xref: /linux/tools/testing/selftests/bpf/test_verifier.c (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <sys/capability.h>
26 
27 #include <linux/unistd.h>
28 #include <linux/filter.h>
29 #include <linux/bpf_perf_event.h>
30 #include <linux/bpf.h>
31 #include <linux/if_ether.h>
32 #include <linux/btf.h>
33 
34 #include <bpf/bpf.h>
35 #include <bpf/libbpf.h>
36 
37 #ifdef HAVE_GENHDR
38 # include "autoconf.h"
39 #else
40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
41 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
42 # endif
43 #endif
44 #include "bpf_rlimit.h"
45 #include "bpf_rand.h"
46 #include "bpf_util.h"
47 #include "test_btf.h"
48 #include "../../../include/linux/filter.h"
49 
50 #define MAX_INSNS	BPF_MAXINSNS
51 #define MAX_TEST_INSNS	1000000
52 #define MAX_FIXUPS	8
53 #define MAX_NR_MAPS	18
54 #define MAX_TEST_RUNS	8
55 #define POINTER_VALUE	0xcafe4all
56 #define TEST_DATA_LEN	64
57 
58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
59 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
60 
61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
62 static bool unpriv_disabled = false;
63 static int skips;
64 
65 struct bpf_test {
66 	const char *descr;
67 	struct bpf_insn	insns[MAX_INSNS];
68 	struct bpf_insn	*fill_insns;
69 	int fixup_map_hash_8b[MAX_FIXUPS];
70 	int fixup_map_hash_48b[MAX_FIXUPS];
71 	int fixup_map_hash_16b[MAX_FIXUPS];
72 	int fixup_map_array_48b[MAX_FIXUPS];
73 	int fixup_map_sockmap[MAX_FIXUPS];
74 	int fixup_map_sockhash[MAX_FIXUPS];
75 	int fixup_map_xskmap[MAX_FIXUPS];
76 	int fixup_map_stacktrace[MAX_FIXUPS];
77 	int fixup_prog1[MAX_FIXUPS];
78 	int fixup_prog2[MAX_FIXUPS];
79 	int fixup_map_in_map[MAX_FIXUPS];
80 	int fixup_cgroup_storage[MAX_FIXUPS];
81 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
82 	int fixup_map_spin_lock[MAX_FIXUPS];
83 	int fixup_map_array_ro[MAX_FIXUPS];
84 	int fixup_map_array_wo[MAX_FIXUPS];
85 	int fixup_map_array_small[MAX_FIXUPS];
86 	int fixup_sk_storage_map[MAX_FIXUPS];
87 	const char *errstr;
88 	const char *errstr_unpriv;
89 	uint32_t retval, retval_unpriv, insn_processed;
90 	int prog_len;
91 	enum {
92 		UNDEF,
93 		ACCEPT,
94 		REJECT
95 	} result, result_unpriv;
96 	enum bpf_prog_type prog_type;
97 	uint8_t flags;
98 	__u8 data[TEST_DATA_LEN];
99 	void (*fill_helper)(struct bpf_test *self);
100 	uint8_t runs;
101 	struct {
102 		uint32_t retval, retval_unpriv;
103 		union {
104 			__u8 data[TEST_DATA_LEN];
105 			__u64 data64[TEST_DATA_LEN / 8];
106 		};
107 	} retvals[MAX_TEST_RUNS];
108 };
109 
110 /* Note we want this to be 64 bit aligned so that the end of our array is
111  * actually the end of the structure.
112  */
113 #define MAX_ENTRIES 11
114 
115 struct test_val {
116 	unsigned int index;
117 	int foo[MAX_ENTRIES];
118 };
119 
120 struct other_val {
121 	long long foo;
122 	long long bar;
123 };
124 
125 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
126 {
127 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
128 #define PUSH_CNT 51
129 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
130 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
131 	struct bpf_insn *insn = self->fill_insns;
132 	int i = 0, j, k = 0;
133 
134 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
135 loop:
136 	for (j = 0; j < PUSH_CNT; j++) {
137 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
138 		/* jump to error label */
139 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
140 		i++;
141 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
142 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
143 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
144 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
145 					 BPF_FUNC_skb_vlan_push),
146 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
147 		i++;
148 	}
149 
150 	for (j = 0; j < PUSH_CNT; j++) {
151 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
152 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
153 		i++;
154 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
155 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
156 					 BPF_FUNC_skb_vlan_pop),
157 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
158 		i++;
159 	}
160 	if (++k < 5)
161 		goto loop;
162 
163 	for (; i < len - 3; i++)
164 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
165 	insn[len - 3] = BPF_JMP_A(1);
166 	/* error label */
167 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
168 	insn[len - 1] = BPF_EXIT_INSN();
169 	self->prog_len = len;
170 }
171 
172 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
173 {
174 	struct bpf_insn *insn = self->fill_insns;
175 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
176 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
177 	 * to extend the error value of the inlined ld_abs sequence which then
178 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
179 	 * work on all arches.
180 	 */
181 	unsigned int len = (1 << 15) / 7;
182 	int i = 0;
183 
184 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
185 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
186 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
187 	i++;
188 	while (i < len - 1)
189 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
190 	insn[i] = BPF_EXIT_INSN();
191 	self->prog_len = i + 1;
192 }
193 
194 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
195 {
196 	struct bpf_insn *insn = self->fill_insns;
197 	uint64_t res = 0;
198 	int i = 0;
199 
200 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
201 	while (i < self->retval) {
202 		uint64_t val = bpf_semi_rand_get();
203 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
204 
205 		res ^= val;
206 		insn[i++] = tmp[0];
207 		insn[i++] = tmp[1];
208 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
209 	}
210 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
211 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
212 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
213 	insn[i] = BPF_EXIT_INSN();
214 	self->prog_len = i + 1;
215 	res ^= (res >> 32);
216 	self->retval = (uint32_t)res;
217 }
218 
219 #define MAX_JMP_SEQ 8192
220 
221 /* test the sequence of 8k jumps */
222 static void bpf_fill_scale1(struct bpf_test *self)
223 {
224 	struct bpf_insn *insn = self->fill_insns;
225 	int i = 0, k = 0;
226 
227 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
228 	/* test to check that the long sequence of jumps is acceptable */
229 	while (k++ < MAX_JMP_SEQ) {
230 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
231 					 BPF_FUNC_get_prandom_u32);
232 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
233 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
234 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
235 					-8 * (k % 64 + 1));
236 	}
237 	/* is_state_visited() doesn't allocate state for pruning for every jump.
238 	 * Hence multiply jmps by 4 to accommodate that heuristic
239 	 */
240 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
241 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
242 	insn[i] = BPF_EXIT_INSN();
243 	self->prog_len = i + 1;
244 	self->retval = 42;
245 }
246 
247 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
248 static void bpf_fill_scale2(struct bpf_test *self)
249 {
250 	struct bpf_insn *insn = self->fill_insns;
251 	int i = 0, k = 0;
252 
253 #define FUNC_NEST 7
254 	for (k = 0; k < FUNC_NEST; k++) {
255 		insn[i++] = BPF_CALL_REL(1);
256 		insn[i++] = BPF_EXIT_INSN();
257 	}
258 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
259 	/* test to check that the long sequence of jumps is acceptable */
260 	k = 0;
261 	while (k++ < MAX_JMP_SEQ) {
262 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
263 					 BPF_FUNC_get_prandom_u32);
264 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
265 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
266 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
267 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
268 	}
269 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
270 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
271 	insn[i] = BPF_EXIT_INSN();
272 	self->prog_len = i + 1;
273 	self->retval = 42;
274 }
275 
276 static void bpf_fill_scale(struct bpf_test *self)
277 {
278 	switch (self->retval) {
279 	case 1:
280 		return bpf_fill_scale1(self);
281 	case 2:
282 		return bpf_fill_scale2(self);
283 	default:
284 		self->prog_len = 0;
285 		break;
286 	}
287 }
288 
289 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
290 #define BPF_SK_LOOKUP(func)						\
291 	/* struct bpf_sock_tuple tuple = {} */				\
292 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
293 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
294 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
295 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
296 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
297 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
298 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
299 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
300 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
301 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
302 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
303 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
304 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
305 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
306 
307 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
308  * value into 0 and does necessary preparation for direct packet access
309  * through r2. The allowed access range is 8 bytes.
310  */
311 #define BPF_DIRECT_PKT_R2						\
312 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
313 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
314 		    offsetof(struct __sk_buff, data)),			\
315 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
316 		    offsetof(struct __sk_buff, data_end)),		\
317 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
318 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
319 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
320 	BPF_EXIT_INSN()
321 
322 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
323  * positive u32, and zero-extend it into 64-bit.
324  */
325 #define BPF_RAND_UEXT_R7						\
326 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
327 		     BPF_FUNC_get_prandom_u32),				\
328 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
329 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
330 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
331 
332 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
333  * negative u32, and sign-extend it into 64-bit.
334  */
335 #define BPF_RAND_SEXT_R7						\
336 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
337 		     BPF_FUNC_get_prandom_u32),				\
338 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
339 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
340 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
341 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
342 
343 static struct bpf_test tests[] = {
344 #define FILL_ARRAY
345 #include <verifier/tests.h>
346 #undef FILL_ARRAY
347 };
348 
349 static int probe_filter_length(const struct bpf_insn *fp)
350 {
351 	int len;
352 
353 	for (len = MAX_INSNS - 1; len > 0; --len)
354 		if (fp[len].code != 0 || fp[len].imm != 0)
355 			break;
356 	return len + 1;
357 }
358 
359 static bool skip_unsupported_map(enum bpf_map_type map_type)
360 {
361 	if (!bpf_probe_map_type(map_type, 0)) {
362 		printf("SKIP (unsupported map type %d)\n", map_type);
363 		skips++;
364 		return true;
365 	}
366 	return false;
367 }
368 
369 static int __create_map(uint32_t type, uint32_t size_key,
370 			uint32_t size_value, uint32_t max_elem,
371 			uint32_t extra_flags)
372 {
373 	int fd;
374 
375 	fd = bpf_create_map(type, size_key, size_value, max_elem,
376 			    (type == BPF_MAP_TYPE_HASH ?
377 			     BPF_F_NO_PREALLOC : 0) | extra_flags);
378 	if (fd < 0) {
379 		if (skip_unsupported_map(type))
380 			return -1;
381 		printf("Failed to create hash map '%s'!\n", strerror(errno));
382 	}
383 
384 	return fd;
385 }
386 
387 static int create_map(uint32_t type, uint32_t size_key,
388 		      uint32_t size_value, uint32_t max_elem)
389 {
390 	return __create_map(type, size_key, size_value, max_elem, 0);
391 }
392 
393 static void update_map(int fd, int index)
394 {
395 	struct test_val value = {
396 		.index = (6 + 1) * sizeof(int),
397 		.foo[6] = 0xabcdef12,
398 	};
399 
400 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
401 }
402 
403 static int create_prog_dummy1(enum bpf_prog_type prog_type)
404 {
405 	struct bpf_insn prog[] = {
406 		BPF_MOV64_IMM(BPF_REG_0, 42),
407 		BPF_EXIT_INSN(),
408 	};
409 
410 	return bpf_load_program(prog_type, prog,
411 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
412 }
413 
414 static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx)
415 {
416 	struct bpf_insn prog[] = {
417 		BPF_MOV64_IMM(BPF_REG_3, idx),
418 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
419 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
420 			     BPF_FUNC_tail_call),
421 		BPF_MOV64_IMM(BPF_REG_0, 41),
422 		BPF_EXIT_INSN(),
423 	};
424 
425 	return bpf_load_program(prog_type, prog,
426 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
427 }
428 
429 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
430 			     int p1key)
431 {
432 	int p2key = 1;
433 	int mfd, p1fd, p2fd;
434 
435 	mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
436 			     sizeof(int), max_elem, 0);
437 	if (mfd < 0) {
438 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
439 			return -1;
440 		printf("Failed to create prog array '%s'!\n", strerror(errno));
441 		return -1;
442 	}
443 
444 	p1fd = create_prog_dummy1(prog_type);
445 	p2fd = create_prog_dummy2(prog_type, mfd, p2key);
446 	if (p1fd < 0 || p2fd < 0)
447 		goto out;
448 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
449 		goto out;
450 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
451 		goto out;
452 	close(p2fd);
453 	close(p1fd);
454 
455 	return mfd;
456 out:
457 	close(p2fd);
458 	close(p1fd);
459 	close(mfd);
460 	return -1;
461 }
462 
463 static int create_map_in_map(void)
464 {
465 	int inner_map_fd, outer_map_fd;
466 
467 	inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
468 				      sizeof(int), 1, 0);
469 	if (inner_map_fd < 0) {
470 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
471 			return -1;
472 		printf("Failed to create array '%s'!\n", strerror(errno));
473 		return inner_map_fd;
474 	}
475 
476 	outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
477 					     sizeof(int), inner_map_fd, 1, 0);
478 	if (outer_map_fd < 0) {
479 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
480 			return -1;
481 		printf("Failed to create array of maps '%s'!\n",
482 		       strerror(errno));
483 	}
484 
485 	close(inner_map_fd);
486 
487 	return outer_map_fd;
488 }
489 
490 static int create_cgroup_storage(bool percpu)
491 {
492 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
493 		BPF_MAP_TYPE_CGROUP_STORAGE;
494 	int fd;
495 
496 	fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
497 			    TEST_DATA_LEN, 0, 0);
498 	if (fd < 0) {
499 		if (skip_unsupported_map(type))
500 			return -1;
501 		printf("Failed to create cgroup storage '%s'!\n",
502 		       strerror(errno));
503 	}
504 
505 	return fd;
506 }
507 
508 /* struct bpf_spin_lock {
509  *   int val;
510  * };
511  * struct val {
512  *   int cnt;
513  *   struct bpf_spin_lock l;
514  * };
515  */
516 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
517 static __u32 btf_raw_types[] = {
518 	/* int */
519 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
520 	/* struct bpf_spin_lock */                      /* [2] */
521 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
522 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
523 	/* struct val */                                /* [3] */
524 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
525 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
526 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
527 };
528 
529 static int load_btf(void)
530 {
531 	struct btf_header hdr = {
532 		.magic = BTF_MAGIC,
533 		.version = BTF_VERSION,
534 		.hdr_len = sizeof(struct btf_header),
535 		.type_len = sizeof(btf_raw_types),
536 		.str_off = sizeof(btf_raw_types),
537 		.str_len = sizeof(btf_str_sec),
538 	};
539 	void *ptr, *raw_btf;
540 	int btf_fd;
541 
542 	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
543 			       sizeof(btf_str_sec));
544 
545 	memcpy(ptr, &hdr, sizeof(hdr));
546 	ptr += sizeof(hdr);
547 	memcpy(ptr, btf_raw_types, hdr.type_len);
548 	ptr += hdr.type_len;
549 	memcpy(ptr, btf_str_sec, hdr.str_len);
550 	ptr += hdr.str_len;
551 
552 	btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
553 	free(raw_btf);
554 	if (btf_fd < 0)
555 		return -1;
556 	return btf_fd;
557 }
558 
559 static int create_map_spin_lock(void)
560 {
561 	struct bpf_create_map_attr attr = {
562 		.name = "test_map",
563 		.map_type = BPF_MAP_TYPE_ARRAY,
564 		.key_size = 4,
565 		.value_size = 8,
566 		.max_entries = 1,
567 		.btf_key_type_id = 1,
568 		.btf_value_type_id = 3,
569 	};
570 	int fd, btf_fd;
571 
572 	btf_fd = load_btf();
573 	if (btf_fd < 0)
574 		return -1;
575 	attr.btf_fd = btf_fd;
576 	fd = bpf_create_map_xattr(&attr);
577 	if (fd < 0)
578 		printf("Failed to create map with spin_lock\n");
579 	return fd;
580 }
581 
582 static int create_sk_storage_map(void)
583 {
584 	struct bpf_create_map_attr attr = {
585 		.name = "test_map",
586 		.map_type = BPF_MAP_TYPE_SK_STORAGE,
587 		.key_size = 4,
588 		.value_size = 8,
589 		.max_entries = 0,
590 		.map_flags = BPF_F_NO_PREALLOC,
591 		.btf_key_type_id = 1,
592 		.btf_value_type_id = 3,
593 	};
594 	int fd, btf_fd;
595 
596 	btf_fd = load_btf();
597 	if (btf_fd < 0)
598 		return -1;
599 	attr.btf_fd = btf_fd;
600 	fd = bpf_create_map_xattr(&attr);
601 	close(attr.btf_fd);
602 	if (fd < 0)
603 		printf("Failed to create sk_storage_map\n");
604 	return fd;
605 }
606 
607 static char bpf_vlog[UINT_MAX >> 8];
608 
609 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
610 			  struct bpf_insn *prog, int *map_fds)
611 {
612 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
613 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
614 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
615 	int *fixup_map_array_48b = test->fixup_map_array_48b;
616 	int *fixup_map_sockmap = test->fixup_map_sockmap;
617 	int *fixup_map_sockhash = test->fixup_map_sockhash;
618 	int *fixup_map_xskmap = test->fixup_map_xskmap;
619 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
620 	int *fixup_prog1 = test->fixup_prog1;
621 	int *fixup_prog2 = test->fixup_prog2;
622 	int *fixup_map_in_map = test->fixup_map_in_map;
623 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
624 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
625 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
626 	int *fixup_map_array_ro = test->fixup_map_array_ro;
627 	int *fixup_map_array_wo = test->fixup_map_array_wo;
628 	int *fixup_map_array_small = test->fixup_map_array_small;
629 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
630 
631 	if (test->fill_helper) {
632 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
633 		test->fill_helper(test);
634 	}
635 
636 	/* Allocating HTs with 1 elem is fine here, since we only test
637 	 * for verifier and not do a runtime lookup, so the only thing
638 	 * that really matters is value size in this case.
639 	 */
640 	if (*fixup_map_hash_8b) {
641 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
642 					sizeof(long long), 1);
643 		do {
644 			prog[*fixup_map_hash_8b].imm = map_fds[0];
645 			fixup_map_hash_8b++;
646 		} while (*fixup_map_hash_8b);
647 	}
648 
649 	if (*fixup_map_hash_48b) {
650 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
651 					sizeof(struct test_val), 1);
652 		do {
653 			prog[*fixup_map_hash_48b].imm = map_fds[1];
654 			fixup_map_hash_48b++;
655 		} while (*fixup_map_hash_48b);
656 	}
657 
658 	if (*fixup_map_hash_16b) {
659 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
660 					sizeof(struct other_val), 1);
661 		do {
662 			prog[*fixup_map_hash_16b].imm = map_fds[2];
663 			fixup_map_hash_16b++;
664 		} while (*fixup_map_hash_16b);
665 	}
666 
667 	if (*fixup_map_array_48b) {
668 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
669 					sizeof(struct test_val), 1);
670 		update_map(map_fds[3], 0);
671 		do {
672 			prog[*fixup_map_array_48b].imm = map_fds[3];
673 			fixup_map_array_48b++;
674 		} while (*fixup_map_array_48b);
675 	}
676 
677 	if (*fixup_prog1) {
678 		map_fds[4] = create_prog_array(prog_type, 4, 0);
679 		do {
680 			prog[*fixup_prog1].imm = map_fds[4];
681 			fixup_prog1++;
682 		} while (*fixup_prog1);
683 	}
684 
685 	if (*fixup_prog2) {
686 		map_fds[5] = create_prog_array(prog_type, 8, 7);
687 		do {
688 			prog[*fixup_prog2].imm = map_fds[5];
689 			fixup_prog2++;
690 		} while (*fixup_prog2);
691 	}
692 
693 	if (*fixup_map_in_map) {
694 		map_fds[6] = create_map_in_map();
695 		do {
696 			prog[*fixup_map_in_map].imm = map_fds[6];
697 			fixup_map_in_map++;
698 		} while (*fixup_map_in_map);
699 	}
700 
701 	if (*fixup_cgroup_storage) {
702 		map_fds[7] = create_cgroup_storage(false);
703 		do {
704 			prog[*fixup_cgroup_storage].imm = map_fds[7];
705 			fixup_cgroup_storage++;
706 		} while (*fixup_cgroup_storage);
707 	}
708 
709 	if (*fixup_percpu_cgroup_storage) {
710 		map_fds[8] = create_cgroup_storage(true);
711 		do {
712 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
713 			fixup_percpu_cgroup_storage++;
714 		} while (*fixup_percpu_cgroup_storage);
715 	}
716 	if (*fixup_map_sockmap) {
717 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
718 					sizeof(int), 1);
719 		do {
720 			prog[*fixup_map_sockmap].imm = map_fds[9];
721 			fixup_map_sockmap++;
722 		} while (*fixup_map_sockmap);
723 	}
724 	if (*fixup_map_sockhash) {
725 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
726 					sizeof(int), 1);
727 		do {
728 			prog[*fixup_map_sockhash].imm = map_fds[10];
729 			fixup_map_sockhash++;
730 		} while (*fixup_map_sockhash);
731 	}
732 	if (*fixup_map_xskmap) {
733 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
734 					sizeof(int), 1);
735 		do {
736 			prog[*fixup_map_xskmap].imm = map_fds[11];
737 			fixup_map_xskmap++;
738 		} while (*fixup_map_xskmap);
739 	}
740 	if (*fixup_map_stacktrace) {
741 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
742 					 sizeof(u64), 1);
743 		do {
744 			prog[*fixup_map_stacktrace].imm = map_fds[12];
745 			fixup_map_stacktrace++;
746 		} while (*fixup_map_stacktrace);
747 	}
748 	if (*fixup_map_spin_lock) {
749 		map_fds[13] = create_map_spin_lock();
750 		do {
751 			prog[*fixup_map_spin_lock].imm = map_fds[13];
752 			fixup_map_spin_lock++;
753 		} while (*fixup_map_spin_lock);
754 	}
755 	if (*fixup_map_array_ro) {
756 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
757 					   sizeof(struct test_val), 1,
758 					   BPF_F_RDONLY_PROG);
759 		update_map(map_fds[14], 0);
760 		do {
761 			prog[*fixup_map_array_ro].imm = map_fds[14];
762 			fixup_map_array_ro++;
763 		} while (*fixup_map_array_ro);
764 	}
765 	if (*fixup_map_array_wo) {
766 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
767 					   sizeof(struct test_val), 1,
768 					   BPF_F_WRONLY_PROG);
769 		update_map(map_fds[15], 0);
770 		do {
771 			prog[*fixup_map_array_wo].imm = map_fds[15];
772 			fixup_map_array_wo++;
773 		} while (*fixup_map_array_wo);
774 	}
775 	if (*fixup_map_array_small) {
776 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
777 					   1, 1, 0);
778 		update_map(map_fds[16], 0);
779 		do {
780 			prog[*fixup_map_array_small].imm = map_fds[16];
781 			fixup_map_array_small++;
782 		} while (*fixup_map_array_small);
783 	}
784 	if (*fixup_sk_storage_map) {
785 		map_fds[17] = create_sk_storage_map();
786 		do {
787 			prog[*fixup_sk_storage_map].imm = map_fds[17];
788 			fixup_sk_storage_map++;
789 		} while (*fixup_sk_storage_map);
790 	}
791 }
792 
793 static int set_admin(bool admin)
794 {
795 	cap_t caps;
796 	const cap_value_t cap_val = CAP_SYS_ADMIN;
797 	int ret = -1;
798 
799 	caps = cap_get_proc();
800 	if (!caps) {
801 		perror("cap_get_proc");
802 		return -1;
803 	}
804 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
805 				admin ? CAP_SET : CAP_CLEAR)) {
806 		perror("cap_set_flag");
807 		goto out;
808 	}
809 	if (cap_set_proc(caps)) {
810 		perror("cap_set_proc");
811 		goto out;
812 	}
813 	ret = 0;
814 out:
815 	if (cap_free(caps))
816 		perror("cap_free");
817 	return ret;
818 }
819 
820 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
821 			    void *data, size_t size_data)
822 {
823 	__u8 tmp[TEST_DATA_LEN << 2];
824 	__u32 size_tmp = sizeof(tmp);
825 	uint32_t retval;
826 	int err;
827 
828 	if (unpriv)
829 		set_admin(true);
830 	err = bpf_prog_test_run(fd_prog, 1, data, size_data,
831 				tmp, &size_tmp, &retval, NULL);
832 	if (unpriv)
833 		set_admin(false);
834 	if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
835 		printf("Unexpected bpf_prog_test_run error ");
836 		return err;
837 	}
838 	if (!err && retval != expected_val &&
839 	    expected_val != POINTER_VALUE) {
840 		printf("FAIL retval %d != %d ", retval, expected_val);
841 		return 1;
842 	}
843 
844 	return 0;
845 }
846 
847 static void do_test_single(struct bpf_test *test, bool unpriv,
848 			   int *passes, int *errors)
849 {
850 	int fd_prog, expected_ret, alignment_prevented_execution;
851 	int prog_len, prog_type = test->prog_type;
852 	struct bpf_insn *prog = test->insns;
853 	int run_errs, run_successes;
854 	int map_fds[MAX_NR_MAPS];
855 	const char *expected_err;
856 	int fixup_skips;
857 	__u32 pflags;
858 	int i, err;
859 
860 	for (i = 0; i < MAX_NR_MAPS; i++)
861 		map_fds[i] = -1;
862 
863 	if (!prog_type)
864 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
865 	fixup_skips = skips;
866 	do_test_fixup(test, prog_type, prog, map_fds);
867 	if (test->fill_insns) {
868 		prog = test->fill_insns;
869 		prog_len = test->prog_len;
870 	} else {
871 		prog_len = probe_filter_length(prog);
872 	}
873 	/* If there were some map skips during fixup due to missing bpf
874 	 * features, skip this test.
875 	 */
876 	if (fixup_skips != skips)
877 		return;
878 
879 	pflags = BPF_F_TEST_RND_HI32;
880 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
881 		pflags |= BPF_F_STRICT_ALIGNMENT;
882 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
883 		pflags |= BPF_F_ANY_ALIGNMENT;
884 	fd_prog = bpf_verify_program(prog_type, prog, prog_len, pflags,
885 				     "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 4);
886 	if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) {
887 		printf("SKIP (unsupported program type %d)\n", prog_type);
888 		skips++;
889 		goto close_fds;
890 	}
891 
892 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
893 		       test->result_unpriv : test->result;
894 	expected_err = unpriv && test->errstr_unpriv ?
895 		       test->errstr_unpriv : test->errstr;
896 
897 	alignment_prevented_execution = 0;
898 
899 	if (expected_ret == ACCEPT) {
900 		if (fd_prog < 0) {
901 			printf("FAIL\nFailed to load prog '%s'!\n",
902 			       strerror(errno));
903 			goto fail_log;
904 		}
905 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
906 		if (fd_prog >= 0 &&
907 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
908 			alignment_prevented_execution = 1;
909 #endif
910 	} else {
911 		if (fd_prog >= 0) {
912 			printf("FAIL\nUnexpected success to load!\n");
913 			goto fail_log;
914 		}
915 		if (!strstr(bpf_vlog, expected_err)) {
916 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
917 			      expected_err, bpf_vlog);
918 			goto fail_log;
919 		}
920 	}
921 
922 	if (test->insn_processed) {
923 		uint32_t insn_processed;
924 		char *proc;
925 
926 		proc = strstr(bpf_vlog, "processed ");
927 		insn_processed = atoi(proc + 10);
928 		if (test->insn_processed != insn_processed) {
929 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
930 			       insn_processed, test->insn_processed);
931 			goto fail_log;
932 		}
933 	}
934 
935 	run_errs = 0;
936 	run_successes = 0;
937 	if (!alignment_prevented_execution && fd_prog >= 0) {
938 		uint32_t expected_val;
939 		int i;
940 
941 		if (!test->runs) {
942 			expected_val = unpriv && test->retval_unpriv ?
943 				test->retval_unpriv : test->retval;
944 
945 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
946 					       test->data, sizeof(test->data));
947 			if (err)
948 				run_errs++;
949 			else
950 				run_successes++;
951 		}
952 
953 		for (i = 0; i < test->runs; i++) {
954 			if (unpriv && test->retvals[i].retval_unpriv)
955 				expected_val = test->retvals[i].retval_unpriv;
956 			else
957 				expected_val = test->retvals[i].retval;
958 
959 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
960 					       test->retvals[i].data,
961 					       sizeof(test->retvals[i].data));
962 			if (err) {
963 				printf("(run %d/%d) ", i + 1, test->runs);
964 				run_errs++;
965 			} else {
966 				run_successes++;
967 			}
968 		}
969 	}
970 
971 	if (!run_errs) {
972 		(*passes)++;
973 		if (run_successes > 1)
974 			printf("%d cases ", run_successes);
975 		printf("OK");
976 		if (alignment_prevented_execution)
977 			printf(" (NOTE: not executed due to unknown alignment)");
978 		printf("\n");
979 	} else {
980 		printf("\n");
981 		goto fail_log;
982 	}
983 close_fds:
984 	if (test->fill_insns)
985 		free(test->fill_insns);
986 	close(fd_prog);
987 	for (i = 0; i < MAX_NR_MAPS; i++)
988 		close(map_fds[i]);
989 	sched_yield();
990 	return;
991 fail_log:
992 	(*errors)++;
993 	printf("%s", bpf_vlog);
994 	goto close_fds;
995 }
996 
997 static bool is_admin(void)
998 {
999 	cap_t caps;
1000 	cap_flag_value_t sysadmin = CAP_CLEAR;
1001 	const cap_value_t cap_val = CAP_SYS_ADMIN;
1002 
1003 #ifdef CAP_IS_SUPPORTED
1004 	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
1005 		perror("cap_get_flag");
1006 		return false;
1007 	}
1008 #endif
1009 	caps = cap_get_proc();
1010 	if (!caps) {
1011 		perror("cap_get_proc");
1012 		return false;
1013 	}
1014 	if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
1015 		perror("cap_get_flag");
1016 	if (cap_free(caps))
1017 		perror("cap_free");
1018 	return (sysadmin == CAP_SET);
1019 }
1020 
1021 static void get_unpriv_disabled()
1022 {
1023 	char buf[2];
1024 	FILE *fd;
1025 
1026 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1027 	if (!fd) {
1028 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1029 		unpriv_disabled = true;
1030 		return;
1031 	}
1032 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1033 		unpriv_disabled = true;
1034 	fclose(fd);
1035 }
1036 
1037 static bool test_as_unpriv(struct bpf_test *test)
1038 {
1039 	return !test->prog_type ||
1040 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1041 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1042 }
1043 
1044 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1045 {
1046 	int i, passes = 0, errors = 0;
1047 
1048 	for (i = from; i < to; i++) {
1049 		struct bpf_test *test = &tests[i];
1050 
1051 		/* Program types that are not supported by non-root we
1052 		 * skip right away.
1053 		 */
1054 		if (test_as_unpriv(test) && unpriv_disabled) {
1055 			printf("#%d/u %s SKIP\n", i, test->descr);
1056 			skips++;
1057 		} else if (test_as_unpriv(test)) {
1058 			if (!unpriv)
1059 				set_admin(false);
1060 			printf("#%d/u %s ", i, test->descr);
1061 			do_test_single(test, true, &passes, &errors);
1062 			if (!unpriv)
1063 				set_admin(true);
1064 		}
1065 
1066 		if (unpriv) {
1067 			printf("#%d/p %s SKIP\n", i, test->descr);
1068 			skips++;
1069 		} else {
1070 			printf("#%d/p %s ", i, test->descr);
1071 			do_test_single(test, false, &passes, &errors);
1072 		}
1073 	}
1074 
1075 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1076 	       skips, errors);
1077 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1078 }
1079 
1080 int main(int argc, char **argv)
1081 {
1082 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1083 	bool unpriv = !is_admin();
1084 
1085 	if (argc == 3) {
1086 		unsigned int l = atoi(argv[argc - 2]);
1087 		unsigned int u = atoi(argv[argc - 1]);
1088 
1089 		if (l < to && u < to) {
1090 			from = l;
1091 			to   = u + 1;
1092 		}
1093 	} else if (argc == 2) {
1094 		unsigned int t = atoi(argv[argc - 1]);
1095 
1096 		if (t < to) {
1097 			from = t;
1098 			to   = t + 1;
1099 		}
1100 	}
1101 
1102 	get_unpriv_disabled();
1103 	if (unpriv && unpriv_disabled) {
1104 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1105 		       UNPRIV_SYSCTL);
1106 		return EXIT_FAILURE;
1107 	}
1108 
1109 	bpf_semi_rand_init();
1110 	return do_test(unpriv, from, to);
1111 }
1112