1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rlimit.h" 45 #include "bpf_rand.h" 46 #include "bpf_util.h" 47 #include "test_btf.h" 48 #include "../../../include/linux/filter.h" 49 50 #define MAX_INSNS BPF_MAXINSNS 51 #define MAX_TEST_INSNS 1000000 52 #define MAX_FIXUPS 8 53 #define MAX_NR_MAPS 19 54 #define MAX_TEST_RUNS 8 55 #define POINTER_VALUE 0xcafe4all 56 #define TEST_DATA_LEN 64 57 58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 59 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 60 61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 62 static bool unpriv_disabled = false; 63 static int skips; 64 65 struct bpf_test { 66 const char *descr; 67 struct bpf_insn insns[MAX_INSNS]; 68 struct bpf_insn *fill_insns; 69 int fixup_map_hash_8b[MAX_FIXUPS]; 70 int fixup_map_hash_48b[MAX_FIXUPS]; 71 int fixup_map_hash_16b[MAX_FIXUPS]; 72 int fixup_map_array_48b[MAX_FIXUPS]; 73 int fixup_map_sockmap[MAX_FIXUPS]; 74 int fixup_map_sockhash[MAX_FIXUPS]; 75 int fixup_map_xskmap[MAX_FIXUPS]; 76 int fixup_map_stacktrace[MAX_FIXUPS]; 77 int fixup_prog1[MAX_FIXUPS]; 78 int fixup_prog2[MAX_FIXUPS]; 79 int fixup_map_in_map[MAX_FIXUPS]; 80 int fixup_cgroup_storage[MAX_FIXUPS]; 81 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 82 int fixup_map_spin_lock[MAX_FIXUPS]; 83 int fixup_map_array_ro[MAX_FIXUPS]; 84 int fixup_map_array_wo[MAX_FIXUPS]; 85 int fixup_map_array_small[MAX_FIXUPS]; 86 int fixup_sk_storage_map[MAX_FIXUPS]; 87 int fixup_map_event_output[MAX_FIXUPS]; 88 const char *errstr; 89 const char *errstr_unpriv; 90 uint32_t insn_processed; 91 int prog_len; 92 enum { 93 UNDEF, 94 ACCEPT, 95 REJECT 96 } result, result_unpriv; 97 enum bpf_prog_type prog_type; 98 uint8_t flags; 99 void (*fill_helper)(struct bpf_test *self); 100 uint8_t runs; 101 #define bpf_testdata_struct_t \ 102 struct { \ 103 uint32_t retval, retval_unpriv; \ 104 union { \ 105 __u8 data[TEST_DATA_LEN]; \ 106 __u64 data64[TEST_DATA_LEN / 8]; \ 107 }; \ 108 } 109 union { 110 bpf_testdata_struct_t; 111 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 112 }; 113 enum bpf_attach_type expected_attach_type; 114 }; 115 116 /* Note we want this to be 64 bit aligned so that the end of our array is 117 * actually the end of the structure. 118 */ 119 #define MAX_ENTRIES 11 120 121 struct test_val { 122 unsigned int index; 123 int foo[MAX_ENTRIES]; 124 }; 125 126 struct other_val { 127 long long foo; 128 long long bar; 129 }; 130 131 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 132 { 133 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 134 #define PUSH_CNT 51 135 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 136 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 137 struct bpf_insn *insn = self->fill_insns; 138 int i = 0, j, k = 0; 139 140 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 141 loop: 142 for (j = 0; j < PUSH_CNT; j++) { 143 insn[i++] = BPF_LD_ABS(BPF_B, 0); 144 /* jump to error label */ 145 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 146 i++; 147 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 148 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 149 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 150 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 151 BPF_FUNC_skb_vlan_push), 152 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 153 i++; 154 } 155 156 for (j = 0; j < PUSH_CNT; j++) { 157 insn[i++] = BPF_LD_ABS(BPF_B, 0); 158 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 159 i++; 160 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 161 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 162 BPF_FUNC_skb_vlan_pop), 163 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 164 i++; 165 } 166 if (++k < 5) 167 goto loop; 168 169 for (; i < len - 3; i++) 170 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 171 insn[len - 3] = BPF_JMP_A(1); 172 /* error label */ 173 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 174 insn[len - 1] = BPF_EXIT_INSN(); 175 self->prog_len = len; 176 } 177 178 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 179 { 180 struct bpf_insn *insn = self->fill_insns; 181 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 182 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 183 * to extend the error value of the inlined ld_abs sequence which then 184 * contains 7 insns. so, set the dividend to 7 so the testcase could 185 * work on all arches. 186 */ 187 unsigned int len = (1 << 15) / 7; 188 int i = 0; 189 190 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 191 insn[i++] = BPF_LD_ABS(BPF_B, 0); 192 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 193 i++; 194 while (i < len - 1) 195 insn[i++] = BPF_LD_ABS(BPF_B, 1); 196 insn[i] = BPF_EXIT_INSN(); 197 self->prog_len = i + 1; 198 } 199 200 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 201 { 202 struct bpf_insn *insn = self->fill_insns; 203 uint64_t res = 0; 204 int i = 0; 205 206 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 207 while (i < self->retval) { 208 uint64_t val = bpf_semi_rand_get(); 209 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 210 211 res ^= val; 212 insn[i++] = tmp[0]; 213 insn[i++] = tmp[1]; 214 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 215 } 216 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 217 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 218 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 219 insn[i] = BPF_EXIT_INSN(); 220 self->prog_len = i + 1; 221 res ^= (res >> 32); 222 self->retval = (uint32_t)res; 223 } 224 225 #define MAX_JMP_SEQ 8192 226 227 /* test the sequence of 8k jumps */ 228 static void bpf_fill_scale1(struct bpf_test *self) 229 { 230 struct bpf_insn *insn = self->fill_insns; 231 int i = 0, k = 0; 232 233 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 234 /* test to check that the long sequence of jumps is acceptable */ 235 while (k++ < MAX_JMP_SEQ) { 236 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 237 BPF_FUNC_get_prandom_u32); 238 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 239 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 240 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 241 -8 * (k % 64 + 1)); 242 } 243 /* is_state_visited() doesn't allocate state for pruning for every jump. 244 * Hence multiply jmps by 4 to accommodate that heuristic 245 */ 246 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 247 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 248 insn[i] = BPF_EXIT_INSN(); 249 self->prog_len = i + 1; 250 self->retval = 42; 251 } 252 253 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 254 static void bpf_fill_scale2(struct bpf_test *self) 255 { 256 struct bpf_insn *insn = self->fill_insns; 257 int i = 0, k = 0; 258 259 #define FUNC_NEST 7 260 for (k = 0; k < FUNC_NEST; k++) { 261 insn[i++] = BPF_CALL_REL(1); 262 insn[i++] = BPF_EXIT_INSN(); 263 } 264 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 265 /* test to check that the long sequence of jumps is acceptable */ 266 k = 0; 267 while (k++ < MAX_JMP_SEQ) { 268 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 269 BPF_FUNC_get_prandom_u32); 270 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 271 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 272 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 273 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 274 } 275 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 276 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 277 insn[i] = BPF_EXIT_INSN(); 278 self->prog_len = i + 1; 279 self->retval = 42; 280 } 281 282 static void bpf_fill_scale(struct bpf_test *self) 283 { 284 switch (self->retval) { 285 case 1: 286 return bpf_fill_scale1(self); 287 case 2: 288 return bpf_fill_scale2(self); 289 default: 290 self->prog_len = 0; 291 break; 292 } 293 } 294 295 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 296 #define BPF_SK_LOOKUP(func) \ 297 /* struct bpf_sock_tuple tuple = {} */ \ 298 BPF_MOV64_IMM(BPF_REG_2, 0), \ 299 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 300 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 301 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 302 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 303 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 304 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 305 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 306 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 307 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 308 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 309 BPF_MOV64_IMM(BPF_REG_4, 0), \ 310 BPF_MOV64_IMM(BPF_REG_5, 0), \ 311 BPF_EMIT_CALL(BPF_FUNC_ ## func) 312 313 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 314 * value into 0 and does necessary preparation for direct packet access 315 * through r2. The allowed access range is 8 bytes. 316 */ 317 #define BPF_DIRECT_PKT_R2 \ 318 BPF_MOV64_IMM(BPF_REG_0, 0), \ 319 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 320 offsetof(struct __sk_buff, data)), \ 321 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 322 offsetof(struct __sk_buff, data_end)), \ 323 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 324 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 325 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 326 BPF_EXIT_INSN() 327 328 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 329 * positive u32, and zero-extend it into 64-bit. 330 */ 331 #define BPF_RAND_UEXT_R7 \ 332 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 333 BPF_FUNC_get_prandom_u32), \ 334 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 335 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 336 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 337 338 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 339 * negative u32, and sign-extend it into 64-bit. 340 */ 341 #define BPF_RAND_SEXT_R7 \ 342 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 343 BPF_FUNC_get_prandom_u32), \ 344 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 345 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 346 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 347 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 348 349 static struct bpf_test tests[] = { 350 #define FILL_ARRAY 351 #include <verifier/tests.h> 352 #undef FILL_ARRAY 353 }; 354 355 static int probe_filter_length(const struct bpf_insn *fp) 356 { 357 int len; 358 359 for (len = MAX_INSNS - 1; len > 0; --len) 360 if (fp[len].code != 0 || fp[len].imm != 0) 361 break; 362 return len + 1; 363 } 364 365 static bool skip_unsupported_map(enum bpf_map_type map_type) 366 { 367 if (!bpf_probe_map_type(map_type, 0)) { 368 printf("SKIP (unsupported map type %d)\n", map_type); 369 skips++; 370 return true; 371 } 372 return false; 373 } 374 375 static int __create_map(uint32_t type, uint32_t size_key, 376 uint32_t size_value, uint32_t max_elem, 377 uint32_t extra_flags) 378 { 379 int fd; 380 381 fd = bpf_create_map(type, size_key, size_value, max_elem, 382 (type == BPF_MAP_TYPE_HASH ? 383 BPF_F_NO_PREALLOC : 0) | extra_flags); 384 if (fd < 0) { 385 if (skip_unsupported_map(type)) 386 return -1; 387 printf("Failed to create hash map '%s'!\n", strerror(errno)); 388 } 389 390 return fd; 391 } 392 393 static int create_map(uint32_t type, uint32_t size_key, 394 uint32_t size_value, uint32_t max_elem) 395 { 396 return __create_map(type, size_key, size_value, max_elem, 0); 397 } 398 399 static void update_map(int fd, int index) 400 { 401 struct test_val value = { 402 .index = (6 + 1) * sizeof(int), 403 .foo[6] = 0xabcdef12, 404 }; 405 406 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 407 } 408 409 static int create_prog_dummy1(enum bpf_prog_type prog_type) 410 { 411 struct bpf_insn prog[] = { 412 BPF_MOV64_IMM(BPF_REG_0, 42), 413 BPF_EXIT_INSN(), 414 }; 415 416 return bpf_load_program(prog_type, prog, 417 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 418 } 419 420 static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx) 421 { 422 struct bpf_insn prog[] = { 423 BPF_MOV64_IMM(BPF_REG_3, idx), 424 BPF_LD_MAP_FD(BPF_REG_2, mfd), 425 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 426 BPF_FUNC_tail_call), 427 BPF_MOV64_IMM(BPF_REG_0, 41), 428 BPF_EXIT_INSN(), 429 }; 430 431 return bpf_load_program(prog_type, prog, 432 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 433 } 434 435 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 436 int p1key) 437 { 438 int p2key = 1; 439 int mfd, p1fd, p2fd; 440 441 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 442 sizeof(int), max_elem, 0); 443 if (mfd < 0) { 444 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 445 return -1; 446 printf("Failed to create prog array '%s'!\n", strerror(errno)); 447 return -1; 448 } 449 450 p1fd = create_prog_dummy1(prog_type); 451 p2fd = create_prog_dummy2(prog_type, mfd, p2key); 452 if (p1fd < 0 || p2fd < 0) 453 goto out; 454 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 455 goto out; 456 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 457 goto out; 458 close(p2fd); 459 close(p1fd); 460 461 return mfd; 462 out: 463 close(p2fd); 464 close(p1fd); 465 close(mfd); 466 return -1; 467 } 468 469 static int create_map_in_map(void) 470 { 471 int inner_map_fd, outer_map_fd; 472 473 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 474 sizeof(int), 1, 0); 475 if (inner_map_fd < 0) { 476 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 477 return -1; 478 printf("Failed to create array '%s'!\n", strerror(errno)); 479 return inner_map_fd; 480 } 481 482 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 483 sizeof(int), inner_map_fd, 1, 0); 484 if (outer_map_fd < 0) { 485 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 486 return -1; 487 printf("Failed to create array of maps '%s'!\n", 488 strerror(errno)); 489 } 490 491 close(inner_map_fd); 492 493 return outer_map_fd; 494 } 495 496 static int create_cgroup_storage(bool percpu) 497 { 498 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 499 BPF_MAP_TYPE_CGROUP_STORAGE; 500 int fd; 501 502 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 503 TEST_DATA_LEN, 0, 0); 504 if (fd < 0) { 505 if (skip_unsupported_map(type)) 506 return -1; 507 printf("Failed to create cgroup storage '%s'!\n", 508 strerror(errno)); 509 } 510 511 return fd; 512 } 513 514 /* struct bpf_spin_lock { 515 * int val; 516 * }; 517 * struct val { 518 * int cnt; 519 * struct bpf_spin_lock l; 520 * }; 521 */ 522 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 523 static __u32 btf_raw_types[] = { 524 /* int */ 525 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 526 /* struct bpf_spin_lock */ /* [2] */ 527 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 528 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 529 /* struct val */ /* [3] */ 530 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 531 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 532 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 533 }; 534 535 static int load_btf(void) 536 { 537 struct btf_header hdr = { 538 .magic = BTF_MAGIC, 539 .version = BTF_VERSION, 540 .hdr_len = sizeof(struct btf_header), 541 .type_len = sizeof(btf_raw_types), 542 .str_off = sizeof(btf_raw_types), 543 .str_len = sizeof(btf_str_sec), 544 }; 545 void *ptr, *raw_btf; 546 int btf_fd; 547 548 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 549 sizeof(btf_str_sec)); 550 551 memcpy(ptr, &hdr, sizeof(hdr)); 552 ptr += sizeof(hdr); 553 memcpy(ptr, btf_raw_types, hdr.type_len); 554 ptr += hdr.type_len; 555 memcpy(ptr, btf_str_sec, hdr.str_len); 556 ptr += hdr.str_len; 557 558 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 559 free(raw_btf); 560 if (btf_fd < 0) 561 return -1; 562 return btf_fd; 563 } 564 565 static int create_map_spin_lock(void) 566 { 567 struct bpf_create_map_attr attr = { 568 .name = "test_map", 569 .map_type = BPF_MAP_TYPE_ARRAY, 570 .key_size = 4, 571 .value_size = 8, 572 .max_entries = 1, 573 .btf_key_type_id = 1, 574 .btf_value_type_id = 3, 575 }; 576 int fd, btf_fd; 577 578 btf_fd = load_btf(); 579 if (btf_fd < 0) 580 return -1; 581 attr.btf_fd = btf_fd; 582 fd = bpf_create_map_xattr(&attr); 583 if (fd < 0) 584 printf("Failed to create map with spin_lock\n"); 585 return fd; 586 } 587 588 static int create_sk_storage_map(void) 589 { 590 struct bpf_create_map_attr attr = { 591 .name = "test_map", 592 .map_type = BPF_MAP_TYPE_SK_STORAGE, 593 .key_size = 4, 594 .value_size = 8, 595 .max_entries = 0, 596 .map_flags = BPF_F_NO_PREALLOC, 597 .btf_key_type_id = 1, 598 .btf_value_type_id = 3, 599 }; 600 int fd, btf_fd; 601 602 btf_fd = load_btf(); 603 if (btf_fd < 0) 604 return -1; 605 attr.btf_fd = btf_fd; 606 fd = bpf_create_map_xattr(&attr); 607 close(attr.btf_fd); 608 if (fd < 0) 609 printf("Failed to create sk_storage_map\n"); 610 return fd; 611 } 612 613 static char bpf_vlog[UINT_MAX >> 8]; 614 615 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 616 struct bpf_insn *prog, int *map_fds) 617 { 618 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 619 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 620 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 621 int *fixup_map_array_48b = test->fixup_map_array_48b; 622 int *fixup_map_sockmap = test->fixup_map_sockmap; 623 int *fixup_map_sockhash = test->fixup_map_sockhash; 624 int *fixup_map_xskmap = test->fixup_map_xskmap; 625 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 626 int *fixup_prog1 = test->fixup_prog1; 627 int *fixup_prog2 = test->fixup_prog2; 628 int *fixup_map_in_map = test->fixup_map_in_map; 629 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 630 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 631 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 632 int *fixup_map_array_ro = test->fixup_map_array_ro; 633 int *fixup_map_array_wo = test->fixup_map_array_wo; 634 int *fixup_map_array_small = test->fixup_map_array_small; 635 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 636 int *fixup_map_event_output = test->fixup_map_event_output; 637 638 if (test->fill_helper) { 639 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 640 test->fill_helper(test); 641 } 642 643 /* Allocating HTs with 1 elem is fine here, since we only test 644 * for verifier and not do a runtime lookup, so the only thing 645 * that really matters is value size in this case. 646 */ 647 if (*fixup_map_hash_8b) { 648 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 649 sizeof(long long), 1); 650 do { 651 prog[*fixup_map_hash_8b].imm = map_fds[0]; 652 fixup_map_hash_8b++; 653 } while (*fixup_map_hash_8b); 654 } 655 656 if (*fixup_map_hash_48b) { 657 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 658 sizeof(struct test_val), 1); 659 do { 660 prog[*fixup_map_hash_48b].imm = map_fds[1]; 661 fixup_map_hash_48b++; 662 } while (*fixup_map_hash_48b); 663 } 664 665 if (*fixup_map_hash_16b) { 666 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 667 sizeof(struct other_val), 1); 668 do { 669 prog[*fixup_map_hash_16b].imm = map_fds[2]; 670 fixup_map_hash_16b++; 671 } while (*fixup_map_hash_16b); 672 } 673 674 if (*fixup_map_array_48b) { 675 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 676 sizeof(struct test_val), 1); 677 update_map(map_fds[3], 0); 678 do { 679 prog[*fixup_map_array_48b].imm = map_fds[3]; 680 fixup_map_array_48b++; 681 } while (*fixup_map_array_48b); 682 } 683 684 if (*fixup_prog1) { 685 map_fds[4] = create_prog_array(prog_type, 4, 0); 686 do { 687 prog[*fixup_prog1].imm = map_fds[4]; 688 fixup_prog1++; 689 } while (*fixup_prog1); 690 } 691 692 if (*fixup_prog2) { 693 map_fds[5] = create_prog_array(prog_type, 8, 7); 694 do { 695 prog[*fixup_prog2].imm = map_fds[5]; 696 fixup_prog2++; 697 } while (*fixup_prog2); 698 } 699 700 if (*fixup_map_in_map) { 701 map_fds[6] = create_map_in_map(); 702 do { 703 prog[*fixup_map_in_map].imm = map_fds[6]; 704 fixup_map_in_map++; 705 } while (*fixup_map_in_map); 706 } 707 708 if (*fixup_cgroup_storage) { 709 map_fds[7] = create_cgroup_storage(false); 710 do { 711 prog[*fixup_cgroup_storage].imm = map_fds[7]; 712 fixup_cgroup_storage++; 713 } while (*fixup_cgroup_storage); 714 } 715 716 if (*fixup_percpu_cgroup_storage) { 717 map_fds[8] = create_cgroup_storage(true); 718 do { 719 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 720 fixup_percpu_cgroup_storage++; 721 } while (*fixup_percpu_cgroup_storage); 722 } 723 if (*fixup_map_sockmap) { 724 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 725 sizeof(int), 1); 726 do { 727 prog[*fixup_map_sockmap].imm = map_fds[9]; 728 fixup_map_sockmap++; 729 } while (*fixup_map_sockmap); 730 } 731 if (*fixup_map_sockhash) { 732 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 733 sizeof(int), 1); 734 do { 735 prog[*fixup_map_sockhash].imm = map_fds[10]; 736 fixup_map_sockhash++; 737 } while (*fixup_map_sockhash); 738 } 739 if (*fixup_map_xskmap) { 740 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 741 sizeof(int), 1); 742 do { 743 prog[*fixup_map_xskmap].imm = map_fds[11]; 744 fixup_map_xskmap++; 745 } while (*fixup_map_xskmap); 746 } 747 if (*fixup_map_stacktrace) { 748 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 749 sizeof(u64), 1); 750 do { 751 prog[*fixup_map_stacktrace].imm = map_fds[12]; 752 fixup_map_stacktrace++; 753 } while (*fixup_map_stacktrace); 754 } 755 if (*fixup_map_spin_lock) { 756 map_fds[13] = create_map_spin_lock(); 757 do { 758 prog[*fixup_map_spin_lock].imm = map_fds[13]; 759 fixup_map_spin_lock++; 760 } while (*fixup_map_spin_lock); 761 } 762 if (*fixup_map_array_ro) { 763 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 764 sizeof(struct test_val), 1, 765 BPF_F_RDONLY_PROG); 766 update_map(map_fds[14], 0); 767 do { 768 prog[*fixup_map_array_ro].imm = map_fds[14]; 769 fixup_map_array_ro++; 770 } while (*fixup_map_array_ro); 771 } 772 if (*fixup_map_array_wo) { 773 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 774 sizeof(struct test_val), 1, 775 BPF_F_WRONLY_PROG); 776 update_map(map_fds[15], 0); 777 do { 778 prog[*fixup_map_array_wo].imm = map_fds[15]; 779 fixup_map_array_wo++; 780 } while (*fixup_map_array_wo); 781 } 782 if (*fixup_map_array_small) { 783 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 784 1, 1, 0); 785 update_map(map_fds[16], 0); 786 do { 787 prog[*fixup_map_array_small].imm = map_fds[16]; 788 fixup_map_array_small++; 789 } while (*fixup_map_array_small); 790 } 791 if (*fixup_sk_storage_map) { 792 map_fds[17] = create_sk_storage_map(); 793 do { 794 prog[*fixup_sk_storage_map].imm = map_fds[17]; 795 fixup_sk_storage_map++; 796 } while (*fixup_sk_storage_map); 797 } 798 if (*fixup_map_event_output) { 799 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 800 sizeof(int), sizeof(int), 1, 0); 801 do { 802 prog[*fixup_map_event_output].imm = map_fds[18]; 803 fixup_map_event_output++; 804 } while (*fixup_map_event_output); 805 } 806 } 807 808 static int set_admin(bool admin) 809 { 810 cap_t caps; 811 const cap_value_t cap_val = CAP_SYS_ADMIN; 812 int ret = -1; 813 814 caps = cap_get_proc(); 815 if (!caps) { 816 perror("cap_get_proc"); 817 return -1; 818 } 819 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val, 820 admin ? CAP_SET : CAP_CLEAR)) { 821 perror("cap_set_flag"); 822 goto out; 823 } 824 if (cap_set_proc(caps)) { 825 perror("cap_set_proc"); 826 goto out; 827 } 828 ret = 0; 829 out: 830 if (cap_free(caps)) 831 perror("cap_free"); 832 return ret; 833 } 834 835 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 836 void *data, size_t size_data) 837 { 838 __u8 tmp[TEST_DATA_LEN << 2]; 839 __u32 size_tmp = sizeof(tmp); 840 uint32_t retval; 841 int err; 842 843 if (unpriv) 844 set_admin(true); 845 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 846 tmp, &size_tmp, &retval, NULL); 847 if (unpriv) 848 set_admin(false); 849 if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) { 850 printf("Unexpected bpf_prog_test_run error "); 851 return err; 852 } 853 if (!err && retval != expected_val && 854 expected_val != POINTER_VALUE) { 855 printf("FAIL retval %d != %d ", retval, expected_val); 856 return 1; 857 } 858 859 return 0; 860 } 861 862 static void do_test_single(struct bpf_test *test, bool unpriv, 863 int *passes, int *errors) 864 { 865 int fd_prog, expected_ret, alignment_prevented_execution; 866 int prog_len, prog_type = test->prog_type; 867 struct bpf_insn *prog = test->insns; 868 struct bpf_load_program_attr attr; 869 int run_errs, run_successes; 870 int map_fds[MAX_NR_MAPS]; 871 const char *expected_err; 872 int fixup_skips; 873 __u32 pflags; 874 int i, err; 875 876 for (i = 0; i < MAX_NR_MAPS; i++) 877 map_fds[i] = -1; 878 879 if (!prog_type) 880 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 881 fixup_skips = skips; 882 do_test_fixup(test, prog_type, prog, map_fds); 883 if (test->fill_insns) { 884 prog = test->fill_insns; 885 prog_len = test->prog_len; 886 } else { 887 prog_len = probe_filter_length(prog); 888 } 889 /* If there were some map skips during fixup due to missing bpf 890 * features, skip this test. 891 */ 892 if (fixup_skips != skips) 893 return; 894 895 pflags = BPF_F_TEST_RND_HI32; 896 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 897 pflags |= BPF_F_STRICT_ALIGNMENT; 898 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 899 pflags |= BPF_F_ANY_ALIGNMENT; 900 901 memset(&attr, 0, sizeof(attr)); 902 attr.prog_type = prog_type; 903 attr.expected_attach_type = test->expected_attach_type; 904 attr.insns = prog; 905 attr.insns_cnt = prog_len; 906 attr.license = "GPL"; 907 attr.log_level = 4; 908 attr.prog_flags = pflags; 909 910 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); 911 if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) { 912 printf("SKIP (unsupported program type %d)\n", prog_type); 913 skips++; 914 goto close_fds; 915 } 916 917 expected_ret = unpriv && test->result_unpriv != UNDEF ? 918 test->result_unpriv : test->result; 919 expected_err = unpriv && test->errstr_unpriv ? 920 test->errstr_unpriv : test->errstr; 921 922 alignment_prevented_execution = 0; 923 924 if (expected_ret == ACCEPT) { 925 if (fd_prog < 0) { 926 printf("FAIL\nFailed to load prog '%s'!\n", 927 strerror(errno)); 928 goto fail_log; 929 } 930 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 931 if (fd_prog >= 0 && 932 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 933 alignment_prevented_execution = 1; 934 #endif 935 } else { 936 if (fd_prog >= 0) { 937 printf("FAIL\nUnexpected success to load!\n"); 938 goto fail_log; 939 } 940 if (!expected_err || !strstr(bpf_vlog, expected_err)) { 941 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 942 expected_err, bpf_vlog); 943 goto fail_log; 944 } 945 } 946 947 if (test->insn_processed) { 948 uint32_t insn_processed; 949 char *proc; 950 951 proc = strstr(bpf_vlog, "processed "); 952 insn_processed = atoi(proc + 10); 953 if (test->insn_processed != insn_processed) { 954 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 955 insn_processed, test->insn_processed); 956 goto fail_log; 957 } 958 } 959 960 run_errs = 0; 961 run_successes = 0; 962 if (!alignment_prevented_execution && fd_prog >= 0) { 963 uint32_t expected_val; 964 int i; 965 966 if (!test->runs) 967 test->runs = 1; 968 969 for (i = 0; i < test->runs; i++) { 970 if (unpriv && test->retvals[i].retval_unpriv) 971 expected_val = test->retvals[i].retval_unpriv; 972 else 973 expected_val = test->retvals[i].retval; 974 975 err = do_prog_test_run(fd_prog, unpriv, expected_val, 976 test->retvals[i].data, 977 sizeof(test->retvals[i].data)); 978 if (err) { 979 printf("(run %d/%d) ", i + 1, test->runs); 980 run_errs++; 981 } else { 982 run_successes++; 983 } 984 } 985 } 986 987 if (!run_errs) { 988 (*passes)++; 989 if (run_successes > 1) 990 printf("%d cases ", run_successes); 991 printf("OK"); 992 if (alignment_prevented_execution) 993 printf(" (NOTE: not executed due to unknown alignment)"); 994 printf("\n"); 995 } else { 996 printf("\n"); 997 goto fail_log; 998 } 999 close_fds: 1000 if (test->fill_insns) 1001 free(test->fill_insns); 1002 close(fd_prog); 1003 for (i = 0; i < MAX_NR_MAPS; i++) 1004 close(map_fds[i]); 1005 sched_yield(); 1006 return; 1007 fail_log: 1008 (*errors)++; 1009 printf("%s", bpf_vlog); 1010 goto close_fds; 1011 } 1012 1013 static bool is_admin(void) 1014 { 1015 cap_t caps; 1016 cap_flag_value_t sysadmin = CAP_CLEAR; 1017 const cap_value_t cap_val = CAP_SYS_ADMIN; 1018 1019 #ifdef CAP_IS_SUPPORTED 1020 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1021 perror("cap_get_flag"); 1022 return false; 1023 } 1024 #endif 1025 caps = cap_get_proc(); 1026 if (!caps) { 1027 perror("cap_get_proc"); 1028 return false; 1029 } 1030 if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin)) 1031 perror("cap_get_flag"); 1032 if (cap_free(caps)) 1033 perror("cap_free"); 1034 return (sysadmin == CAP_SET); 1035 } 1036 1037 static void get_unpriv_disabled() 1038 { 1039 char buf[2]; 1040 FILE *fd; 1041 1042 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1043 if (!fd) { 1044 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1045 unpriv_disabled = true; 1046 return; 1047 } 1048 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1049 unpriv_disabled = true; 1050 fclose(fd); 1051 } 1052 1053 static bool test_as_unpriv(struct bpf_test *test) 1054 { 1055 return !test->prog_type || 1056 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1057 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1058 } 1059 1060 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1061 { 1062 int i, passes = 0, errors = 0; 1063 1064 for (i = from; i < to; i++) { 1065 struct bpf_test *test = &tests[i]; 1066 1067 /* Program types that are not supported by non-root we 1068 * skip right away. 1069 */ 1070 if (test_as_unpriv(test) && unpriv_disabled) { 1071 printf("#%d/u %s SKIP\n", i, test->descr); 1072 skips++; 1073 } else if (test_as_unpriv(test)) { 1074 if (!unpriv) 1075 set_admin(false); 1076 printf("#%d/u %s ", i, test->descr); 1077 do_test_single(test, true, &passes, &errors); 1078 if (!unpriv) 1079 set_admin(true); 1080 } 1081 1082 if (unpriv) { 1083 printf("#%d/p %s SKIP\n", i, test->descr); 1084 skips++; 1085 } else { 1086 printf("#%d/p %s ", i, test->descr); 1087 do_test_single(test, false, &passes, &errors); 1088 } 1089 } 1090 1091 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1092 skips, errors); 1093 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1094 } 1095 1096 int main(int argc, char **argv) 1097 { 1098 unsigned int from = 0, to = ARRAY_SIZE(tests); 1099 bool unpriv = !is_admin(); 1100 1101 if (argc == 3) { 1102 unsigned int l = atoi(argv[argc - 2]); 1103 unsigned int u = atoi(argv[argc - 1]); 1104 1105 if (l < to && u < to) { 1106 from = l; 1107 to = u + 1; 1108 } 1109 } else if (argc == 2) { 1110 unsigned int t = atoi(argv[argc - 1]); 1111 1112 if (t < to) { 1113 from = t; 1114 to = t + 1; 1115 } 1116 } 1117 1118 get_unpriv_disabled(); 1119 if (unpriv && unpriv_disabled) { 1120 printf("Cannot run as unprivileged user with sysctl %s.\n", 1121 UNPRIV_SYSCTL); 1122 return EXIT_FAILURE; 1123 } 1124 1125 bpf_semi_rand_init(); 1126 return do_test(unpriv, from, to); 1127 } 1128