1 /* 2 * Testsuite for eBPF verifier 3 * 4 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 5 * Copyright (c) 2017 Facebook 6 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of version 2 of the GNU General Public 10 * License as published by the Free Software Foundation. 11 */ 12 13 #include <endian.h> 14 #include <asm/types.h> 15 #include <linux/types.h> 16 #include <stdint.h> 17 #include <stdio.h> 18 #include <stdlib.h> 19 #include <unistd.h> 20 #include <errno.h> 21 #include <string.h> 22 #include <stddef.h> 23 #include <stdbool.h> 24 #include <sched.h> 25 #include <limits.h> 26 #include <assert.h> 27 28 #include <sys/capability.h> 29 30 #include <linux/unistd.h> 31 #include <linux/filter.h> 32 #include <linux/bpf_perf_event.h> 33 #include <linux/bpf.h> 34 #include <linux/if_ether.h> 35 #include <linux/btf.h> 36 37 #include <bpf/bpf.h> 38 #include <bpf/libbpf.h> 39 40 #ifdef HAVE_GENHDR 41 # include "autoconf.h" 42 #else 43 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 44 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 45 # endif 46 #endif 47 #include "bpf_rlimit.h" 48 #include "bpf_rand.h" 49 #include "bpf_util.h" 50 #include "test_btf.h" 51 #include "../../../include/linux/filter.h" 52 53 #define MAX_INSNS BPF_MAXINSNS 54 #define MAX_TEST_INSNS 1000000 55 #define MAX_FIXUPS 8 56 #define MAX_NR_MAPS 18 57 #define MAX_TEST_RUNS 8 58 #define POINTER_VALUE 0xcafe4all 59 #define TEST_DATA_LEN 64 60 61 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 62 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 63 64 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 65 static bool unpriv_disabled = false; 66 static int skips; 67 68 struct bpf_test { 69 const char *descr; 70 struct bpf_insn insns[MAX_INSNS]; 71 struct bpf_insn *fill_insns; 72 int fixup_map_hash_8b[MAX_FIXUPS]; 73 int fixup_map_hash_48b[MAX_FIXUPS]; 74 int fixup_map_hash_16b[MAX_FIXUPS]; 75 int fixup_map_array_48b[MAX_FIXUPS]; 76 int fixup_map_sockmap[MAX_FIXUPS]; 77 int fixup_map_sockhash[MAX_FIXUPS]; 78 int fixup_map_xskmap[MAX_FIXUPS]; 79 int fixup_map_stacktrace[MAX_FIXUPS]; 80 int fixup_prog1[MAX_FIXUPS]; 81 int fixup_prog2[MAX_FIXUPS]; 82 int fixup_map_in_map[MAX_FIXUPS]; 83 int fixup_cgroup_storage[MAX_FIXUPS]; 84 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 85 int fixup_map_spin_lock[MAX_FIXUPS]; 86 int fixup_map_array_ro[MAX_FIXUPS]; 87 int fixup_map_array_wo[MAX_FIXUPS]; 88 int fixup_map_array_small[MAX_FIXUPS]; 89 int fixup_sk_storage_map[MAX_FIXUPS]; 90 const char *errstr; 91 const char *errstr_unpriv; 92 uint32_t retval, retval_unpriv, insn_processed; 93 int prog_len; 94 enum { 95 UNDEF, 96 ACCEPT, 97 REJECT 98 } result, result_unpriv; 99 enum bpf_prog_type prog_type; 100 uint8_t flags; 101 __u8 data[TEST_DATA_LEN]; 102 void (*fill_helper)(struct bpf_test *self); 103 uint8_t runs; 104 struct { 105 uint32_t retval, retval_unpriv; 106 union { 107 __u8 data[TEST_DATA_LEN]; 108 __u64 data64[TEST_DATA_LEN / 8]; 109 }; 110 } retvals[MAX_TEST_RUNS]; 111 }; 112 113 /* Note we want this to be 64 bit aligned so that the end of our array is 114 * actually the end of the structure. 115 */ 116 #define MAX_ENTRIES 11 117 118 struct test_val { 119 unsigned int index; 120 int foo[MAX_ENTRIES]; 121 }; 122 123 struct other_val { 124 long long foo; 125 long long bar; 126 }; 127 128 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 129 { 130 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 131 #define PUSH_CNT 51 132 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 133 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 134 struct bpf_insn *insn = self->fill_insns; 135 int i = 0, j, k = 0; 136 137 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 138 loop: 139 for (j = 0; j < PUSH_CNT; j++) { 140 insn[i++] = BPF_LD_ABS(BPF_B, 0); 141 /* jump to error label */ 142 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 143 i++; 144 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 145 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 146 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 147 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 148 BPF_FUNC_skb_vlan_push), 149 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 150 i++; 151 } 152 153 for (j = 0; j < PUSH_CNT; j++) { 154 insn[i++] = BPF_LD_ABS(BPF_B, 0); 155 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 156 i++; 157 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 158 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 159 BPF_FUNC_skb_vlan_pop), 160 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 161 i++; 162 } 163 if (++k < 5) 164 goto loop; 165 166 for (; i < len - 3; i++) 167 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 168 insn[len - 3] = BPF_JMP_A(1); 169 /* error label */ 170 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 171 insn[len - 1] = BPF_EXIT_INSN(); 172 self->prog_len = len; 173 } 174 175 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 176 { 177 struct bpf_insn *insn = self->fill_insns; 178 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 179 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 180 * to extend the error value of the inlined ld_abs sequence which then 181 * contains 7 insns. so, set the dividend to 7 so the testcase could 182 * work on all arches. 183 */ 184 unsigned int len = (1 << 15) / 7; 185 int i = 0; 186 187 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 188 insn[i++] = BPF_LD_ABS(BPF_B, 0); 189 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 190 i++; 191 while (i < len - 1) 192 insn[i++] = BPF_LD_ABS(BPF_B, 1); 193 insn[i] = BPF_EXIT_INSN(); 194 self->prog_len = i + 1; 195 } 196 197 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 198 { 199 struct bpf_insn *insn = self->fill_insns; 200 uint64_t res = 0; 201 int i = 0; 202 203 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 204 while (i < self->retval) { 205 uint64_t val = bpf_semi_rand_get(); 206 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 207 208 res ^= val; 209 insn[i++] = tmp[0]; 210 insn[i++] = tmp[1]; 211 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 212 } 213 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 214 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 215 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 216 insn[i] = BPF_EXIT_INSN(); 217 self->prog_len = i + 1; 218 res ^= (res >> 32); 219 self->retval = (uint32_t)res; 220 } 221 222 #define MAX_JMP_SEQ 8192 223 224 /* test the sequence of 8k jumps */ 225 static void bpf_fill_scale1(struct bpf_test *self) 226 { 227 struct bpf_insn *insn = self->fill_insns; 228 int i = 0, k = 0; 229 230 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 231 /* test to check that the long sequence of jumps is acceptable */ 232 while (k++ < MAX_JMP_SEQ) { 233 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 234 BPF_FUNC_get_prandom_u32); 235 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 236 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 237 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 238 -8 * (k % 64 + 1)); 239 } 240 /* every jump adds 1 step to insn_processed, so to stay exactly 241 * within 1m limit add MAX_TEST_INSNS - MAX_JMP_SEQ - 1 MOVs and 1 EXIT 242 */ 243 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ - 1) 244 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 245 insn[i] = BPF_EXIT_INSN(); 246 self->prog_len = i + 1; 247 self->retval = 42; 248 } 249 250 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 251 static void bpf_fill_scale2(struct bpf_test *self) 252 { 253 struct bpf_insn *insn = self->fill_insns; 254 int i = 0, k = 0; 255 256 #define FUNC_NEST 7 257 for (k = 0; k < FUNC_NEST; k++) { 258 insn[i++] = BPF_CALL_REL(1); 259 insn[i++] = BPF_EXIT_INSN(); 260 } 261 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 262 /* test to check that the long sequence of jumps is acceptable */ 263 k = 0; 264 while (k++ < MAX_JMP_SEQ) { 265 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 266 BPF_FUNC_get_prandom_u32); 267 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 268 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 269 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 270 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 271 } 272 /* every jump adds 1 step to insn_processed, so to stay exactly 273 * within 1m limit add MAX_TEST_INSNS - MAX_JMP_SEQ - 1 MOVs and 1 EXIT 274 */ 275 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ - 1) 276 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 277 insn[i] = BPF_EXIT_INSN(); 278 self->prog_len = i + 1; 279 self->retval = 42; 280 } 281 282 static void bpf_fill_scale(struct bpf_test *self) 283 { 284 switch (self->retval) { 285 case 1: 286 return bpf_fill_scale1(self); 287 case 2: 288 return bpf_fill_scale2(self); 289 default: 290 self->prog_len = 0; 291 break; 292 } 293 } 294 295 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 296 #define BPF_SK_LOOKUP(func) \ 297 /* struct bpf_sock_tuple tuple = {} */ \ 298 BPF_MOV64_IMM(BPF_REG_2, 0), \ 299 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 300 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 301 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 302 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 303 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 304 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 305 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 306 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 307 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 308 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 309 BPF_MOV64_IMM(BPF_REG_4, 0), \ 310 BPF_MOV64_IMM(BPF_REG_5, 0), \ 311 BPF_EMIT_CALL(BPF_FUNC_ ## func) 312 313 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 314 * value into 0 and does necessary preparation for direct packet access 315 * through r2. The allowed access range is 8 bytes. 316 */ 317 #define BPF_DIRECT_PKT_R2 \ 318 BPF_MOV64_IMM(BPF_REG_0, 0), \ 319 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 320 offsetof(struct __sk_buff, data)), \ 321 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 322 offsetof(struct __sk_buff, data_end)), \ 323 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 324 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 325 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 326 BPF_EXIT_INSN() 327 328 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 329 * positive u32, and zero-extend it into 64-bit. 330 */ 331 #define BPF_RAND_UEXT_R7 \ 332 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 333 BPF_FUNC_get_prandom_u32), \ 334 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 335 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 336 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 337 338 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 339 * negative u32, and sign-extend it into 64-bit. 340 */ 341 #define BPF_RAND_SEXT_R7 \ 342 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 343 BPF_FUNC_get_prandom_u32), \ 344 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 345 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 346 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 347 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 348 349 static struct bpf_test tests[] = { 350 #define FILL_ARRAY 351 #include <verifier/tests.h> 352 #undef FILL_ARRAY 353 }; 354 355 static int probe_filter_length(const struct bpf_insn *fp) 356 { 357 int len; 358 359 for (len = MAX_INSNS - 1; len > 0; --len) 360 if (fp[len].code != 0 || fp[len].imm != 0) 361 break; 362 return len + 1; 363 } 364 365 static bool skip_unsupported_map(enum bpf_map_type map_type) 366 { 367 if (!bpf_probe_map_type(map_type, 0)) { 368 printf("SKIP (unsupported map type %d)\n", map_type); 369 skips++; 370 return true; 371 } 372 return false; 373 } 374 375 static int __create_map(uint32_t type, uint32_t size_key, 376 uint32_t size_value, uint32_t max_elem, 377 uint32_t extra_flags) 378 { 379 int fd; 380 381 fd = bpf_create_map(type, size_key, size_value, max_elem, 382 (type == BPF_MAP_TYPE_HASH ? 383 BPF_F_NO_PREALLOC : 0) | extra_flags); 384 if (fd < 0) { 385 if (skip_unsupported_map(type)) 386 return -1; 387 printf("Failed to create hash map '%s'!\n", strerror(errno)); 388 } 389 390 return fd; 391 } 392 393 static int create_map(uint32_t type, uint32_t size_key, 394 uint32_t size_value, uint32_t max_elem) 395 { 396 return __create_map(type, size_key, size_value, max_elem, 0); 397 } 398 399 static void update_map(int fd, int index) 400 { 401 struct test_val value = { 402 .index = (6 + 1) * sizeof(int), 403 .foo[6] = 0xabcdef12, 404 }; 405 406 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 407 } 408 409 static int create_prog_dummy1(enum bpf_prog_type prog_type) 410 { 411 struct bpf_insn prog[] = { 412 BPF_MOV64_IMM(BPF_REG_0, 42), 413 BPF_EXIT_INSN(), 414 }; 415 416 return bpf_load_program(prog_type, prog, 417 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 418 } 419 420 static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx) 421 { 422 struct bpf_insn prog[] = { 423 BPF_MOV64_IMM(BPF_REG_3, idx), 424 BPF_LD_MAP_FD(BPF_REG_2, mfd), 425 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 426 BPF_FUNC_tail_call), 427 BPF_MOV64_IMM(BPF_REG_0, 41), 428 BPF_EXIT_INSN(), 429 }; 430 431 return bpf_load_program(prog_type, prog, 432 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 433 } 434 435 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 436 int p1key) 437 { 438 int p2key = 1; 439 int mfd, p1fd, p2fd; 440 441 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 442 sizeof(int), max_elem, 0); 443 if (mfd < 0) { 444 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 445 return -1; 446 printf("Failed to create prog array '%s'!\n", strerror(errno)); 447 return -1; 448 } 449 450 p1fd = create_prog_dummy1(prog_type); 451 p2fd = create_prog_dummy2(prog_type, mfd, p2key); 452 if (p1fd < 0 || p2fd < 0) 453 goto out; 454 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 455 goto out; 456 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 457 goto out; 458 close(p2fd); 459 close(p1fd); 460 461 return mfd; 462 out: 463 close(p2fd); 464 close(p1fd); 465 close(mfd); 466 return -1; 467 } 468 469 static int create_map_in_map(void) 470 { 471 int inner_map_fd, outer_map_fd; 472 473 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 474 sizeof(int), 1, 0); 475 if (inner_map_fd < 0) { 476 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 477 return -1; 478 printf("Failed to create array '%s'!\n", strerror(errno)); 479 return inner_map_fd; 480 } 481 482 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 483 sizeof(int), inner_map_fd, 1, 0); 484 if (outer_map_fd < 0) { 485 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 486 return -1; 487 printf("Failed to create array of maps '%s'!\n", 488 strerror(errno)); 489 } 490 491 close(inner_map_fd); 492 493 return outer_map_fd; 494 } 495 496 static int create_cgroup_storage(bool percpu) 497 { 498 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 499 BPF_MAP_TYPE_CGROUP_STORAGE; 500 int fd; 501 502 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 503 TEST_DATA_LEN, 0, 0); 504 if (fd < 0) { 505 if (skip_unsupported_map(type)) 506 return -1; 507 printf("Failed to create cgroup storage '%s'!\n", 508 strerror(errno)); 509 } 510 511 return fd; 512 } 513 514 /* struct bpf_spin_lock { 515 * int val; 516 * }; 517 * struct val { 518 * int cnt; 519 * struct bpf_spin_lock l; 520 * }; 521 */ 522 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 523 static __u32 btf_raw_types[] = { 524 /* int */ 525 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 526 /* struct bpf_spin_lock */ /* [2] */ 527 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 528 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 529 /* struct val */ /* [3] */ 530 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 531 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 532 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 533 }; 534 535 static int load_btf(void) 536 { 537 struct btf_header hdr = { 538 .magic = BTF_MAGIC, 539 .version = BTF_VERSION, 540 .hdr_len = sizeof(struct btf_header), 541 .type_len = sizeof(btf_raw_types), 542 .str_off = sizeof(btf_raw_types), 543 .str_len = sizeof(btf_str_sec), 544 }; 545 void *ptr, *raw_btf; 546 int btf_fd; 547 548 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 549 sizeof(btf_str_sec)); 550 551 memcpy(ptr, &hdr, sizeof(hdr)); 552 ptr += sizeof(hdr); 553 memcpy(ptr, btf_raw_types, hdr.type_len); 554 ptr += hdr.type_len; 555 memcpy(ptr, btf_str_sec, hdr.str_len); 556 ptr += hdr.str_len; 557 558 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 559 free(raw_btf); 560 if (btf_fd < 0) 561 return -1; 562 return btf_fd; 563 } 564 565 static int create_map_spin_lock(void) 566 { 567 struct bpf_create_map_attr attr = { 568 .name = "test_map", 569 .map_type = BPF_MAP_TYPE_ARRAY, 570 .key_size = 4, 571 .value_size = 8, 572 .max_entries = 1, 573 .btf_key_type_id = 1, 574 .btf_value_type_id = 3, 575 }; 576 int fd, btf_fd; 577 578 btf_fd = load_btf(); 579 if (btf_fd < 0) 580 return -1; 581 attr.btf_fd = btf_fd; 582 fd = bpf_create_map_xattr(&attr); 583 if (fd < 0) 584 printf("Failed to create map with spin_lock\n"); 585 return fd; 586 } 587 588 static int create_sk_storage_map(void) 589 { 590 struct bpf_create_map_attr attr = { 591 .name = "test_map", 592 .map_type = BPF_MAP_TYPE_SK_STORAGE, 593 .key_size = 4, 594 .value_size = 8, 595 .max_entries = 0, 596 .map_flags = BPF_F_NO_PREALLOC, 597 .btf_key_type_id = 1, 598 .btf_value_type_id = 3, 599 }; 600 int fd, btf_fd; 601 602 btf_fd = load_btf(); 603 if (btf_fd < 0) 604 return -1; 605 attr.btf_fd = btf_fd; 606 fd = bpf_create_map_xattr(&attr); 607 close(attr.btf_fd); 608 if (fd < 0) 609 printf("Failed to create sk_storage_map\n"); 610 return fd; 611 } 612 613 static char bpf_vlog[UINT_MAX >> 8]; 614 615 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 616 struct bpf_insn *prog, int *map_fds) 617 { 618 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 619 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 620 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 621 int *fixup_map_array_48b = test->fixup_map_array_48b; 622 int *fixup_map_sockmap = test->fixup_map_sockmap; 623 int *fixup_map_sockhash = test->fixup_map_sockhash; 624 int *fixup_map_xskmap = test->fixup_map_xskmap; 625 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 626 int *fixup_prog1 = test->fixup_prog1; 627 int *fixup_prog2 = test->fixup_prog2; 628 int *fixup_map_in_map = test->fixup_map_in_map; 629 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 630 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 631 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 632 int *fixup_map_array_ro = test->fixup_map_array_ro; 633 int *fixup_map_array_wo = test->fixup_map_array_wo; 634 int *fixup_map_array_small = test->fixup_map_array_small; 635 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 636 637 if (test->fill_helper) { 638 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 639 test->fill_helper(test); 640 } 641 642 /* Allocating HTs with 1 elem is fine here, since we only test 643 * for verifier and not do a runtime lookup, so the only thing 644 * that really matters is value size in this case. 645 */ 646 if (*fixup_map_hash_8b) { 647 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 648 sizeof(long long), 1); 649 do { 650 prog[*fixup_map_hash_8b].imm = map_fds[0]; 651 fixup_map_hash_8b++; 652 } while (*fixup_map_hash_8b); 653 } 654 655 if (*fixup_map_hash_48b) { 656 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 657 sizeof(struct test_val), 1); 658 do { 659 prog[*fixup_map_hash_48b].imm = map_fds[1]; 660 fixup_map_hash_48b++; 661 } while (*fixup_map_hash_48b); 662 } 663 664 if (*fixup_map_hash_16b) { 665 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 666 sizeof(struct other_val), 1); 667 do { 668 prog[*fixup_map_hash_16b].imm = map_fds[2]; 669 fixup_map_hash_16b++; 670 } while (*fixup_map_hash_16b); 671 } 672 673 if (*fixup_map_array_48b) { 674 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 675 sizeof(struct test_val), 1); 676 update_map(map_fds[3], 0); 677 do { 678 prog[*fixup_map_array_48b].imm = map_fds[3]; 679 fixup_map_array_48b++; 680 } while (*fixup_map_array_48b); 681 } 682 683 if (*fixup_prog1) { 684 map_fds[4] = create_prog_array(prog_type, 4, 0); 685 do { 686 prog[*fixup_prog1].imm = map_fds[4]; 687 fixup_prog1++; 688 } while (*fixup_prog1); 689 } 690 691 if (*fixup_prog2) { 692 map_fds[5] = create_prog_array(prog_type, 8, 7); 693 do { 694 prog[*fixup_prog2].imm = map_fds[5]; 695 fixup_prog2++; 696 } while (*fixup_prog2); 697 } 698 699 if (*fixup_map_in_map) { 700 map_fds[6] = create_map_in_map(); 701 do { 702 prog[*fixup_map_in_map].imm = map_fds[6]; 703 fixup_map_in_map++; 704 } while (*fixup_map_in_map); 705 } 706 707 if (*fixup_cgroup_storage) { 708 map_fds[7] = create_cgroup_storage(false); 709 do { 710 prog[*fixup_cgroup_storage].imm = map_fds[7]; 711 fixup_cgroup_storage++; 712 } while (*fixup_cgroup_storage); 713 } 714 715 if (*fixup_percpu_cgroup_storage) { 716 map_fds[8] = create_cgroup_storage(true); 717 do { 718 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 719 fixup_percpu_cgroup_storage++; 720 } while (*fixup_percpu_cgroup_storage); 721 } 722 if (*fixup_map_sockmap) { 723 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 724 sizeof(int), 1); 725 do { 726 prog[*fixup_map_sockmap].imm = map_fds[9]; 727 fixup_map_sockmap++; 728 } while (*fixup_map_sockmap); 729 } 730 if (*fixup_map_sockhash) { 731 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 732 sizeof(int), 1); 733 do { 734 prog[*fixup_map_sockhash].imm = map_fds[10]; 735 fixup_map_sockhash++; 736 } while (*fixup_map_sockhash); 737 } 738 if (*fixup_map_xskmap) { 739 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 740 sizeof(int), 1); 741 do { 742 prog[*fixup_map_xskmap].imm = map_fds[11]; 743 fixup_map_xskmap++; 744 } while (*fixup_map_xskmap); 745 } 746 if (*fixup_map_stacktrace) { 747 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 748 sizeof(u64), 1); 749 do { 750 prog[*fixup_map_stacktrace].imm = map_fds[12]; 751 fixup_map_stacktrace++; 752 } while (*fixup_map_stacktrace); 753 } 754 if (*fixup_map_spin_lock) { 755 map_fds[13] = create_map_spin_lock(); 756 do { 757 prog[*fixup_map_spin_lock].imm = map_fds[13]; 758 fixup_map_spin_lock++; 759 } while (*fixup_map_spin_lock); 760 } 761 if (*fixup_map_array_ro) { 762 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 763 sizeof(struct test_val), 1, 764 BPF_F_RDONLY_PROG); 765 update_map(map_fds[14], 0); 766 do { 767 prog[*fixup_map_array_ro].imm = map_fds[14]; 768 fixup_map_array_ro++; 769 } while (*fixup_map_array_ro); 770 } 771 if (*fixup_map_array_wo) { 772 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 773 sizeof(struct test_val), 1, 774 BPF_F_WRONLY_PROG); 775 update_map(map_fds[15], 0); 776 do { 777 prog[*fixup_map_array_wo].imm = map_fds[15]; 778 fixup_map_array_wo++; 779 } while (*fixup_map_array_wo); 780 } 781 if (*fixup_map_array_small) { 782 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 783 1, 1, 0); 784 update_map(map_fds[16], 0); 785 do { 786 prog[*fixup_map_array_small].imm = map_fds[16]; 787 fixup_map_array_small++; 788 } while (*fixup_map_array_small); 789 } 790 if (*fixup_sk_storage_map) { 791 map_fds[17] = create_sk_storage_map(); 792 do { 793 prog[*fixup_sk_storage_map].imm = map_fds[17]; 794 fixup_sk_storage_map++; 795 } while (*fixup_sk_storage_map); 796 } 797 } 798 799 static int set_admin(bool admin) 800 { 801 cap_t caps; 802 const cap_value_t cap_val = CAP_SYS_ADMIN; 803 int ret = -1; 804 805 caps = cap_get_proc(); 806 if (!caps) { 807 perror("cap_get_proc"); 808 return -1; 809 } 810 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val, 811 admin ? CAP_SET : CAP_CLEAR)) { 812 perror("cap_set_flag"); 813 goto out; 814 } 815 if (cap_set_proc(caps)) { 816 perror("cap_set_proc"); 817 goto out; 818 } 819 ret = 0; 820 out: 821 if (cap_free(caps)) 822 perror("cap_free"); 823 return ret; 824 } 825 826 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 827 void *data, size_t size_data) 828 { 829 __u8 tmp[TEST_DATA_LEN << 2]; 830 __u32 size_tmp = sizeof(tmp); 831 uint32_t retval; 832 int err; 833 834 if (unpriv) 835 set_admin(true); 836 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 837 tmp, &size_tmp, &retval, NULL); 838 if (unpriv) 839 set_admin(false); 840 if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) { 841 printf("Unexpected bpf_prog_test_run error "); 842 return err; 843 } 844 if (!err && retval != expected_val && 845 expected_val != POINTER_VALUE) { 846 printf("FAIL retval %d != %d ", retval, expected_val); 847 return 1; 848 } 849 850 return 0; 851 } 852 853 static void do_test_single(struct bpf_test *test, bool unpriv, 854 int *passes, int *errors) 855 { 856 int fd_prog, expected_ret, alignment_prevented_execution; 857 int prog_len, prog_type = test->prog_type; 858 struct bpf_insn *prog = test->insns; 859 int run_errs, run_successes; 860 int map_fds[MAX_NR_MAPS]; 861 const char *expected_err; 862 int fixup_skips; 863 __u32 pflags; 864 int i, err; 865 866 for (i = 0; i < MAX_NR_MAPS; i++) 867 map_fds[i] = -1; 868 869 if (!prog_type) 870 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 871 fixup_skips = skips; 872 do_test_fixup(test, prog_type, prog, map_fds); 873 if (test->fill_insns) { 874 prog = test->fill_insns; 875 prog_len = test->prog_len; 876 } else { 877 prog_len = probe_filter_length(prog); 878 } 879 /* If there were some map skips during fixup due to missing bpf 880 * features, skip this test. 881 */ 882 if (fixup_skips != skips) 883 return; 884 885 pflags = BPF_F_TEST_RND_HI32; 886 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 887 pflags |= BPF_F_STRICT_ALIGNMENT; 888 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 889 pflags |= BPF_F_ANY_ALIGNMENT; 890 fd_prog = bpf_verify_program(prog_type, prog, prog_len, pflags, 891 "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 4); 892 if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) { 893 printf("SKIP (unsupported program type %d)\n", prog_type); 894 skips++; 895 goto close_fds; 896 } 897 898 expected_ret = unpriv && test->result_unpriv != UNDEF ? 899 test->result_unpriv : test->result; 900 expected_err = unpriv && test->errstr_unpriv ? 901 test->errstr_unpriv : test->errstr; 902 903 alignment_prevented_execution = 0; 904 905 if (expected_ret == ACCEPT) { 906 if (fd_prog < 0) { 907 printf("FAIL\nFailed to load prog '%s'!\n", 908 strerror(errno)); 909 goto fail_log; 910 } 911 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 912 if (fd_prog >= 0 && 913 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 914 alignment_prevented_execution = 1; 915 #endif 916 } else { 917 if (fd_prog >= 0) { 918 printf("FAIL\nUnexpected success to load!\n"); 919 goto fail_log; 920 } 921 if (!strstr(bpf_vlog, expected_err)) { 922 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 923 expected_err, bpf_vlog); 924 goto fail_log; 925 } 926 } 927 928 if (test->insn_processed) { 929 uint32_t insn_processed; 930 char *proc; 931 932 proc = strstr(bpf_vlog, "processed "); 933 insn_processed = atoi(proc + 10); 934 if (test->insn_processed != insn_processed) { 935 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 936 insn_processed, test->insn_processed); 937 goto fail_log; 938 } 939 } 940 941 run_errs = 0; 942 run_successes = 0; 943 if (!alignment_prevented_execution && fd_prog >= 0) { 944 uint32_t expected_val; 945 int i; 946 947 if (!test->runs) { 948 expected_val = unpriv && test->retval_unpriv ? 949 test->retval_unpriv : test->retval; 950 951 err = do_prog_test_run(fd_prog, unpriv, expected_val, 952 test->data, sizeof(test->data)); 953 if (err) 954 run_errs++; 955 else 956 run_successes++; 957 } 958 959 for (i = 0; i < test->runs; i++) { 960 if (unpriv && test->retvals[i].retval_unpriv) 961 expected_val = test->retvals[i].retval_unpriv; 962 else 963 expected_val = test->retvals[i].retval; 964 965 err = do_prog_test_run(fd_prog, unpriv, expected_val, 966 test->retvals[i].data, 967 sizeof(test->retvals[i].data)); 968 if (err) { 969 printf("(run %d/%d) ", i + 1, test->runs); 970 run_errs++; 971 } else { 972 run_successes++; 973 } 974 } 975 } 976 977 if (!run_errs) { 978 (*passes)++; 979 if (run_successes > 1) 980 printf("%d cases ", run_successes); 981 printf("OK"); 982 if (alignment_prevented_execution) 983 printf(" (NOTE: not executed due to unknown alignment)"); 984 printf("\n"); 985 } else { 986 printf("\n"); 987 goto fail_log; 988 } 989 close_fds: 990 if (test->fill_insns) 991 free(test->fill_insns); 992 close(fd_prog); 993 for (i = 0; i < MAX_NR_MAPS; i++) 994 close(map_fds[i]); 995 sched_yield(); 996 return; 997 fail_log: 998 (*errors)++; 999 printf("%s", bpf_vlog); 1000 goto close_fds; 1001 } 1002 1003 static bool is_admin(void) 1004 { 1005 cap_t caps; 1006 cap_flag_value_t sysadmin = CAP_CLEAR; 1007 const cap_value_t cap_val = CAP_SYS_ADMIN; 1008 1009 #ifdef CAP_IS_SUPPORTED 1010 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1011 perror("cap_get_flag"); 1012 return false; 1013 } 1014 #endif 1015 caps = cap_get_proc(); 1016 if (!caps) { 1017 perror("cap_get_proc"); 1018 return false; 1019 } 1020 if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin)) 1021 perror("cap_get_flag"); 1022 if (cap_free(caps)) 1023 perror("cap_free"); 1024 return (sysadmin == CAP_SET); 1025 } 1026 1027 static void get_unpriv_disabled() 1028 { 1029 char buf[2]; 1030 FILE *fd; 1031 1032 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1033 if (!fd) { 1034 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1035 unpriv_disabled = true; 1036 return; 1037 } 1038 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1039 unpriv_disabled = true; 1040 fclose(fd); 1041 } 1042 1043 static bool test_as_unpriv(struct bpf_test *test) 1044 { 1045 return !test->prog_type || 1046 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1047 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1048 } 1049 1050 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1051 { 1052 int i, passes = 0, errors = 0; 1053 1054 for (i = from; i < to; i++) { 1055 struct bpf_test *test = &tests[i]; 1056 1057 /* Program types that are not supported by non-root we 1058 * skip right away. 1059 */ 1060 if (test_as_unpriv(test) && unpriv_disabled) { 1061 printf("#%d/u %s SKIP\n", i, test->descr); 1062 skips++; 1063 } else if (test_as_unpriv(test)) { 1064 if (!unpriv) 1065 set_admin(false); 1066 printf("#%d/u %s ", i, test->descr); 1067 do_test_single(test, true, &passes, &errors); 1068 if (!unpriv) 1069 set_admin(true); 1070 } 1071 1072 if (unpriv) { 1073 printf("#%d/p %s SKIP\n", i, test->descr); 1074 skips++; 1075 } else { 1076 printf("#%d/p %s ", i, test->descr); 1077 do_test_single(test, false, &passes, &errors); 1078 } 1079 } 1080 1081 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1082 skips, errors); 1083 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1084 } 1085 1086 int main(int argc, char **argv) 1087 { 1088 unsigned int from = 0, to = ARRAY_SIZE(tests); 1089 bool unpriv = !is_admin(); 1090 1091 if (argc == 3) { 1092 unsigned int l = atoi(argv[argc - 2]); 1093 unsigned int u = atoi(argv[argc - 1]); 1094 1095 if (l < to && u < to) { 1096 from = l; 1097 to = u + 1; 1098 } 1099 } else if (argc == 2) { 1100 unsigned int t = atoi(argv[argc - 1]); 1101 1102 if (t < to) { 1103 from = t; 1104 to = t + 1; 1105 } 1106 } 1107 1108 get_unpriv_disabled(); 1109 if (unpriv && unpriv_disabled) { 1110 printf("Cannot run as unprivileged user with sysctl %s.\n", 1111 UNPRIV_SYSCTL); 1112 return EXIT_FAILURE; 1113 } 1114 1115 bpf_semi_rand_init(); 1116 return do_test(unpriv, from, to); 1117 } 1118