixup_map_array_48b++;
804 		} while (*fixup_map_array_48b);
805 	}
806 
807 	if (*fixup_prog1) {
808 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
809 		do {
810 			prog[*fixup_prog1].imm = map_fds[4];
811 			fixup_prog1++;
812 		} while (*fixup_prog1);
813 	}
814 
815 	if (*fixup_prog2) {
816 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
817 		do {
818 			prog[*fixup_prog2].imm = map_fds[5];
819 			fixup_prog2++;
820 		} while (*fixup_prog2);
821 	}
822 
823 	if (*fixup_map_in_map) {
824 		map_fds[6] = create_map_in_map();
825 		do {
826 			prog[*fixup_map_in_map].imm = map_fds[6];
827 			fixup_map_in_map++;
828 		} while (*fixup_map_in_map);
829 	}
830 
831 	if (*fixup_cgroup_storage) {
832 		map_fds[7] = create_cgroup_storage(false);
833 		do {
834 			prog[*fixup_cgroup_storage].imm = map_fds[7];
835 			fixup_cgroup_storage++;
836 		} while (*fixup_cgroup_storage);
837 	}
838 
839 	if (*fixup_percpu_cgroup_storage) {
840 		map_fds[8] = create_cgroup_storage(true);
841 		do {
842 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
843 			fixup_percpu_cgroup_storage++;
844 		} while (*fixup_percpu_cgroup_storage);
845 	}
846 	if (*fixup_map_sockmap) {
847 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
848 					sizeof(int), 1);
849 		do {
850 			prog[*fixup_map_sockmap].imm = map_fds[9];
851 			fixup_map_sockmap++;
852 		} while (*fixup_map_sockmap);
853 	}
854 	if (*fixup_map_sockhash) {
855 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
856 					sizeof(int), 1);
857 		do {
858 			prog[*fixup_map_sockhash].imm = map_fds[10];
859 			fixup_map_sockhash++;
860 		} while (*fixup_map_sockhash);
861 	}
862 	if (*fixup_map_xskmap) {
863 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
864 					sizeof(int), 1);
865 		do {
866 			prog[*fixup_map_xskmap].imm = map_fds[11];
867 			fixup_map_xskmap++;
868 		} while (*fixup_map_xskmap);
869 	}
870 	if (*fixup_map_stacktrace) {
871 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
872 					 sizeof(u64), 1);
873 		do {
874 			prog[*fixup_map_stacktrace].imm = map_fds[12];
875 			fixup_map_stacktrace++;
876 		} while (*fixup_map_stacktrace);
877 	}
878 	if (*fixup_map_spin_lock) {
879 		map_fds[13] = create_map_spin_lock();
880 		do {
881 			prog[*fixup_map_spin_lock].imm = map_fds[13];
882 			fixup_map_spin_lock++;
883 		} while (*fixup_map_spin_lock);
884 	}
885 	if (*fixup_map_array_ro) {
886 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
887 					   sizeof(struct test_val), 1,
888 					   BPF_F_RDONLY_PROG);
889 		update_map(map_fds[14], 0);
890 		do {
891 			prog[*fixup_map_array_ro].imm = map_fds[14];
892 			fixup_map_array_ro++;
893 		} while (*fixup_map_array_ro);
894 	}
895 	if (*fixup_map_array_wo) {
896 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
897 					   sizeof(struct test_val), 1,
898 					   BPF_F_WRONLY_PROG);
899 		update_map(map_fds[15], 0);
900 		do {
901 			prog[*fixup_map_array_wo].imm = map_fds[15];
902 			fixup_map_array_wo++;
903 		} while (*fixup_map_array_wo);
904 	}
905 	if (*fixup_map_array_small) {
906 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
907 					   1, 1, 0);
908 		update_map(map_fds[16], 0);
909 		do {
910 			prog[*fixup_map_array_small].imm = map_fds[16];
911 			fixup_map_array_small++;
912 		} while (*fixup_map_array_small);
913 	}
914 	if (*fixup_sk_storage_map) {
915 		map_fds[17] = create_sk_storage_map();
916 		do {
917 			prog[*fixup_sk_storage_map].imm = map_fds[17];
918 			fixup_sk_storage_map++;
919 		} while (*fixup_sk_storage_map);
920 	}
921 	if (*fixup_map_event_output) {
922 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
923 					   sizeof(int), sizeof(int), 1, 0);
924 		do {
925 			prog[*fixup_map_event_output].imm = map_fds[18];
926 			fixup_map_event_output++;
927 		} while (*fixup_map_event_output);
928 	}
929 	if (*fixup_map_reuseport_array) {
930 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
931 					   sizeof(u32), sizeof(u64), 1, 0);
932 		do {
933 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
934 			fixup_map_reuseport_array++;
935 		} while (*fixup_map_reuseport_array);
936 	}
937 	if (*fixup_map_ringbuf) {
938 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
939 					   0, 4096);
940 		do {
941 			prog[*fixup_map_ringbuf].imm = map_fds[20];
942 			fixup_map_ringbuf++;
943 		} while (*fixup_map_ringbuf);
944 	}
945 	if (*fixup_map_timer) {
946 		map_fds[21] = create_map_timer();
947 		do {
948 			prog[*fixup_map_timer].imm = map_fds[21];
949 			fixup_map_timer++;
950 		} while (*fixup_map_timer);
951 	}
952 }
953 
954 struct libcap {
955 	struct __user_cap_header_struct hdr;
956 	struct __user_cap_data_struct data[2];
957 };
958 
959 static int set_admin(bool admin)
960 {
961 	cap_t caps;
962 	/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
963 	const cap_value_t cap_net_admin = CAP_NET_ADMIN;
964 	const cap_value_t cap_sys_admin = CAP_SYS_ADMIN;
965 	struct libcap *cap;
966 	int ret = -1;
967 
968 	caps = cap_get_proc();
969 	if (!caps) {
970 		perror("cap_get_proc");
971 		return -1;
972 	}
973 	cap = (struct libcap *)caps;
974 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) {
975 		perror("cap_set_flag clear admin");
976 		goto out;
977 	}
978 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin,
979 				admin ? CAP_SET : CAP_CLEAR)) {
980 		perror("cap_set_flag set_or_clear net");
981 		goto out;
982 	}
983 	/* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON,
984 	 * so update effective bits manually
985 	 */
986 	if (admin) {
987 		cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32);
988 		cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32);
989 	} else {
990 		cap->data[1].effective &= ~(1 << (38 - 32));
991 		cap->data[1].effective &= ~(1 << (39 - 32));
992 	}
993 	if (cap_set_proc(caps)) {
994 		perror("cap_set_proc");
995 		goto out;
996 	}
997 	ret = 0;
998 out:
999 	if (cap_free(caps))
1000 		perror("cap_free");
1001 	return ret;
1002 }
1003 
1004 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1005 			    void *data, size_t size_data)
1006 {
1007 	__u8 tmp[TEST_DATA_LEN << 2];
1008 	__u32 size_tmp = sizeof(tmp);
1009 	uint32_t retval;
1010 	int err, saved_errno;
1011 
1012 	if (unpriv)
1013 		set_admin(true);
1014 	err = bpf_prog_test_run(fd_prog, 1, data, size_data,
1015 				tmp, &size_tmp, &retval, NULL);
1016 	saved_errno = errno;
1017 
1018 	if (unpriv)
1019 		set_admin(false);
1020 
1021 	if (err) {
1022 		switch (saved_errno) {
1023 		case ENOTSUPP:
1024 			printf("Did not run the program (not supported) ");
1025 			return 0;
1026 		case EPERM:
1027 			if (unpriv) {
1028 				printf("Did not run the program (no permission) ");
1029 				return 0;
1030 			}
1031 			/* fallthrough; */
1032 		default:
1033 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1034 				strerror(saved_errno));
1035 			return err;
1036 		}
1037 	}
1038 
1039 	if (retval != expected_val &&
1040 	    expected_val != POINTER_VALUE) {
1041 		printf("FAIL retval %d != %d ", retval, expected_val);
1042 		return 1;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1049  *
1050  * If exp is an empty string, returns true.
1051  */
1052 static bool cmp_str_seq(const char *log, const char *exp)
1053 {
1054 	char needle[200];
1055 	const char *p, *q;
1056 	int len;
1057 
1058 	do {
1059 		if (!strlen(exp))
1060 			break;
1061 		p = strchr(exp, '\t');
1062 		if (!p)
1063 			p = exp + strlen(exp);
1064 
1065 		len = p - exp;
1066 		if (len >= sizeof(needle) || !len) {
1067 			printf("FAIL\nTestcase bug\n");
1068 			return false;
1069 		}
1070 		strncpy(needle, exp, len);
1071 		needle[len] = 0;
1072 		q = strstr(log, needle);
1073 		if (!q) {
1074 			printf("FAIL\nUnexpected verifier log!\n"
1075 			       "EXP: %s\nRES:\n", needle);
1076 			return false;
1077 		}
1078 		log = q + len;
1079 		exp = p + 1;
1080 	} while (*p);
1081 	return true;
1082 }
1083 
1084 static void do_test_single(struct bpf_test *test, bool unpriv,
1085 			   int *passes, int *errors)
1086 {
1087 	int fd_prog, expected_ret, alignment_prevented_execution;
1088 	int prog_len, prog_type = test->prog_type;
1089 	struct bpf_insn *prog = test->insns;
1090 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1091 	int run_errs, run_successes;
1092 	int map_fds[MAX_NR_MAPS];
1093 	const char *expected_err;
1094 	int saved_errno;
1095 	int fixup_skips;
1096 	__u32 pflags;
1097 	int i, err;
1098 
1099 	for (i = 0; i < MAX_NR_MAPS; i++)
1100 		map_fds[i] = -1;
1101 
1102 	if (!prog_type)
1103 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1104 	fixup_skips = skips;
1105 	do_test_fixup(test, prog_type, prog, map_fds);
1106 	if (test->fill_insns) {
1107 		prog = test->fill_insns;
1108 		prog_len = test->prog_len;
1109 	} else {
1110 		prog_len = probe_filter_length(prog);
1111 	}
1112 	/* If there were some map skips during fixup due to missing bpf
1113 	 * features, skip this test.
1114 	 */
1115 	if (fixup_skips != skips)
1116 		return;
1117 
1118 	pflags = BPF_F_TEST_RND_HI32;
1119 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1120 		pflags |= BPF_F_STRICT_ALIGNMENT;
1121 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1122 		pflags |= BPF_F_ANY_ALIGNMENT;
1123 	if (test->flags & ~3)
1124 		pflags |= test->flags;
1125 
1126 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1127 		       test->result_unpriv : test->result;
1128 	expected_err = unpriv && test->errstr_unpriv ?
1129 		       test->errstr_unpriv : test->errstr;
1130 
1131 	opts.expected_attach_type = test->expected_attach_type;
1132 	if (verbose)
1133 		opts.log_level = 1;
1134 	else if (expected_ret == VERBOSE_ACCEPT)
1135 		opts.log_level = 2;
1136 	else
1137 		opts.log_level = 4;
1138 	opts.prog_flags = pflags;
1139 
1140 	if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) {
1141 		int attach_btf_id;
1142 
1143 		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1144 						opts.expected_attach_type);
1145 		if (attach_btf_id < 0) {
1146 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1147 				test->kfunc);
1148 			(*errors)++;
1149 			return;
1150 		}
1151 
1152 		opts.attach_btf_id = attach_btf_id;
1153 	}
1154 
1155 	opts.log_buf = bpf_vlog;
1156 	opts.log_size = sizeof(bpf_vlog);
1157 	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1158 	saved_errno = errno;
1159 
1160 	/* BPF_PROG_TYPE_TRACING requires more setup and
1161 	 * bpf_probe_prog_type won't give correct answer
1162 	 */
1163 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1164 	    !bpf_probe_prog_type(prog_type, 0)) {
1165 		printf("SKIP (unsupported program type %d)\n", prog_type);
1166 		skips++;
1167 		goto close_fds;
1168 	}
1169 
1170 	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1171 		printf("SKIP (program uses an unsupported feature)\n");
1172 		skips++;
1173 		goto close_fds;
1174 	}
1175 
1176 	alignment_prevented_execution = 0;
1177 
1178 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1179 		if (fd_prog < 0) {
1180 			printf("FAIL\nFailed to load prog '%s'!\n",
1181 			       strerror(saved_errno));
1182 			goto fail_log;
1183 		}
1184 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1185 		if (fd_prog >= 0 &&
1186 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1187 			alignment_prevented_execution = 1;
1188 #endif
1189 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1190 			goto fail_log;
1191 		}
1192 	} else {
1193 		if (fd_prog >= 0) {
1194 			printf("FAIL\nUnexpected success to load!\n");
1195 			goto fail_log;
1196 		}
1197 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1198 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1199 			      expected_err, bpf_vlog);
1200 			goto fail_log;
1201 		}
1202 	}
1203 
1204 	if (!unpriv && test->insn_processed) {
1205 		uint32_t insn_processed;
1206 		char *proc;
1207 
1208 		proc = strstr(bpf_vlog, "processed ");
1209 		insn_processed = atoi(proc + 10);
1210 		if (test->insn_processed != insn_processed) {
1211 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1212 			       insn_processed, test->insn_processed);
1213 			goto fail_log;
1214 		}
1215 	}
1216 
1217 	if (verbose)
1218 		printf(", verifier log:\n%s", bpf_vlog);
1219 
1220 	run_errs = 0;
1221 	run_successes = 0;
1222 	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1223 		uint32_t expected_val;
1224 		int i;
1225 
1226 		if (!test->runs)
1227 			test->runs = 1;
1228 
1229 		for (i = 0; i < test->runs; i++) {
1230 			if (unpriv && test->retvals[i].retval_unpriv)
1231 				expected_val = test->retvals[i].retval_unpriv;
1232 			else
1233 				expected_val = test->retvals[i].retval;
1234 
1235 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1236 					       test->retvals[i].data,
1237 					       sizeof(test->retvals[i].data));
1238 			if (err) {
1239 				printf("(run %d/%d) ", i + 1, test->runs);
1240 				run_errs++;
1241 			} else {
1242 				run_successes++;
1243 			}
1244 		}
1245 	}
1246 
1247 	if (!run_errs) {
1248 		(*passes)++;
1249 		if (run_successes > 1)
1250 			printf("%d cases ", run_successes);
1251 		printf("OK");
1252 		if (alignment_prevented_execution)
1253 			printf(" (NOTE: not executed due to unknown alignment)");
1254 		printf("\n");
1255 	} else {
1256 		printf("\n");
1257 		goto fail_log;
1258 	}
1259 close_fds:
1260 	if (test->fill_insns)
1261 		free(test->fill_insns);
1262 	close(fd_prog);
1263 	for (i = 0; i < MAX_NR_MAPS; i++)
1264 		close(map_fds[i]);
1265 	sched_yield();
1266 	return;
1267 fail_log:
1268 	(*errors)++;
1269 	printf("%s", bpf_vlog);
1270 	goto close_fds;
1271 }
1272 
1273 static bool is_admin(void)
1274 {
1275 	cap_flag_value_t net_priv = CAP_CLEAR;
1276 	bool perfmon_priv = false;
1277 	bool bpf_priv = false;
1278 	struct libcap *cap;
1279 	cap_t caps;
1280 
1281 #ifdef CAP_IS_SUPPORTED
1282 	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
1283 		perror("cap_get_flag");
1284 		return false;
1285 	}
1286 #endif
1287 	caps = cap_get_proc();
1288 	if (!caps) {
1289 		perror("cap_get_proc");
1290 		return false;
1291 	}
1292 	cap = (struct libcap *)caps;
1293 	bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32));
1294 	perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32));
1295 	if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv))
1296 		perror("cap_get_flag NET");
1297 	if (cap_free(caps))
1298 		perror("cap_free");
1299 	return bpf_priv && perfmon_priv && net_priv == CAP_SET;
1300 }
1301 
1302 static void get_unpriv_disabled()
1303 {
1304 	char buf[2];
1305 	FILE *fd;
1306 
1307 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1308 	if (!fd) {
1309 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1310 		unpriv_disabled = true;
1311 		return;
1312 	}
1313 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1314 		unpriv_disabled = true;
1315 	fclose(fd);
1316 }
1317 
1318 static bool test_as_unpriv(struct bpf_test *test)
1319 {
1320 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1321 	/* Some architectures have strict alignment requirements. In
1322 	 * that case, the BPF verifier detects if a program has
1323 	 * unaligned accesses and rejects them. A user can pass
1324 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1325 	 * check. That, however, will only work when a privileged user
1326 	 * loads a program. An unprivileged user loading a program
1327 	 * with this flag will be rejected prior entering the
1328 	 * verifier.
1329 	 */
1330 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1331 		return false;
1332 #endif
1333 	return !test->prog_type ||
1334 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1335 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1336 }
1337 
1338 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1339 {
1340 	int i, passes = 0, errors = 0;
1341 
1342 	for (i = from; i < to; i++) {
1343 		struct bpf_test *test = &tests[i];
1344 
1345 		/* Program types that are not supported by non-root we
1346 		 * skip right away.
1347 		 */
1348 		if (test_as_unpriv(test) && unpriv_disabled) {
1349 			printf("#%d/u %s SKIP\n", i, test->descr);
1350 			skips++;
1351 		} else if (test_as_unpriv(test)) {
1352 			if (!unpriv)
1353 				set_admin(false);
1354 			printf("#%d/u %s ", i, test->descr);
1355 			do_test_single(test, true, &passes, &errors);
1356 			if (!unpriv)
1357 				set_admin(true);
1358 		}
1359 
1360 		if (unpriv) {
1361 			printf("#%d/p %s SKIP\n", i, test->descr);
1362 			skips++;
1363 		} else {
1364 			printf("#%d/p %s ", i, test->descr);
1365 			do_test_single(test, false, &passes, &errors);
1366 		}
1367 	}
1368 
1369 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1370 	       skips, errors);
1371 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1372 }
1373 
1374 int main(int argc, char **argv)
1375 {
1376 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1377 	bool unpriv = !is_admin();
1378 	int arg = 1;
1379 
1380 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1381 		arg++;
1382 		verbose = true;
1383 		argc--;
1384 	}
1385 
1386 	if (argc == 3) {
1387 		unsigned int l = atoi(argv[arg]);
1388 		unsigned int u = atoi(argv[arg + 1]);
1389 
1390 		if (l < to && u < to) {
1391 			from = l;
1392 			to   = u + 1;
1393 		}
1394 	} else if (argc == 2) {
1395 		unsigned int t = atoi(argv[arg]);
1396 
1397 		if (t < to) {
1398 			from = t;
1399 			to   = t + 1;
1400 		}
1401 	}
1402 
1403 	get_unpriv_disabled();
1404 	if (unpriv && unpriv_disabled) {
1405 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1406 		       UNPRIV_SYSCTL);
1407 		return EXIT_FAILURE;
1408 	}
1409 
1410 	bpf_semi_rand_init();
1411 	return do_test(unpriv, from, to);
1412 }
1413