xref: /linux/tools/testing/selftests/bpf/test_verifier.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <linux/unistd.h>
26 #include <linux/filter.h>
27 #include <linux/bpf_perf_event.h>
28 #include <linux/bpf.h>
29 #include <linux/if_ether.h>
30 #include <linux/btf.h>
31 
32 #include <bpf/btf.h>
33 #include <bpf/bpf.h>
34 #include <bpf/libbpf.h>
35 
36 #include "autoconf_helper.h"
37 #include "unpriv_helpers.h"
38 #include "cap_helpers.h"
39 #include "bpf_rand.h"
40 #include "bpf_util.h"
41 #include "test_btf.h"
42 #include "../../../include/linux/filter.h"
43 #include "testing_helpers.h"
44 
45 #ifndef ENOTSUPP
46 #define ENOTSUPP 524
47 #endif
48 
49 #define MAX_INSNS	BPF_MAXINSNS
50 #define MAX_EXPECTED_INSNS	32
51 #define MAX_UNEXPECTED_INSNS	32
52 #define MAX_TEST_INSNS	1000000
53 #define MAX_FIXUPS	8
54 #define MAX_NR_MAPS	23
55 #define MAX_TEST_RUNS	8
56 #define POINTER_VALUE	0xcafe4all
57 #define TEST_DATA_LEN	64
58 #define MAX_FUNC_INFOS	8
59 #define MAX_BTF_STRINGS	256
60 #define MAX_BTF_TYPES	256
61 
62 #define INSN_OFF_MASK	((__s16)0xFFFF)
63 #define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
64 #define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
65 
66 #define DEFAULT_LIBBPF_LOG_LEVEL	4
67 
68 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
69 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
70 #define F_NEEDS_JIT_ENABLED			(1 << 2)
71 
72 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
73 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
74 		    1ULL << CAP_PERFMON |	\
75 		    1ULL << CAP_BPF)
76 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
77 static bool unpriv_disabled = false;
78 static bool jit_disabled;
79 static int skips;
80 static bool verbose = false;
81 static int verif_log_level = 0;
82 
83 struct kfunc_btf_id_pair {
84 	const char *kfunc;
85 	int insn_idx;
86 };
87 
88 struct bpf_test {
89 	const char *descr;
90 	struct bpf_insn	insns[MAX_INSNS];
91 	struct bpf_insn	*fill_insns;
92 	/* If specified, test engine looks for this sequence of
93 	 * instructions in the BPF program after loading. Allows to
94 	 * test rewrites applied by verifier.  Use values
95 	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
96 	 * fields if content does not matter.  The test case fails if
97 	 * specified instructions are not found.
98 	 *
99 	 * The sequence could be split into sub-sequences by adding
100 	 * SKIP_INSNS instruction at the end of each sub-sequence. In
101 	 * such case sub-sequences are searched for one after another.
102 	 */
103 	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
104 	/* If specified, test engine applies same pattern matching
105 	 * logic as for `expected_insns`. If the specified pattern is
106 	 * matched test case is marked as failed.
107 	 */
108 	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
109 	int fixup_map_hash_8b[MAX_FIXUPS];
110 	int fixup_map_hash_48b[MAX_FIXUPS];
111 	int fixup_map_hash_16b[MAX_FIXUPS];
112 	int fixup_map_array_48b[MAX_FIXUPS];
113 	int fixup_map_sockmap[MAX_FIXUPS];
114 	int fixup_map_sockhash[MAX_FIXUPS];
115 	int fixup_map_xskmap[MAX_FIXUPS];
116 	int fixup_map_stacktrace[MAX_FIXUPS];
117 	int fixup_prog1[MAX_FIXUPS];
118 	int fixup_prog2[MAX_FIXUPS];
119 	int fixup_map_in_map[MAX_FIXUPS];
120 	int fixup_cgroup_storage[MAX_FIXUPS];
121 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
122 	int fixup_map_spin_lock[MAX_FIXUPS];
123 	int fixup_map_array_ro[MAX_FIXUPS];
124 	int fixup_map_array_wo[MAX_FIXUPS];
125 	int fixup_map_array_small[MAX_FIXUPS];
126 	int fixup_sk_storage_map[MAX_FIXUPS];
127 	int fixup_map_event_output[MAX_FIXUPS];
128 	int fixup_map_reuseport_array[MAX_FIXUPS];
129 	int fixup_map_ringbuf[MAX_FIXUPS];
130 	int fixup_map_timer[MAX_FIXUPS];
131 	int fixup_map_kptr[MAX_FIXUPS];
132 	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
133 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
134 	 * Can be a tab-separated sequence of expected strings. An empty string
135 	 * means no log verification.
136 	 */
137 	const char *errstr;
138 	const char *errstr_unpriv;
139 	uint32_t insn_processed;
140 	int prog_len;
141 	enum {
142 		UNDEF,
143 		ACCEPT,
144 		REJECT,
145 		VERBOSE_ACCEPT,
146 	} result, result_unpriv;
147 	enum bpf_prog_type prog_type;
148 	uint8_t flags;
149 	void (*fill_helper)(struct bpf_test *self);
150 	int runs;
151 #define bpf_testdata_struct_t					\
152 	struct {						\
153 		uint32_t retval, retval_unpriv;			\
154 		union {						\
155 			__u8 data[TEST_DATA_LEN];		\
156 			__u64 data64[TEST_DATA_LEN / 8];	\
157 		};						\
158 	}
159 	union {
160 		bpf_testdata_struct_t;
161 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
162 	};
163 	enum bpf_attach_type expected_attach_type;
164 	const char *kfunc;
165 	struct bpf_func_info func_info[MAX_FUNC_INFOS];
166 	int func_info_cnt;
167 	char btf_strings[MAX_BTF_STRINGS];
168 	/* A set of BTF types to load when specified,
169 	 * use macro definitions from test_btf.h,
170 	 * must end with BTF_END_RAW
171 	 */
172 	__u32 btf_types[MAX_BTF_TYPES];
173 };
174 
175 /* Note we want this to be 64 bit aligned so that the end of our array is
176  * actually the end of the structure.
177  */
178 #define MAX_ENTRIES 11
179 
180 struct test_val {
181 	unsigned int index;
182 	int foo[MAX_ENTRIES];
183 };
184 
185 struct other_val {
186 	long long foo;
187 	long long bar;
188 };
189 
190 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
191 {
192 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
193 #define PUSH_CNT 51
194 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
195 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
196 	struct bpf_insn *insn = self->fill_insns;
197 	int i = 0, j, k = 0;
198 
199 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
200 loop:
201 	for (j = 0; j < PUSH_CNT; j++) {
202 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
203 		/* jump to error label */
204 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
205 		i++;
206 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
207 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
208 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
209 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
210 					 BPF_FUNC_skb_vlan_push);
211 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
212 		i++;
213 	}
214 
215 	for (j = 0; j < PUSH_CNT; j++) {
216 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
217 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
218 		i++;
219 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
220 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
221 					 BPF_FUNC_skb_vlan_pop);
222 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
223 		i++;
224 	}
225 	if (++k < 5)
226 		goto loop;
227 
228 	for (; i < len - 3; i++)
229 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
230 	insn[len - 3] = BPF_JMP_A(1);
231 	/* error label */
232 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
233 	insn[len - 1] = BPF_EXIT_INSN();
234 	self->prog_len = len;
235 }
236 
237 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
238 {
239 	struct bpf_insn *insn = self->fill_insns;
240 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
241 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
242 	 * to extend the error value of the inlined ld_abs sequence which then
243 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
244 	 * work on all arches.
245 	 */
246 	unsigned int len = (1 << 15) / 7;
247 	int i = 0;
248 
249 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
250 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
251 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
252 	i++;
253 	while (i < len - 1)
254 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
255 	insn[i] = BPF_EXIT_INSN();
256 	self->prog_len = i + 1;
257 }
258 
259 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
260 {
261 	struct bpf_insn *insn = self->fill_insns;
262 	uint64_t res = 0;
263 	int i = 0;
264 
265 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
266 	while (i < self->retval) {
267 		uint64_t val = bpf_semi_rand_get();
268 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
269 
270 		res ^= val;
271 		insn[i++] = tmp[0];
272 		insn[i++] = tmp[1];
273 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
274 	}
275 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
276 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
277 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
278 	insn[i] = BPF_EXIT_INSN();
279 	self->prog_len = i + 1;
280 	res ^= (res >> 32);
281 	self->retval = (uint32_t)res;
282 }
283 
284 #define MAX_JMP_SEQ 8192
285 
286 /* test the sequence of 8k jumps */
287 static void bpf_fill_scale1(struct bpf_test *self)
288 {
289 	struct bpf_insn *insn = self->fill_insns;
290 	int i = 0, k = 0;
291 
292 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
293 	/* test to check that the long sequence of jumps is acceptable */
294 	while (k++ < MAX_JMP_SEQ) {
295 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
296 					 BPF_FUNC_get_prandom_u32);
297 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
298 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
299 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
300 					-8 * (k % 64 + 1));
301 	}
302 	/* is_state_visited() doesn't allocate state for pruning for every jump.
303 	 * Hence multiply jmps by 4 to accommodate that heuristic
304 	 */
305 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
306 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
307 	insn[i] = BPF_EXIT_INSN();
308 	self->prog_len = i + 1;
309 	self->retval = 42;
310 }
311 
312 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
313 static void bpf_fill_scale2(struct bpf_test *self)
314 {
315 	struct bpf_insn *insn = self->fill_insns;
316 	int i = 0, k = 0;
317 
318 #define FUNC_NEST 7
319 	for (k = 0; k < FUNC_NEST; k++) {
320 		insn[i++] = BPF_CALL_REL(1);
321 		insn[i++] = BPF_EXIT_INSN();
322 	}
323 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
324 	/* test to check that the long sequence of jumps is acceptable */
325 	k = 0;
326 	while (k++ < MAX_JMP_SEQ) {
327 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
328 					 BPF_FUNC_get_prandom_u32);
329 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
330 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
331 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
332 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
333 	}
334 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
335 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
336 	insn[i] = BPF_EXIT_INSN();
337 	self->prog_len = i + 1;
338 	self->retval = 42;
339 }
340 
341 static void bpf_fill_scale(struct bpf_test *self)
342 {
343 	switch (self->retval) {
344 	case 1:
345 		return bpf_fill_scale1(self);
346 	case 2:
347 		return bpf_fill_scale2(self);
348 	default:
349 		self->prog_len = 0;
350 		break;
351 	}
352 }
353 
354 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
355 {
356 	unsigned int len = 259, hlen = 128;
357 	int i;
358 
359 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
360 	for (i = 1; i <= hlen; i++) {
361 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
362 		insn[i + hlen] = BPF_JMP_A(hlen - i);
363 	}
364 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
365 	insn[len - 1] = BPF_EXIT_INSN();
366 
367 	return len;
368 }
369 
370 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
371 {
372 	unsigned int len = 4100, jmp_off = 2048;
373 	int i, j;
374 
375 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
376 	for (i = 1; i <= jmp_off; i++) {
377 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
378 	}
379 	insn[i++] = BPF_JMP_A(jmp_off);
380 	for (; i <= jmp_off * 2 + 1; i+=16) {
381 		for (j = 0; j < 16; j++) {
382 			insn[i + j] = BPF_JMP_A(16 - j - 1);
383 		}
384 	}
385 
386 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
387 	insn[len - 1] = BPF_EXIT_INSN();
388 
389 	return len;
390 }
391 
392 static void bpf_fill_torturous_jumps(struct bpf_test *self)
393 {
394 	struct bpf_insn *insn = self->fill_insns;
395 	int i = 0;
396 
397 	switch (self->retval) {
398 	case 1:
399 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
400 		return;
401 	case 2:
402 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
403 		return;
404 	case 3:
405 		/* main */
406 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
407 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
408 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
409 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
410 		insn[i++] = BPF_EXIT_INSN();
411 
412 		/* subprog 1 */
413 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
414 
415 		/* subprog 2 */
416 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
417 
418 		self->prog_len = i;
419 		return;
420 	default:
421 		self->prog_len = 0;
422 		break;
423 	}
424 }
425 
426 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
427 {
428 	struct bpf_insn *insn = self->fill_insns;
429 	/* This test was added to catch a specific use after free
430 	 * error, which happened upon BPF program reallocation.
431 	 * Reallocation is handled by core.c:bpf_prog_realloc, which
432 	 * reuses old memory if page boundary is not crossed. The
433 	 * value of `len` is chosen to cross this boundary on bpf_loop
434 	 * patching.
435 	 */
436 	const int len = getpagesize() - 25;
437 	int callback_load_idx;
438 	int callback_idx;
439 	int i = 0;
440 
441 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
442 	callback_load_idx = i;
443 	insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
444 				 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
445 				 777 /* filled below */);
446 	insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
447 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
448 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
449 	insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
450 
451 	while (i < len - 3)
452 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
453 	insn[i++] = BPF_EXIT_INSN();
454 
455 	callback_idx = i;
456 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
457 	insn[i++] = BPF_EXIT_INSN();
458 
459 	insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
460 	self->func_info[1].insn_off = callback_idx;
461 	self->prog_len = i;
462 	assert(i == len);
463 }
464 
465 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
466 #define BPF_SK_LOOKUP(func)						\
467 	/* struct bpf_sock_tuple tuple = {} */				\
468 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
469 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
470 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
471 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
472 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
473 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
474 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
475 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
476 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
477 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
478 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
479 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
480 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
481 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
482 
483 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
484  * value into 0 and does necessary preparation for direct packet access
485  * through r2. The allowed access range is 8 bytes.
486  */
487 #define BPF_DIRECT_PKT_R2						\
488 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
489 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
490 		    offsetof(struct __sk_buff, data)),			\
491 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
492 		    offsetof(struct __sk_buff, data_end)),		\
493 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
494 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
495 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
496 	BPF_EXIT_INSN()
497 
498 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
499  * positive u32, and zero-extend it into 64-bit.
500  */
501 #define BPF_RAND_UEXT_R7						\
502 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
503 		     BPF_FUNC_get_prandom_u32),				\
504 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
505 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
506 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
507 
508 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
509  * negative u32, and sign-extend it into 64-bit.
510  */
511 #define BPF_RAND_SEXT_R7						\
512 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
513 		     BPF_FUNC_get_prandom_u32),				\
514 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
515 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
516 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
517 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
518 
519 static struct bpf_test tests[] = {
520 #define FILL_ARRAY
521 #include <verifier/tests.h>
522 #undef FILL_ARRAY
523 };
524 
525 static int probe_filter_length(const struct bpf_insn *fp)
526 {
527 	int len;
528 
529 	for (len = MAX_INSNS - 1; len > 0; --len)
530 		if (fp[len].code != 0 || fp[len].imm != 0)
531 			break;
532 	return len + 1;
533 }
534 
535 static bool skip_unsupported_map(enum bpf_map_type map_type)
536 {
537 	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
538 		printf("SKIP (unsupported map type %d)\n", map_type);
539 		skips++;
540 		return true;
541 	}
542 	return false;
543 }
544 
545 static int __create_map(uint32_t type, uint32_t size_key,
546 			uint32_t size_value, uint32_t max_elem,
547 			uint32_t extra_flags)
548 {
549 	LIBBPF_OPTS(bpf_map_create_opts, opts);
550 	int fd;
551 
552 	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
553 	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
554 	if (fd < 0) {
555 		if (skip_unsupported_map(type))
556 			return -1;
557 		printf("Failed to create hash map '%s'!\n", strerror(errno));
558 	}
559 
560 	return fd;
561 }
562 
563 static int create_map(uint32_t type, uint32_t size_key,
564 		      uint32_t size_value, uint32_t max_elem)
565 {
566 	return __create_map(type, size_key, size_value, max_elem, 0);
567 }
568 
569 static void update_map(int fd, int index)
570 {
571 	struct test_val value = {
572 		.index = (6 + 1) * sizeof(int),
573 		.foo[6] = 0xabcdef12,
574 	};
575 
576 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
577 }
578 
579 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
580 {
581 	struct bpf_insn prog[] = {
582 		BPF_MOV64_IMM(BPF_REG_0, ret),
583 		BPF_EXIT_INSN(),
584 	};
585 
586 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
587 }
588 
589 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
590 				  int idx, int ret)
591 {
592 	struct bpf_insn prog[] = {
593 		BPF_MOV64_IMM(BPF_REG_3, idx),
594 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
595 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
596 			     BPF_FUNC_tail_call),
597 		BPF_MOV64_IMM(BPF_REG_0, ret),
598 		BPF_EXIT_INSN(),
599 	};
600 
601 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
602 }
603 
604 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
605 			     int p1key, int p2key, int p3key)
606 {
607 	int mfd, p1fd, p2fd, p3fd;
608 
609 	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
610 			     sizeof(int), max_elem, NULL);
611 	if (mfd < 0) {
612 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
613 			return -1;
614 		printf("Failed to create prog array '%s'!\n", strerror(errno));
615 		return -1;
616 	}
617 
618 	p1fd = create_prog_dummy_simple(prog_type, 42);
619 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
620 	p3fd = create_prog_dummy_simple(prog_type, 24);
621 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
622 		goto err;
623 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
624 		goto err;
625 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
626 		goto err;
627 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
628 err:
629 		close(mfd);
630 		mfd = -1;
631 	}
632 	close(p3fd);
633 	close(p2fd);
634 	close(p1fd);
635 	return mfd;
636 }
637 
638 static int create_map_in_map(void)
639 {
640 	LIBBPF_OPTS(bpf_map_create_opts, opts);
641 	int inner_map_fd, outer_map_fd;
642 
643 	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
644 				      sizeof(int), 1, NULL);
645 	if (inner_map_fd < 0) {
646 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
647 			return -1;
648 		printf("Failed to create array '%s'!\n", strerror(errno));
649 		return inner_map_fd;
650 	}
651 
652 	opts.inner_map_fd = inner_map_fd;
653 	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
654 				      sizeof(int), sizeof(int), 1, &opts);
655 	if (outer_map_fd < 0) {
656 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
657 			return -1;
658 		printf("Failed to create array of maps '%s'!\n",
659 		       strerror(errno));
660 	}
661 
662 	close(inner_map_fd);
663 
664 	return outer_map_fd;
665 }
666 
667 static int create_cgroup_storage(bool percpu)
668 {
669 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
670 		BPF_MAP_TYPE_CGROUP_STORAGE;
671 	int fd;
672 
673 	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
674 			    TEST_DATA_LEN, 0, NULL);
675 	if (fd < 0) {
676 		if (skip_unsupported_map(type))
677 			return -1;
678 		printf("Failed to create cgroup storage '%s'!\n",
679 		       strerror(errno));
680 	}
681 
682 	return fd;
683 }
684 
685 /* struct bpf_spin_lock {
686  *   int val;
687  * };
688  * struct val {
689  *   int cnt;
690  *   struct bpf_spin_lock l;
691  * };
692  * struct bpf_timer {
693  *   __u64 :64;
694  *   __u64 :64;
695  * } __attribute__((aligned(8)));
696  * struct timer {
697  *   struct bpf_timer t;
698  * };
699  * struct btf_ptr {
700  *   struct prog_test_ref_kfunc __kptr_untrusted *ptr;
701  *   struct prog_test_ref_kfunc __kptr *ptr;
702  *   struct prog_test_member __kptr *ptr;
703  * }
704  */
705 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
706 				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
707 				  "\0prog_test_member";
708 static __u32 btf_raw_types[] = {
709 	/* int */
710 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
711 	/* struct bpf_spin_lock */                      /* [2] */
712 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
713 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
714 	/* struct val */                                /* [3] */
715 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
716 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
717 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
718 	/* struct bpf_timer */                          /* [4] */
719 	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
720 	/* struct timer */                              /* [5] */
721 	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
722 	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
723 	/* struct prog_test_ref_kfunc */		/* [6] */
724 	BTF_STRUCT_ENC(51, 0, 0),
725 	BTF_STRUCT_ENC(95, 0, 0),			/* [7] */
726 	/* type tag "kptr_untrusted" */
727 	BTF_TYPE_TAG_ENC(80, 6),			/* [8] */
728 	/* type tag "kptr" */
729 	BTF_TYPE_TAG_ENC(75, 6),			/* [9] */
730 	BTF_TYPE_TAG_ENC(75, 7),			/* [10] */
731 	BTF_PTR_ENC(8),					/* [11] */
732 	BTF_PTR_ENC(9),					/* [12] */
733 	BTF_PTR_ENC(10),				/* [13] */
734 	/* struct btf_ptr */				/* [14] */
735 	BTF_STRUCT_ENC(43, 3, 24),
736 	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
737 	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
738 	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
739 };
740 
741 static char bpf_vlog[UINT_MAX >> 8];
742 
743 static int load_btf_spec(__u32 *types, int types_len,
744 			 const char *strings, int strings_len)
745 {
746 	struct btf_header hdr = {
747 		.magic = BTF_MAGIC,
748 		.version = BTF_VERSION,
749 		.hdr_len = sizeof(struct btf_header),
750 		.type_len = types_len,
751 		.str_off = types_len,
752 		.str_len = strings_len,
753 	};
754 	void *ptr, *raw_btf;
755 	int btf_fd;
756 	LIBBPF_OPTS(bpf_btf_load_opts, opts,
757 		    .log_buf = bpf_vlog,
758 		    .log_size = sizeof(bpf_vlog),
759 		    .log_level = (verbose
760 				  ? verif_log_level
761 				  : DEFAULT_LIBBPF_LOG_LEVEL),
762 	);
763 
764 	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
765 
766 	ptr = raw_btf;
767 	memcpy(ptr, &hdr, sizeof(hdr));
768 	ptr += sizeof(hdr);
769 	memcpy(ptr, types, hdr.type_len);
770 	ptr += hdr.type_len;
771 	memcpy(ptr, strings, hdr.str_len);
772 	ptr += hdr.str_len;
773 
774 	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
775 	if (btf_fd < 0)
776 		printf("Failed to load BTF spec: '%s'\n", strerror(errno));
777 
778 	free(raw_btf);
779 
780 	return btf_fd < 0 ? -1 : btf_fd;
781 }
782 
783 static int load_btf(void)
784 {
785 	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
786 			     btf_str_sec, sizeof(btf_str_sec));
787 }
788 
789 static int load_btf_for_test(struct bpf_test *test)
790 {
791 	int types_num = 0;
792 
793 	while (types_num < MAX_BTF_TYPES &&
794 	       test->btf_types[types_num] != BTF_END_RAW)
795 		++types_num;
796 
797 	int types_len = types_num * sizeof(test->btf_types[0]);
798 
799 	return load_btf_spec(test->btf_types, types_len,
800 			     test->btf_strings, sizeof(test->btf_strings));
801 }
802 
803 static int create_map_spin_lock(void)
804 {
805 	LIBBPF_OPTS(bpf_map_create_opts, opts,
806 		.btf_key_type_id = 1,
807 		.btf_value_type_id = 3,
808 	);
809 	int fd, btf_fd;
810 
811 	btf_fd = load_btf();
812 	if (btf_fd < 0)
813 		return -1;
814 	opts.btf_fd = btf_fd;
815 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
816 	if (fd < 0)
817 		printf("Failed to create map with spin_lock\n");
818 	return fd;
819 }
820 
821 static int create_sk_storage_map(void)
822 {
823 	LIBBPF_OPTS(bpf_map_create_opts, opts,
824 		.map_flags = BPF_F_NO_PREALLOC,
825 		.btf_key_type_id = 1,
826 		.btf_value_type_id = 3,
827 	);
828 	int fd, btf_fd;
829 
830 	btf_fd = load_btf();
831 	if (btf_fd < 0)
832 		return -1;
833 	opts.btf_fd = btf_fd;
834 	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
835 	close(opts.btf_fd);
836 	if (fd < 0)
837 		printf("Failed to create sk_storage_map\n");
838 	return fd;
839 }
840 
841 static int create_map_timer(void)
842 {
843 	LIBBPF_OPTS(bpf_map_create_opts, opts,
844 		.btf_key_type_id = 1,
845 		.btf_value_type_id = 5,
846 	);
847 	int fd, btf_fd;
848 
849 	btf_fd = load_btf();
850 	if (btf_fd < 0)
851 		return -1;
852 
853 	opts.btf_fd = btf_fd;
854 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
855 	if (fd < 0)
856 		printf("Failed to create map with timer\n");
857 	return fd;
858 }
859 
860 static int create_map_kptr(void)
861 {
862 	LIBBPF_OPTS(bpf_map_create_opts, opts,
863 		.btf_key_type_id = 1,
864 		.btf_value_type_id = 14,
865 	);
866 	int fd, btf_fd;
867 
868 	btf_fd = load_btf();
869 	if (btf_fd < 0)
870 		return -1;
871 
872 	opts.btf_fd = btf_fd;
873 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
874 	if (fd < 0)
875 		printf("Failed to create map with btf_id pointer\n");
876 	return fd;
877 }
878 
879 static void set_root(bool set)
880 {
881 	__u64 caps;
882 
883 	if (set) {
884 		if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps))
885 			perror("cap_disable_effective(CAP_SYS_ADMIN)");
886 	} else {
887 		if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps))
888 			perror("cap_disable_effective(CAP_SYS_ADMIN)");
889 	}
890 }
891 
892 static __u64 ptr_to_u64(const void *ptr)
893 {
894 	return (uintptr_t) ptr;
895 }
896 
897 static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
898 {
899 	struct bpf_btf_info info;
900 	__u32 len = sizeof(info);
901 	struct btf *btf = NULL;
902 	char name[64];
903 	__u32 id = 0;
904 	int err, fd;
905 
906 	/* Iterate all loaded BTF objects and find bpf_testmod,
907 	 * we need SYS_ADMIN cap for that.
908 	 */
909 	set_root(true);
910 
911 	while (true) {
912 		err = bpf_btf_get_next_id(id, &id);
913 		if (err) {
914 			if (errno == ENOENT)
915 				break;
916 			perror("bpf_btf_get_next_id failed");
917 			break;
918 		}
919 
920 		fd = bpf_btf_get_fd_by_id(id);
921 		if (fd < 0) {
922 			if (errno == ENOENT)
923 				continue;
924 			perror("bpf_btf_get_fd_by_id failed");
925 			break;
926 		}
927 
928 		memset(&info, 0, sizeof(info));
929 		info.name_len = sizeof(name);
930 		info.name = ptr_to_u64(name);
931 		len = sizeof(info);
932 
933 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
934 		if (err) {
935 			close(fd);
936 			perror("bpf_obj_get_info_by_fd failed");
937 			break;
938 		}
939 
940 		if (strcmp("bpf_testmod", name)) {
941 			close(fd);
942 			continue;
943 		}
944 
945 		btf = btf__load_from_kernel_by_id_split(id, vmlinux);
946 		if (!btf) {
947 			close(fd);
948 			break;
949 		}
950 
951 		/* We need the fd to stay open so it can be used in fd_array.
952 		 * The final cleanup call to btf__free will free btf object
953 		 * and close the file descriptor.
954 		 */
955 		btf__set_fd(btf, fd);
956 		break;
957 	}
958 
959 	set_root(false);
960 	return btf;
961 }
962 
963 static struct btf *testmod_btf;
964 static struct btf *vmlinux_btf;
965 
966 static void kfuncs_cleanup(void)
967 {
968 	btf__free(testmod_btf);
969 	btf__free(vmlinux_btf);
970 }
971 
972 static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
973 			      struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
974 {
975 	/* Patch in kfunc BTF IDs */
976 	while (fixup_kfunc_btf_id->kfunc) {
977 		int btf_id = 0;
978 
979 		/* try to find kfunc in kernel BTF */
980 		vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
981 		if (vmlinux_btf) {
982 			btf_id = btf__find_by_name_kind(vmlinux_btf,
983 							fixup_kfunc_btf_id->kfunc,
984 							BTF_KIND_FUNC);
985 			btf_id = btf_id < 0 ? 0 : btf_id;
986 		}
987 
988 		/* kfunc not found in kernel BTF, try bpf_testmod BTF */
989 		if (!btf_id) {
990 			testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf);
991 			if (testmod_btf) {
992 				btf_id = btf__find_by_name_kind(testmod_btf,
993 								fixup_kfunc_btf_id->kfunc,
994 								BTF_KIND_FUNC);
995 				btf_id = btf_id < 0 ? 0 : btf_id;
996 				if (btf_id) {
997 					/* We put bpf_testmod module fd into fd_array
998 					 * and its index 1 into instruction 'off'.
999 					 */
1000 					*fd_array = btf__fd(testmod_btf);
1001 					prog[fixup_kfunc_btf_id->insn_idx].off = 1;
1002 				}
1003 			}
1004 		}
1005 
1006 		prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1007 		fixup_kfunc_btf_id++;
1008 	}
1009 }
1010 
1011 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
1012 			  struct bpf_insn *prog, int *map_fds, int *fd_array)
1013 {
1014 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
1015 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
1016 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
1017 	int *fixup_map_array_48b = test->fixup_map_array_48b;
1018 	int *fixup_map_sockmap = test->fixup_map_sockmap;
1019 	int *fixup_map_sockhash = test->fixup_map_sockhash;
1020 	int *fixup_map_xskmap = test->fixup_map_xskmap;
1021 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
1022 	int *fixup_prog1 = test->fixup_prog1;
1023 	int *fixup_prog2 = test->fixup_prog2;
1024 	int *fixup_map_in_map = test->fixup_map_in_map;
1025 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
1026 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
1027 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
1028 	int *fixup_map_array_ro = test->fixup_map_array_ro;
1029 	int *fixup_map_array_wo = test->fixup_map_array_wo;
1030 	int *fixup_map_array_small = test->fixup_map_array_small;
1031 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
1032 	int *fixup_map_event_output = test->fixup_map_event_output;
1033 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
1034 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
1035 	int *fixup_map_timer = test->fixup_map_timer;
1036 	int *fixup_map_kptr = test->fixup_map_kptr;
1037 
1038 	if (test->fill_helper) {
1039 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
1040 		test->fill_helper(test);
1041 	}
1042 
1043 	/* Allocating HTs with 1 elem is fine here, since we only test
1044 	 * for verifier and not do a runtime lookup, so the only thing
1045 	 * that really matters is value size in this case.
1046 	 */
1047 	if (*fixup_map_hash_8b) {
1048 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1049 					sizeof(long long), 1);
1050 		do {
1051 			prog[*fixup_map_hash_8b].imm = map_fds[0];
1052 			fixup_map_hash_8b++;
1053 		} while (*fixup_map_hash_8b);
1054 	}
1055 
1056 	if (*fixup_map_hash_48b) {
1057 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1058 					sizeof(struct test_val), 1);
1059 		do {
1060 			prog[*fixup_map_hash_48b].imm = map_fds[1];
1061 			fixup_map_hash_48b++;
1062 		} while (*fixup_map_hash_48b);
1063 	}
1064 
1065 	if (*fixup_map_hash_16b) {
1066 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1067 					sizeof(struct other_val), 1);
1068 		do {
1069 			prog[*fixup_map_hash_16b].imm = map_fds[2];
1070 			fixup_map_hash_16b++;
1071 		} while (*fixup_map_hash_16b);
1072 	}
1073 
1074 	if (*fixup_map_array_48b) {
1075 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1076 					sizeof(struct test_val), 1);
1077 		update_map(map_fds[3], 0);
1078 		do {
1079 			prog[*fixup_map_array_48b].imm = map_fds[3];
1080 			fixup_map_array_48b++;
1081 		} while (*fixup_map_array_48b);
1082 	}
1083 
1084 	if (*fixup_prog1) {
1085 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
1086 		do {
1087 			prog[*fixup_prog1].imm = map_fds[4];
1088 			fixup_prog1++;
1089 		} while (*fixup_prog1);
1090 	}
1091 
1092 	if (*fixup_prog2) {
1093 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
1094 		do {
1095 			prog[*fixup_prog2].imm = map_fds[5];
1096 			fixup_prog2++;
1097 		} while (*fixup_prog2);
1098 	}
1099 
1100 	if (*fixup_map_in_map) {
1101 		map_fds[6] = create_map_in_map();
1102 		do {
1103 			prog[*fixup_map_in_map].imm = map_fds[6];
1104 			fixup_map_in_map++;
1105 		} while (*fixup_map_in_map);
1106 	}
1107 
1108 	if (*fixup_cgroup_storage) {
1109 		map_fds[7] = create_cgroup_storage(false);
1110 		do {
1111 			prog[*fixup_cgroup_storage].imm = map_fds[7];
1112 			fixup_cgroup_storage++;
1113 		} while (*fixup_cgroup_storage);
1114 	}
1115 
1116 	if (*fixup_percpu_cgroup_storage) {
1117 		map_fds[8] = create_cgroup_storage(true);
1118 		do {
1119 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
1120 			fixup_percpu_cgroup_storage++;
1121 		} while (*fixup_percpu_cgroup_storage);
1122 	}
1123 	if (*fixup_map_sockmap) {
1124 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
1125 					sizeof(int), 1);
1126 		do {
1127 			prog[*fixup_map_sockmap].imm = map_fds[9];
1128 			fixup_map_sockmap++;
1129 		} while (*fixup_map_sockmap);
1130 	}
1131 	if (*fixup_map_sockhash) {
1132 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
1133 					sizeof(int), 1);
1134 		do {
1135 			prog[*fixup_map_sockhash].imm = map_fds[10];
1136 			fixup_map_sockhash++;
1137 		} while (*fixup_map_sockhash);
1138 	}
1139 	if (*fixup_map_xskmap) {
1140 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1141 					sizeof(int), 1);
1142 		do {
1143 			prog[*fixup_map_xskmap].imm = map_fds[11];
1144 			fixup_map_xskmap++;
1145 		} while (*fixup_map_xskmap);
1146 	}
1147 	if (*fixup_map_stacktrace) {
1148 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1149 					 sizeof(u64), 1);
1150 		do {
1151 			prog[*fixup_map_stacktrace].imm = map_fds[12];
1152 			fixup_map_stacktrace++;
1153 		} while (*fixup_map_stacktrace);
1154 	}
1155 	if (*fixup_map_spin_lock) {
1156 		map_fds[13] = create_map_spin_lock();
1157 		do {
1158 			prog[*fixup_map_spin_lock].imm = map_fds[13];
1159 			fixup_map_spin_lock++;
1160 		} while (*fixup_map_spin_lock);
1161 	}
1162 	if (*fixup_map_array_ro) {
1163 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1164 					   sizeof(struct test_val), 1,
1165 					   BPF_F_RDONLY_PROG);
1166 		update_map(map_fds[14], 0);
1167 		do {
1168 			prog[*fixup_map_array_ro].imm = map_fds[14];
1169 			fixup_map_array_ro++;
1170 		} while (*fixup_map_array_ro);
1171 	}
1172 	if (*fixup_map_array_wo) {
1173 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1174 					   sizeof(struct test_val), 1,
1175 					   BPF_F_WRONLY_PROG);
1176 		update_map(map_fds[15], 0);
1177 		do {
1178 			prog[*fixup_map_array_wo].imm = map_fds[15];
1179 			fixup_map_array_wo++;
1180 		} while (*fixup_map_array_wo);
1181 	}
1182 	if (*fixup_map_array_small) {
1183 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1184 					   1, 1, 0);
1185 		update_map(map_fds[16], 0);
1186 		do {
1187 			prog[*fixup_map_array_small].imm = map_fds[16];
1188 			fixup_map_array_small++;
1189 		} while (*fixup_map_array_small);
1190 	}
1191 	if (*fixup_sk_storage_map) {
1192 		map_fds[17] = create_sk_storage_map();
1193 		do {
1194 			prog[*fixup_sk_storage_map].imm = map_fds[17];
1195 			fixup_sk_storage_map++;
1196 		} while (*fixup_sk_storage_map);
1197 	}
1198 	if (*fixup_map_event_output) {
1199 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1200 					   sizeof(int), sizeof(int), 1, 0);
1201 		do {
1202 			prog[*fixup_map_event_output].imm = map_fds[18];
1203 			fixup_map_event_output++;
1204 		} while (*fixup_map_event_output);
1205 	}
1206 	if (*fixup_map_reuseport_array) {
1207 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1208 					   sizeof(u32), sizeof(u64), 1, 0);
1209 		do {
1210 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
1211 			fixup_map_reuseport_array++;
1212 		} while (*fixup_map_reuseport_array);
1213 	}
1214 	if (*fixup_map_ringbuf) {
1215 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1216 					 0, getpagesize());
1217 		do {
1218 			prog[*fixup_map_ringbuf].imm = map_fds[20];
1219 			fixup_map_ringbuf++;
1220 		} while (*fixup_map_ringbuf);
1221 	}
1222 	if (*fixup_map_timer) {
1223 		map_fds[21] = create_map_timer();
1224 		do {
1225 			prog[*fixup_map_timer].imm = map_fds[21];
1226 			fixup_map_timer++;
1227 		} while (*fixup_map_timer);
1228 	}
1229 	if (*fixup_map_kptr) {
1230 		map_fds[22] = create_map_kptr();
1231 		do {
1232 			prog[*fixup_map_kptr].imm = map_fds[22];
1233 			fixup_map_kptr++;
1234 		} while (*fixup_map_kptr);
1235 	}
1236 
1237 	fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id);
1238 }
1239 
1240 static int set_admin(bool admin)
1241 {
1242 	int err;
1243 
1244 	if (admin) {
1245 		err = cap_enable_effective(ADMIN_CAPS, NULL);
1246 		if (err)
1247 			perror("cap_enable_effective(ADMIN_CAPS)");
1248 	} else {
1249 		err = cap_disable_effective(ADMIN_CAPS, NULL);
1250 		if (err)
1251 			perror("cap_disable_effective(ADMIN_CAPS)");
1252 	}
1253 
1254 	return err;
1255 }
1256 
1257 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1258 			    void *data, size_t size_data)
1259 {
1260 	__u8 tmp[TEST_DATA_LEN << 2];
1261 	__u32 size_tmp = sizeof(tmp);
1262 	int err, saved_errno;
1263 	LIBBPF_OPTS(bpf_test_run_opts, topts,
1264 		.data_in = data,
1265 		.data_size_in = size_data,
1266 		.data_out = tmp,
1267 		.data_size_out = size_tmp,
1268 		.repeat = 1,
1269 	);
1270 
1271 	if (unpriv)
1272 		set_admin(true);
1273 	err = bpf_prog_test_run_opts(fd_prog, &topts);
1274 	saved_errno = errno;
1275 
1276 	if (unpriv)
1277 		set_admin(false);
1278 
1279 	if (err) {
1280 		switch (saved_errno) {
1281 		case ENOTSUPP:
1282 			printf("Did not run the program (not supported) ");
1283 			return 0;
1284 		case EPERM:
1285 			if (unpriv) {
1286 				printf("Did not run the program (no permission) ");
1287 				return 0;
1288 			}
1289 			/* fallthrough; */
1290 		default:
1291 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1292 				strerror(saved_errno));
1293 			return err;
1294 		}
1295 	}
1296 
1297 	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1298 		printf("FAIL retval %d != %d ", topts.retval, expected_val);
1299 		return 1;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1306  *
1307  * If exp is an empty string, returns true.
1308  */
1309 static bool cmp_str_seq(const char *log, const char *exp)
1310 {
1311 	char needle[200];
1312 	const char *p, *q;
1313 	int len;
1314 
1315 	do {
1316 		if (!strlen(exp))
1317 			break;
1318 		p = strchr(exp, '\t');
1319 		if (!p)
1320 			p = exp + strlen(exp);
1321 
1322 		len = p - exp;
1323 		if (len >= sizeof(needle) || !len) {
1324 			printf("FAIL\nTestcase bug\n");
1325 			return false;
1326 		}
1327 		strncpy(needle, exp, len);
1328 		needle[len] = 0;
1329 		q = strstr(log, needle);
1330 		if (!q) {
1331 			printf("FAIL\nUnexpected verifier log!\n"
1332 			       "EXP: %s\nRES:\n", needle);
1333 			return false;
1334 		}
1335 		log = q + len;
1336 		exp = p + 1;
1337 	} while (*p);
1338 	return true;
1339 }
1340 
1341 static bool is_null_insn(struct bpf_insn *insn)
1342 {
1343 	struct bpf_insn null_insn = {};
1344 
1345 	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1346 }
1347 
1348 static bool is_skip_insn(struct bpf_insn *insn)
1349 {
1350 	struct bpf_insn skip_insn = SKIP_INSNS();
1351 
1352 	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1353 }
1354 
1355 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1356 {
1357 	int i;
1358 
1359 	for (i = 0; i < max_len; ++i) {
1360 		if (is_null_insn(&seq[i]))
1361 			return i;
1362 	}
1363 	return max_len;
1364 }
1365 
1366 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1367 {
1368 	struct bpf_insn orig_masked;
1369 
1370 	memcpy(&orig_masked, orig, sizeof(orig_masked));
1371 	if (masked->imm == INSN_IMM_MASK)
1372 		orig_masked.imm = INSN_IMM_MASK;
1373 	if (masked->off == INSN_OFF_MASK)
1374 		orig_masked.off = INSN_OFF_MASK;
1375 
1376 	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1377 }
1378 
1379 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1380 			    int seq_len, int subseq_len)
1381 {
1382 	int i, j;
1383 
1384 	if (subseq_len > seq_len)
1385 		return -1;
1386 
1387 	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1388 		bool found = true;
1389 
1390 		for (j = 0; j < subseq_len; ++j) {
1391 			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1392 				found = false;
1393 				break;
1394 			}
1395 		}
1396 		if (found)
1397 			return i;
1398 	}
1399 
1400 	return -1;
1401 }
1402 
1403 static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1404 {
1405 	int i;
1406 
1407 	for (i = 0; i < len; ++i)
1408 		if (is_skip_insn(&seq[i]))
1409 			return i;
1410 
1411 	return -1;
1412 }
1413 
1414 /* Return true if all sub-sequences in `subseqs` could be found in
1415  * `seq` one after another. Sub-sequences are separated by a single
1416  * nil instruction.
1417  */
1418 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1419 				  int seq_len, int max_subseqs_len)
1420 {
1421 	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1422 
1423 	while (subseqs_len > 0) {
1424 		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1425 		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1426 		int subseq_idx = find_insn_subseq(seq, subseqs,
1427 						  seq_len, cur_subseq_len);
1428 
1429 		if (subseq_idx < 0)
1430 			return false;
1431 		seq += subseq_idx + cur_subseq_len;
1432 		seq_len -= subseq_idx + cur_subseq_len;
1433 		subseqs += cur_subseq_len + 1;
1434 		subseqs_len -= cur_subseq_len + 1;
1435 	}
1436 
1437 	return true;
1438 }
1439 
1440 static void print_insn(struct bpf_insn *buf, int cnt)
1441 {
1442 	int i;
1443 
1444 	printf("  addr  op d s off  imm\n");
1445 	for (i = 0; i < cnt; ++i) {
1446 		struct bpf_insn *insn = &buf[i];
1447 
1448 		if (is_null_insn(insn))
1449 			break;
1450 
1451 		if (is_skip_insn(insn))
1452 			printf("  ...\n");
1453 		else
1454 			printf("  %04x: %02x %1x %x %04hx %08x\n",
1455 			       i, insn->code, insn->dst_reg,
1456 			       insn->src_reg, insn->off, insn->imm);
1457 	}
1458 }
1459 
1460 static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1461 {
1462 	struct bpf_insn *buf;
1463 	unsigned int cnt;
1464 	bool result = true;
1465 	bool check_expected = !is_null_insn(test->expected_insns);
1466 	bool check_unexpected = !is_null_insn(test->unexpected_insns);
1467 
1468 	if (!check_expected && !check_unexpected)
1469 		goto out;
1470 
1471 	if (get_xlated_program(fd_prog, &buf, &cnt)) {
1472 		printf("FAIL: can't get xlated program\n");
1473 		result = false;
1474 		goto out;
1475 	}
1476 
1477 	if (check_expected &&
1478 	    !find_all_insn_subseqs(buf, test->expected_insns,
1479 				   cnt, MAX_EXPECTED_INSNS)) {
1480 		printf("FAIL: can't find expected subsequence of instructions\n");
1481 		result = false;
1482 		if (verbose) {
1483 			printf("Program:\n");
1484 			print_insn(buf, cnt);
1485 			printf("Expected subsequence:\n");
1486 			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1487 		}
1488 	}
1489 
1490 	if (check_unexpected &&
1491 	    find_all_insn_subseqs(buf, test->unexpected_insns,
1492 				  cnt, MAX_UNEXPECTED_INSNS)) {
1493 		printf("FAIL: found unexpected subsequence of instructions\n");
1494 		result = false;
1495 		if (verbose) {
1496 			printf("Program:\n");
1497 			print_insn(buf, cnt);
1498 			printf("Un-expected subsequence:\n");
1499 			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1500 		}
1501 	}
1502 
1503 	free(buf);
1504  out:
1505 	return result;
1506 }
1507 
1508 static void do_test_single(struct bpf_test *test, bool unpriv,
1509 			   int *passes, int *errors)
1510 {
1511 	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1512 	int prog_len, prog_type = test->prog_type;
1513 	struct bpf_insn *prog = test->insns;
1514 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1515 	int run_errs, run_successes;
1516 	int map_fds[MAX_NR_MAPS];
1517 	const char *expected_err;
1518 	int fd_array[2] = { -1, -1 };
1519 	int saved_errno;
1520 	int fixup_skips;
1521 	__u32 pflags;
1522 	int i, err;
1523 
1524 	if ((test->flags & F_NEEDS_JIT_ENABLED) && jit_disabled) {
1525 		printf("SKIP (requires BPF JIT)\n");
1526 		skips++;
1527 		sched_yield();
1528 		return;
1529 	}
1530 
1531 	fd_prog = -1;
1532 	for (i = 0; i < MAX_NR_MAPS; i++)
1533 		map_fds[i] = -1;
1534 	btf_fd = -1;
1535 
1536 	if (!prog_type)
1537 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1538 	fixup_skips = skips;
1539 	do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]);
1540 	if (test->fill_insns) {
1541 		prog = test->fill_insns;
1542 		prog_len = test->prog_len;
1543 	} else {
1544 		prog_len = probe_filter_length(prog);
1545 	}
1546 	/* If there were some map skips during fixup due to missing bpf
1547 	 * features, skip this test.
1548 	 */
1549 	if (fixup_skips != skips)
1550 		return;
1551 
1552 	pflags = testing_prog_flags();
1553 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1554 		pflags |= BPF_F_STRICT_ALIGNMENT;
1555 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1556 		pflags |= BPF_F_ANY_ALIGNMENT;
1557 	if (test->flags & ~3)
1558 		pflags |= test->flags;
1559 
1560 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1561 		       test->result_unpriv : test->result;
1562 	expected_err = unpriv && test->errstr_unpriv ?
1563 		       test->errstr_unpriv : test->errstr;
1564 
1565 	opts.expected_attach_type = test->expected_attach_type;
1566 	if (verbose)
1567 		opts.log_level = verif_log_level | 4; /* force stats */
1568 	else if (expected_ret == VERBOSE_ACCEPT)
1569 		opts.log_level = 2;
1570 	else
1571 		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1572 	opts.prog_flags = pflags;
1573 	if (fd_array[1] != -1)
1574 		opts.fd_array = &fd_array[0];
1575 
1576 	if ((prog_type == BPF_PROG_TYPE_TRACING ||
1577 	     prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1578 		int attach_btf_id;
1579 
1580 		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1581 						opts.expected_attach_type);
1582 		if (attach_btf_id < 0) {
1583 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1584 				test->kfunc);
1585 			(*errors)++;
1586 			return;
1587 		}
1588 
1589 		opts.attach_btf_id = attach_btf_id;
1590 	}
1591 
1592 	if (test->btf_types[0] != 0) {
1593 		btf_fd = load_btf_for_test(test);
1594 		if (btf_fd < 0)
1595 			goto fail_log;
1596 		opts.prog_btf_fd = btf_fd;
1597 	}
1598 
1599 	if (test->func_info_cnt != 0) {
1600 		opts.func_info = test->func_info;
1601 		opts.func_info_cnt = test->func_info_cnt;
1602 		opts.func_info_rec_size = sizeof(test->func_info[0]);
1603 	}
1604 
1605 	opts.log_buf = bpf_vlog;
1606 	opts.log_size = sizeof(bpf_vlog);
1607 	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1608 	saved_errno = errno;
1609 
1610 	/* BPF_PROG_TYPE_TRACING requires more setup and
1611 	 * bpf_probe_prog_type won't give correct answer
1612 	 */
1613 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1614 	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1615 		printf("SKIP (unsupported program type %d)\n", prog_type);
1616 		skips++;
1617 		goto close_fds;
1618 	}
1619 
1620 	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1621 		printf("SKIP (program uses an unsupported feature)\n");
1622 		skips++;
1623 		goto close_fds;
1624 	}
1625 
1626 	alignment_prevented_execution = 0;
1627 
1628 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1629 		if (fd_prog < 0) {
1630 			printf("FAIL\nFailed to load prog '%s'!\n",
1631 			       strerror(saved_errno));
1632 			goto fail_log;
1633 		}
1634 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1635 		if (fd_prog >= 0 &&
1636 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1637 			alignment_prevented_execution = 1;
1638 #endif
1639 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1640 			goto fail_log;
1641 		}
1642 	} else {
1643 		if (fd_prog >= 0) {
1644 			printf("FAIL\nUnexpected success to load!\n");
1645 			goto fail_log;
1646 		}
1647 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1648 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1649 			      expected_err, bpf_vlog);
1650 			goto fail_log;
1651 		}
1652 	}
1653 
1654 	if (!unpriv && test->insn_processed) {
1655 		uint32_t insn_processed;
1656 		char *proc;
1657 
1658 		proc = strstr(bpf_vlog, "processed ");
1659 		insn_processed = atoi(proc + 10);
1660 		if (test->insn_processed != insn_processed) {
1661 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1662 			       insn_processed, test->insn_processed);
1663 			goto fail_log;
1664 		}
1665 	}
1666 
1667 	if (verbose)
1668 		printf(", verifier log:\n%s", bpf_vlog);
1669 
1670 	if (!check_xlated_program(test, fd_prog))
1671 		goto fail_log;
1672 
1673 	run_errs = 0;
1674 	run_successes = 0;
1675 	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1676 		uint32_t expected_val;
1677 		int i;
1678 
1679 		if (!test->runs)
1680 			test->runs = 1;
1681 
1682 		for (i = 0; i < test->runs; i++) {
1683 			if (unpriv && test->retvals[i].retval_unpriv)
1684 				expected_val = test->retvals[i].retval_unpriv;
1685 			else
1686 				expected_val = test->retvals[i].retval;
1687 
1688 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1689 					       test->retvals[i].data,
1690 					       sizeof(test->retvals[i].data));
1691 			if (err) {
1692 				printf("(run %d/%d) ", i + 1, test->runs);
1693 				run_errs++;
1694 			} else {
1695 				run_successes++;
1696 			}
1697 		}
1698 	}
1699 
1700 	if (!run_errs) {
1701 		(*passes)++;
1702 		if (run_successes > 1)
1703 			printf("%d cases ", run_successes);
1704 		printf("OK");
1705 		if (alignment_prevented_execution)
1706 			printf(" (NOTE: not executed due to unknown alignment)");
1707 		printf("\n");
1708 	} else {
1709 		printf("\n");
1710 		goto fail_log;
1711 	}
1712 close_fds:
1713 	if (test->fill_insns)
1714 		free(test->fill_insns);
1715 	close(fd_prog);
1716 	close(btf_fd);
1717 	for (i = 0; i < MAX_NR_MAPS; i++)
1718 		close(map_fds[i]);
1719 	sched_yield();
1720 	return;
1721 fail_log:
1722 	(*errors)++;
1723 	printf("%s", bpf_vlog);
1724 	goto close_fds;
1725 }
1726 
1727 static bool is_admin(void)
1728 {
1729 	__u64 caps;
1730 
1731 	/* The test checks for finer cap as CAP_NET_ADMIN,
1732 	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1733 	 * Thus, disable CAP_SYS_ADMIN at the beginning.
1734 	 */
1735 	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1736 		perror("cap_disable_effective(CAP_SYS_ADMIN)");
1737 		return false;
1738 	}
1739 
1740 	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1741 }
1742 
1743 static bool test_as_unpriv(struct bpf_test *test)
1744 {
1745 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1746 	/* Some architectures have strict alignment requirements. In
1747 	 * that case, the BPF verifier detects if a program has
1748 	 * unaligned accesses and rejects them. A user can pass
1749 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1750 	 * check. That, however, will only work when a privileged user
1751 	 * loads a program. An unprivileged user loading a program
1752 	 * with this flag will be rejected prior entering the
1753 	 * verifier.
1754 	 */
1755 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1756 		return false;
1757 #endif
1758 	return !test->prog_type ||
1759 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1760 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1761 }
1762 
1763 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1764 {
1765 	int i, passes = 0, errors = 0;
1766 
1767 	/* ensure previous instance of the module is unloaded */
1768 	unload_bpf_testmod(verbose);
1769 
1770 	if (load_bpf_testmod(verbose))
1771 		return EXIT_FAILURE;
1772 
1773 	for (i = from; i < to; i++) {
1774 		struct bpf_test *test = &tests[i];
1775 
1776 		/* Program types that are not supported by non-root we
1777 		 * skip right away.
1778 		 */
1779 		if (test_as_unpriv(test) && unpriv_disabled) {
1780 			printf("#%d/u %s SKIP\n", i, test->descr);
1781 			skips++;
1782 		} else if (test_as_unpriv(test)) {
1783 			if (!unpriv)
1784 				set_admin(false);
1785 			printf("#%d/u %s ", i, test->descr);
1786 			do_test_single(test, true, &passes, &errors);
1787 			if (!unpriv)
1788 				set_admin(true);
1789 		}
1790 
1791 		if (unpriv) {
1792 			printf("#%d/p %s SKIP\n", i, test->descr);
1793 			skips++;
1794 		} else {
1795 			printf("#%d/p %s ", i, test->descr);
1796 			do_test_single(test, false, &passes, &errors);
1797 		}
1798 	}
1799 
1800 	unload_bpf_testmod(verbose);
1801 	kfuncs_cleanup();
1802 
1803 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1804 	       skips, errors);
1805 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1806 }
1807 
1808 int main(int argc, char **argv)
1809 {
1810 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1811 	bool unpriv = !is_admin();
1812 	int arg = 1;
1813 
1814 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1815 		arg++;
1816 		verbose = true;
1817 		verif_log_level = 1;
1818 		argc--;
1819 	}
1820 	if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1821 		arg++;
1822 		verbose = true;
1823 		verif_log_level = 2;
1824 		argc--;
1825 	}
1826 
1827 	if (argc == 3) {
1828 		unsigned int l = atoi(argv[arg]);
1829 		unsigned int u = atoi(argv[arg + 1]);
1830 
1831 		if (l < to && u < to) {
1832 			from = l;
1833 			to   = u + 1;
1834 		}
1835 	} else if (argc == 2) {
1836 		unsigned int t = atoi(argv[arg]);
1837 
1838 		if (t < to) {
1839 			from = t;
1840 			to   = t + 1;
1841 		}
1842 	}
1843 
1844 	unpriv_disabled = get_unpriv_disabled();
1845 	if (unpriv && unpriv_disabled) {
1846 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1847 		       UNPRIV_SYSCTL);
1848 		return EXIT_FAILURE;
1849 	}
1850 
1851 	jit_disabled = !is_jit_enabled();
1852 
1853 	/* Use libbpf 1.0 API mode */
1854 	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1855 
1856 	bpf_semi_rand_init();
1857 	return do_test(unpriv, from, to);
1858 }
1859