1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */ 3 4 #define _GNU_SOURCE 5 #include <limits.h> 6 #include <test_progs.h> 7 #include <linux/filter.h> 8 #include <linux/bpf.h> 9 10 /* ================================= 11 * SHORT AND CONSISTENT NUMBER TYPES 12 * ================================= 13 */ 14 #define U64_MAX ((u64)UINT64_MAX) 15 #define U32_MAX ((u32)UINT_MAX) 16 #define U16_MAX ((u32)UINT_MAX) 17 #define S64_MIN ((s64)INT64_MIN) 18 #define S64_MAX ((s64)INT64_MAX) 19 #define S32_MIN ((s32)INT_MIN) 20 #define S32_MAX ((s32)INT_MAX) 21 #define S16_MIN ((s16)0x80000000) 22 #define S16_MAX ((s16)0x7fffffff) 23 24 typedef unsigned long long ___u64; 25 typedef unsigned int ___u32; 26 typedef long long ___s64; 27 typedef int ___s32; 28 29 /* avoid conflicts with already defined types in kernel headers */ 30 #define u64 ___u64 31 #define u32 ___u32 32 #define s64 ___s64 33 #define s32 ___s32 34 35 /* ================================== 36 * STRING BUF ABSTRACTION AND HELPERS 37 * ================================== 38 */ 39 struct strbuf { 40 size_t buf_sz; 41 int pos; 42 char buf[0]; 43 }; 44 45 #define DEFINE_STRBUF(name, N) \ 46 struct { struct strbuf buf; char data[(N)]; } ___##name; \ 47 struct strbuf *name = (___##name.buf.buf_sz = (N), ___##name.buf.pos = 0, &___##name.buf) 48 49 __printf(2, 3) 50 static inline void snappendf(struct strbuf *s, const char *fmt, ...) 51 { 52 va_list args; 53 54 va_start(args, fmt); 55 s->pos += vsnprintf(s->buf + s->pos, 56 s->pos < s->buf_sz ? s->buf_sz - s->pos : 0, 57 fmt, args); 58 va_end(args); 59 } 60 61 /* ================================== 62 * GENERIC NUMBER TYPE AND OPERATIONS 63 * ================================== 64 */ 65 enum num_t { U64, first_t = U64, U32, S64, S32, last_t = S32 }; 66 67 static __always_inline u64 min_t(enum num_t t, u64 x, u64 y) 68 { 69 switch (t) { 70 case U64: return (u64)x < (u64)y ? (u64)x : (u64)y; 71 case U32: return (u32)x < (u32)y ? (u32)x : (u32)y; 72 case S64: return (s64)x < (s64)y ? (s64)x : (s64)y; 73 case S32: return (s32)x < (s32)y ? (s32)x : (s32)y; 74 default: printf("min_t!\n"); exit(1); 75 } 76 } 77 78 static __always_inline u64 max_t(enum num_t t, u64 x, u64 y) 79 { 80 switch (t) { 81 case U64: return (u64)x > (u64)y ? (u64)x : (u64)y; 82 case U32: return (u32)x > (u32)y ? (u32)x : (u32)y; 83 case S64: return (s64)x > (s64)y ? (s64)x : (s64)y; 84 case S32: return (s32)x > (s32)y ? (u32)(s32)x : (u32)(s32)y; 85 default: printf("max_t!\n"); exit(1); 86 } 87 } 88 89 static __always_inline u64 cast_t(enum num_t t, u64 x) 90 { 91 switch (t) { 92 case U64: return (u64)x; 93 case U32: return (u32)x; 94 case S64: return (s64)x; 95 case S32: return (u32)(s32)x; 96 default: printf("cast_t!\n"); exit(1); 97 } 98 } 99 100 static const char *t_str(enum num_t t) 101 { 102 switch (t) { 103 case U64: return "u64"; 104 case U32: return "u32"; 105 case S64: return "s64"; 106 case S32: return "s32"; 107 default: printf("t_str!\n"); exit(1); 108 } 109 } 110 111 static enum num_t t_is_32(enum num_t t) 112 { 113 switch (t) { 114 case U64: return false; 115 case U32: return true; 116 case S64: return false; 117 case S32: return true; 118 default: printf("t_is_32!\n"); exit(1); 119 } 120 } 121 122 static enum num_t t_signed(enum num_t t) 123 { 124 switch (t) { 125 case U64: return S64; 126 case U32: return S32; 127 case S64: return S64; 128 case S32: return S32; 129 default: printf("t_signed!\n"); exit(1); 130 } 131 } 132 133 static enum num_t t_unsigned(enum num_t t) 134 { 135 switch (t) { 136 case U64: return U64; 137 case U32: return U32; 138 case S64: return U64; 139 case S32: return U32; 140 default: printf("t_unsigned!\n"); exit(1); 141 } 142 } 143 144 #define UNUM_MAX_DECIMAL U16_MAX 145 #define SNUM_MAX_DECIMAL S16_MAX 146 #define SNUM_MIN_DECIMAL S16_MIN 147 148 static bool num_is_small(enum num_t t, u64 x) 149 { 150 switch (t) { 151 case U64: return (u64)x <= UNUM_MAX_DECIMAL; 152 case U32: return (u32)x <= UNUM_MAX_DECIMAL; 153 case S64: return (s64)x >= SNUM_MIN_DECIMAL && (s64)x <= SNUM_MAX_DECIMAL; 154 case S32: return (s32)x >= SNUM_MIN_DECIMAL && (s32)x <= SNUM_MAX_DECIMAL; 155 default: printf("num_is_small!\n"); exit(1); 156 } 157 } 158 159 static void snprintf_num(enum num_t t, struct strbuf *sb, u64 x) 160 { 161 bool is_small = num_is_small(t, x); 162 163 if (is_small) { 164 switch (t) { 165 case U64: return snappendf(sb, "%llu", (u64)x); 166 case U32: return snappendf(sb, "%u", (u32)x); 167 case S64: return snappendf(sb, "%lld", (s64)x); 168 case S32: return snappendf(sb, "%d", (s32)x); 169 default: printf("snprintf_num!\n"); exit(1); 170 } 171 } else { 172 switch (t) { 173 case U64: 174 if (x == U64_MAX) 175 return snappendf(sb, "U64_MAX"); 176 else if (x >= U64_MAX - 256) 177 return snappendf(sb, "U64_MAX-%llu", U64_MAX - x); 178 else 179 return snappendf(sb, "%#llx", (u64)x); 180 case U32: 181 if ((u32)x == U32_MAX) 182 return snappendf(sb, "U32_MAX"); 183 else if ((u32)x >= U32_MAX - 256) 184 return snappendf(sb, "U32_MAX-%u", U32_MAX - (u32)x); 185 else 186 return snappendf(sb, "%#x", (u32)x); 187 case S64: 188 if ((s64)x == S64_MAX) 189 return snappendf(sb, "S64_MAX"); 190 else if ((s64)x >= S64_MAX - 256) 191 return snappendf(sb, "S64_MAX-%lld", S64_MAX - (s64)x); 192 else if ((s64)x == S64_MIN) 193 return snappendf(sb, "S64_MIN"); 194 else if ((s64)x <= S64_MIN + 256) 195 return snappendf(sb, "S64_MIN+%lld", (s64)x - S64_MIN); 196 else 197 return snappendf(sb, "%#llx", (s64)x); 198 case S32: 199 if ((s32)x == S32_MAX) 200 return snappendf(sb, "S32_MAX"); 201 else if ((s32)x >= S32_MAX - 256) 202 return snappendf(sb, "S32_MAX-%d", S32_MAX - (s32)x); 203 else if ((s32)x == S32_MIN) 204 return snappendf(sb, "S32_MIN"); 205 else if ((s32)x <= S32_MIN + 256) 206 return snappendf(sb, "S32_MIN+%d", (s32)x - S32_MIN); 207 else 208 return snappendf(sb, "%#x", (s32)x); 209 default: printf("snprintf_num!\n"); exit(1); 210 } 211 } 212 } 213 214 /* =================================== 215 * GENERIC RANGE STRUCT AND OPERATIONS 216 * =================================== 217 */ 218 struct range { 219 u64 a, b; 220 }; 221 222 static void snprintf_range(enum num_t t, struct strbuf *sb, struct range x) 223 { 224 if (x.a == x.b) 225 return snprintf_num(t, sb, x.a); 226 227 snappendf(sb, "["); 228 snprintf_num(t, sb, x.a); 229 snappendf(sb, "; "); 230 snprintf_num(t, sb, x.b); 231 snappendf(sb, "]"); 232 } 233 234 static void print_range(enum num_t t, struct range x, const char *sfx) 235 { 236 DEFINE_STRBUF(sb, 128); 237 238 snprintf_range(t, sb, x); 239 printf("%s%s", sb->buf, sfx); 240 } 241 242 static const struct range unkn[] = { 243 [U64] = { 0, U64_MAX }, 244 [U32] = { 0, U32_MAX }, 245 [S64] = { (u64)S64_MIN, (u64)S64_MAX }, 246 [S32] = { (u64)(u32)S32_MIN, (u64)(u32)S32_MAX }, 247 }; 248 249 static struct range unkn_subreg(enum num_t t) 250 { 251 switch (t) { 252 case U64: return unkn[U32]; 253 case U32: return unkn[U32]; 254 case S64: return unkn[U32]; 255 case S32: return unkn[S32]; 256 default: printf("unkn_subreg!\n"); exit(1); 257 } 258 } 259 260 static struct range range(enum num_t t, u64 a, u64 b) 261 { 262 switch (t) { 263 case U64: return (struct range){ (u64)a, (u64)b }; 264 case U32: return (struct range){ (u32)a, (u32)b }; 265 case S64: return (struct range){ (s64)a, (s64)b }; 266 case S32: return (struct range){ (u32)(s32)a, (u32)(s32)b }; 267 default: printf("range!\n"); exit(1); 268 } 269 } 270 271 static __always_inline u32 sign64(u64 x) { return (x >> 63) & 1; } 272 static __always_inline u32 sign32(u64 x) { return ((u32)x >> 31) & 1; } 273 static __always_inline u32 upper32(u64 x) { return (u32)(x >> 32); } 274 static __always_inline u64 swap_low32(u64 x, u32 y) { return (x & 0xffffffff00000000ULL) | y; } 275 276 static bool range_eq(struct range x, struct range y) 277 { 278 return x.a == y.a && x.b == y.b; 279 } 280 281 static struct range range_cast_to_s32(struct range x) 282 { 283 u64 a = x.a, b = x.b; 284 285 /* if upper 32 bits are constant, lower 32 bits should form a proper 286 * s32 range to be correct 287 */ 288 if (upper32(a) == upper32(b) && (s32)a <= (s32)b) 289 return range(S32, a, b); 290 291 /* Special case where upper bits form a small sequence of two 292 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 293 * 0x00000000 is also valid), while lower bits form a proper s32 range 294 * going from negative numbers to positive numbers. 295 * 296 * E.g.: [0xfffffff0ffffff00; 0xfffffff100000010]. Iterating 297 * over full 64-bit numbers range will form a proper [-16, 16] 298 * ([0xffffff00; 0x00000010]) range in its lower 32 bits. 299 */ 300 if (upper32(a) + 1 == upper32(b) && (s32)a < 0 && (s32)b >= 0) 301 return range(S32, a, b); 302 303 /* otherwise we can't derive much meaningful information */ 304 return unkn[S32]; 305 } 306 307 static struct range range_cast_u64(enum num_t to_t, struct range x) 308 { 309 u64 a = (u64)x.a, b = (u64)x.b; 310 311 switch (to_t) { 312 case U64: 313 return x; 314 case U32: 315 if (upper32(a) != upper32(b)) 316 return unkn[U32]; 317 return range(U32, a, b); 318 case S64: 319 if (sign64(a) != sign64(b)) 320 return unkn[S64]; 321 return range(S64, a, b); 322 case S32: 323 return range_cast_to_s32(x); 324 default: printf("range_cast_u64!\n"); exit(1); 325 } 326 } 327 328 static struct range range_cast_s64(enum num_t to_t, struct range x) 329 { 330 s64 a = (s64)x.a, b = (s64)x.b; 331 332 switch (to_t) { 333 case U64: 334 /* equivalent to (s64)a <= (s64)b check */ 335 if (sign64(a) != sign64(b)) 336 return unkn[U64]; 337 return range(U64, a, b); 338 case U32: 339 if (upper32(a) != upper32(b) || sign32(a) != sign32(b)) 340 return unkn[U32]; 341 return range(U32, a, b); 342 case S64: 343 return x; 344 case S32: 345 return range_cast_to_s32(x); 346 default: printf("range_cast_s64!\n"); exit(1); 347 } 348 } 349 350 static struct range range_cast_u32(enum num_t to_t, struct range x) 351 { 352 u32 a = (u32)x.a, b = (u32)x.b; 353 354 switch (to_t) { 355 case U64: 356 case S64: 357 /* u32 is always a valid zero-extended u64/s64 */ 358 return range(to_t, a, b); 359 case U32: 360 return x; 361 case S32: 362 return range_cast_to_s32(range(U32, a, b)); 363 default: printf("range_cast_u32!\n"); exit(1); 364 } 365 } 366 367 static struct range range_cast_s32(enum num_t to_t, struct range x) 368 { 369 s32 a = (s32)x.a, b = (s32)x.b; 370 371 switch (to_t) { 372 case U64: 373 case U32: 374 case S64: 375 if (sign32(a) != sign32(b)) 376 return unkn[to_t]; 377 return range(to_t, a, b); 378 case S32: 379 return x; 380 default: printf("range_cast_s32!\n"); exit(1); 381 } 382 } 383 384 /* Reinterpret range in *from_t* domain as a range in *to_t* domain preserving 385 * all possible information. Worst case, it will be unknown range within 386 * *to_t* domain, if nothing more specific can be guaranteed during the 387 * conversion 388 */ 389 static struct range range_cast(enum num_t from_t, enum num_t to_t, struct range from) 390 { 391 switch (from_t) { 392 case U64: return range_cast_u64(to_t, from); 393 case U32: return range_cast_u32(to_t, from); 394 case S64: return range_cast_s64(to_t, from); 395 case S32: return range_cast_s32(to_t, from); 396 default: printf("range_cast!\n"); exit(1); 397 } 398 } 399 400 static bool is_valid_num(enum num_t t, u64 x) 401 { 402 switch (t) { 403 case U64: return true; 404 case U32: return upper32(x) == 0; 405 case S64: return true; 406 case S32: return upper32(x) == 0; 407 default: printf("is_valid_num!\n"); exit(1); 408 } 409 } 410 411 static bool is_valid_range(enum num_t t, struct range x) 412 { 413 if (!is_valid_num(t, x.a) || !is_valid_num(t, x.b)) 414 return false; 415 416 switch (t) { 417 case U64: return (u64)x.a <= (u64)x.b; 418 case U32: return (u32)x.a <= (u32)x.b; 419 case S64: return (s64)x.a <= (s64)x.b; 420 case S32: return (s32)x.a <= (s32)x.b; 421 default: printf("is_valid_range!\n"); exit(1); 422 } 423 } 424 425 static struct range range_improve(enum num_t t, struct range old, struct range new) 426 { 427 return range(t, max_t(t, old.a, new.a), min_t(t, old.b, new.b)); 428 } 429 430 static struct range range_refine(enum num_t x_t, struct range x, enum num_t y_t, struct range y) 431 { 432 struct range y_cast; 433 434 y_cast = range_cast(y_t, x_t, y); 435 436 /* the case when new range knowledge, *y*, is a 32-bit subregister 437 * range, while previous range knowledge, *x*, is a full register 438 * 64-bit range, needs special treatment to take into account upper 32 439 * bits of full register range 440 */ 441 if (t_is_32(y_t) && !t_is_32(x_t)) { 442 struct range x_swap; 443 444 /* some combinations of upper 32 bits and sign bit can lead to 445 * invalid ranges, in such cases it's easier to detect them 446 * after cast/swap than try to enumerate all the conditions 447 * under which transformation and knowledge transfer is valid 448 */ 449 x_swap = range(x_t, swap_low32(x.a, y_cast.a), swap_low32(x.b, y_cast.b)); 450 if (!is_valid_range(x_t, x_swap)) 451 return x; 452 return range_improve(x_t, x, x_swap); 453 } 454 455 /* otherwise, plain range cast and intersection works */ 456 return range_improve(x_t, x, y_cast); 457 } 458 459 /* ======================= 460 * GENERIC CONDITIONAL OPS 461 * ======================= 462 */ 463 enum op { OP_LT, OP_LE, OP_GT, OP_GE, OP_EQ, OP_NE, first_op = OP_LT, last_op = OP_NE }; 464 465 static enum op complement_op(enum op op) 466 { 467 switch (op) { 468 case OP_LT: return OP_GE; 469 case OP_LE: return OP_GT; 470 case OP_GT: return OP_LE; 471 case OP_GE: return OP_LT; 472 case OP_EQ: return OP_NE; 473 case OP_NE: return OP_EQ; 474 default: printf("complement_op!\n"); exit(1); 475 } 476 } 477 478 static const char *op_str(enum op op) 479 { 480 switch (op) { 481 case OP_LT: return "<"; 482 case OP_LE: return "<="; 483 case OP_GT: return ">"; 484 case OP_GE: return ">="; 485 case OP_EQ: return "=="; 486 case OP_NE: return "!="; 487 default: printf("op_str!\n"); exit(1); 488 } 489 } 490 491 /* Can register with range [x.a, x.b] *EVER* satisfy 492 * OP (<, <=, >, >=, ==, !=) relation to 493 * a regsiter with range [y.a, y.b] 494 * _in *num_t* domain_ 495 */ 496 static bool range_canbe_op(enum num_t t, struct range x, struct range y, enum op op) 497 { 498 #define range_canbe(T) do { \ 499 switch (op) { \ 500 case OP_LT: return (T)x.a < (T)y.b; \ 501 case OP_LE: return (T)x.a <= (T)y.b; \ 502 case OP_GT: return (T)x.b > (T)y.a; \ 503 case OP_GE: return (T)x.b >= (T)y.a; \ 504 case OP_EQ: return (T)max_t(t, x.a, y.a) <= (T)min_t(t, x.b, y.b); \ 505 case OP_NE: return !((T)x.a == (T)x.b && (T)y.a == (T)y.b && (T)x.a == (T)y.a); \ 506 default: printf("range_canbe op %d\n", op); exit(1); \ 507 } \ 508 } while (0) 509 510 switch (t) { 511 case U64: { range_canbe(u64); } 512 case U32: { range_canbe(u32); } 513 case S64: { range_canbe(s64); } 514 case S32: { range_canbe(s32); } 515 default: printf("range_canbe!\n"); exit(1); 516 } 517 #undef range_canbe 518 } 519 520 /* Does register with range [x.a, x.b] *ALWAYS* satisfy 521 * OP (<, <=, >, >=, ==, !=) relation to 522 * a regsiter with range [y.a, y.b] 523 * _in *num_t* domain_ 524 */ 525 static bool range_always_op(enum num_t t, struct range x, struct range y, enum op op) 526 { 527 /* always op <=> ! canbe complement(op) */ 528 return !range_canbe_op(t, x, y, complement_op(op)); 529 } 530 531 /* Does register with range [x.a, x.b] *NEVER* satisfy 532 * OP (<, <=, >, >=, ==, !=) relation to 533 * a regsiter with range [y.a, y.b] 534 * _in *num_t* domain_ 535 */ 536 static bool range_never_op(enum num_t t, struct range x, struct range y, enum op op) 537 { 538 return !range_canbe_op(t, x, y, op); 539 } 540 541 /* similar to verifier's is_branch_taken(): 542 * 1 - always taken; 543 * 0 - never taken, 544 * -1 - unsure. 545 */ 546 static int range_branch_taken_op(enum num_t t, struct range x, struct range y, enum op op) 547 { 548 if (range_always_op(t, x, y, op)) 549 return 1; 550 if (range_never_op(t, x, y, op)) 551 return 0; 552 return -1; 553 } 554 555 /* What would be the new estimates for register x and y ranges assuming truthful 556 * OP comparison between them. I.e., (x OP y == true) => x <- newx, y <- newy. 557 * 558 * We assume "interesting" cases where ranges overlap. Cases where it's 559 * obvious that (x OP y) is either always true or false should be filtered with 560 * range_never and range_always checks. 561 */ 562 static void range_cond(enum num_t t, struct range x, struct range y, 563 enum op op, struct range *newx, struct range *newy) 564 { 565 if (!range_canbe_op(t, x, y, op)) { 566 /* nothing to adjust, can't happen, return original values */ 567 *newx = x; 568 *newy = y; 569 return; 570 } 571 switch (op) { 572 case OP_LT: 573 *newx = range(t, x.a, min_t(t, x.b, y.b - 1)); 574 *newy = range(t, max_t(t, x.a + 1, y.a), y.b); 575 break; 576 case OP_LE: 577 *newx = range(t, x.a, min_t(t, x.b, y.b)); 578 *newy = range(t, max_t(t, x.a, y.a), y.b); 579 break; 580 case OP_GT: 581 *newx = range(t, max_t(t, x.a, y.a + 1), x.b); 582 *newy = range(t, y.a, min_t(t, x.b - 1, y.b)); 583 break; 584 case OP_GE: 585 *newx = range(t, max_t(t, x.a, y.a), x.b); 586 *newy = range(t, y.a, min_t(t, x.b, y.b)); 587 break; 588 case OP_EQ: 589 *newx = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b)); 590 *newy = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b)); 591 break; 592 case OP_NE: 593 /* below logic is supported by the verifier now */ 594 if (x.a == x.b && x.a == y.a) { 595 /* X is a constant matching left side of Y */ 596 *newx = range(t, x.a, x.b); 597 *newy = range(t, y.a + 1, y.b); 598 } else if (x.a == x.b && x.b == y.b) { 599 /* X is a constant matching rigth side of Y */ 600 *newx = range(t, x.a, x.b); 601 *newy = range(t, y.a, y.b - 1); 602 } else if (y.a == y.b && x.a == y.a) { 603 /* Y is a constant matching left side of X */ 604 *newx = range(t, x.a + 1, x.b); 605 *newy = range(t, y.a, y.b); 606 } else if (y.a == y.b && x.b == y.b) { 607 /* Y is a constant matching rigth side of X */ 608 *newx = range(t, x.a, x.b - 1); 609 *newy = range(t, y.a, y.b); 610 } else { 611 /* generic case, can't derive more information */ 612 *newx = range(t, x.a, x.b); 613 *newy = range(t, y.a, y.b); 614 } 615 616 break; 617 default: 618 break; 619 } 620 } 621 622 /* ======================= 623 * REGISTER STATE HANDLING 624 * ======================= 625 */ 626 struct reg_state { 627 struct range r[4]; /* indexed by enum num_t: U64, U32, S64, S32 */ 628 bool valid; 629 }; 630 631 static void print_reg_state(struct reg_state *r, const char *sfx) 632 { 633 DEFINE_STRBUF(sb, 512); 634 enum num_t t; 635 int cnt = 0; 636 637 if (!r->valid) { 638 printf("<not found>%s", sfx); 639 return; 640 } 641 642 snappendf(sb, "scalar("); 643 for (t = first_t; t <= last_t; t++) { 644 snappendf(sb, "%s%s=", cnt++ ? "," : "", t_str(t)); 645 snprintf_range(t, sb, r->r[t]); 646 } 647 snappendf(sb, ")"); 648 649 printf("%s%s", sb->buf, sfx); 650 } 651 652 static void print_refinement(enum num_t s_t, struct range src, 653 enum num_t d_t, struct range old, struct range new, 654 const char *ctx) 655 { 656 printf("REFINING (%s) (%s)SRC=", ctx, t_str(s_t)); 657 print_range(s_t, src, ""); 658 printf(" (%s)DST_OLD=", t_str(d_t)); 659 print_range(d_t, old, ""); 660 printf(" (%s)DST_NEW=", t_str(d_t)); 661 print_range(d_t, new, "\n"); 662 } 663 664 static void reg_state_refine(struct reg_state *r, enum num_t t, struct range x, const char *ctx) 665 { 666 enum num_t d_t, s_t; 667 struct range old; 668 bool keep_going = false; 669 670 again: 671 /* try to derive new knowledge from just learned range x of type t */ 672 for (d_t = first_t; d_t <= last_t; d_t++) { 673 old = r->r[d_t]; 674 r->r[d_t] = range_refine(d_t, r->r[d_t], t, x); 675 if (!range_eq(r->r[d_t], old)) { 676 keep_going = true; 677 if (env.verbosity >= VERBOSE_VERY) 678 print_refinement(t, x, d_t, old, r->r[d_t], ctx); 679 } 680 } 681 682 /* now see if we can derive anything new from updated reg_state's ranges */ 683 for (s_t = first_t; s_t <= last_t; s_t++) { 684 for (d_t = first_t; d_t <= last_t; d_t++) { 685 old = r->r[d_t]; 686 r->r[d_t] = range_refine(d_t, r->r[d_t], s_t, r->r[s_t]); 687 if (!range_eq(r->r[d_t], old)) { 688 keep_going = true; 689 if (env.verbosity >= VERBOSE_VERY) 690 print_refinement(s_t, r->r[s_t], d_t, old, r->r[d_t], ctx); 691 } 692 } 693 } 694 695 /* keep refining until we converge */ 696 if (keep_going) { 697 keep_going = false; 698 goto again; 699 } 700 } 701 702 static void reg_state_set_const(struct reg_state *rs, enum num_t t, u64 val) 703 { 704 enum num_t tt; 705 706 rs->valid = true; 707 for (tt = first_t; tt <= last_t; tt++) 708 rs->r[tt] = tt == t ? range(t, val, val) : unkn[tt]; 709 710 reg_state_refine(rs, t, rs->r[t], "CONST"); 711 } 712 713 static void reg_state_cond(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op, 714 struct reg_state *newx, struct reg_state *newy, const char *ctx) 715 { 716 char buf[32]; 717 enum num_t ts[2]; 718 struct reg_state xx = *x, yy = *y; 719 int i, t_cnt; 720 struct range z1, z2; 721 722 if (op == OP_EQ || op == OP_NE) { 723 /* OP_EQ and OP_NE are sign-agnostic, so we need to process 724 * both signed and unsigned domains at the same time 725 */ 726 ts[0] = t_unsigned(t); 727 ts[1] = t_signed(t); 728 t_cnt = 2; 729 } else { 730 ts[0] = t; 731 t_cnt = 1; 732 } 733 734 for (i = 0; i < t_cnt; i++) { 735 t = ts[i]; 736 z1 = x->r[t]; 737 z2 = y->r[t]; 738 739 range_cond(t, z1, z2, op, &z1, &z2); 740 741 if (newx) { 742 snprintf(buf, sizeof(buf), "%s R1", ctx); 743 reg_state_refine(&xx, t, z1, buf); 744 } 745 if (newy) { 746 snprintf(buf, sizeof(buf), "%s R2", ctx); 747 reg_state_refine(&yy, t, z2, buf); 748 } 749 } 750 751 if (newx) 752 *newx = xx; 753 if (newy) 754 *newy = yy; 755 } 756 757 static int reg_state_branch_taken_op(enum num_t t, struct reg_state *x, struct reg_state *y, 758 enum op op) 759 { 760 if (op == OP_EQ || op == OP_NE) { 761 /* OP_EQ and OP_NE are sign-agnostic */ 762 enum num_t tu = t_unsigned(t); 763 enum num_t ts = t_signed(t); 764 int br_u, br_s, br; 765 766 br_u = range_branch_taken_op(tu, x->r[tu], y->r[tu], op); 767 br_s = range_branch_taken_op(ts, x->r[ts], y->r[ts], op); 768 769 if (br_u >= 0 && br_s >= 0 && br_u != br_s) 770 ASSERT_FALSE(true, "branch taken inconsistency!\n"); 771 772 /* if 64-bit ranges are indecisive, use 32-bit subranges to 773 * eliminate always/never taken branches, if possible 774 */ 775 if (br_u == -1 && (t == U64 || t == S64)) { 776 br = range_branch_taken_op(U32, x->r[U32], y->r[U32], op); 777 /* we can only reject for OP_EQ, never take branch 778 * based on lower 32 bits 779 */ 780 if (op == OP_EQ && br == 0) 781 return 0; 782 /* for OP_NEQ we can be conclusive only if lower 32 bits 783 * differ and thus inequality branch is always taken 784 */ 785 if (op == OP_NE && br == 1) 786 return 1; 787 788 br = range_branch_taken_op(S32, x->r[S32], y->r[S32], op); 789 if (op == OP_EQ && br == 0) 790 return 0; 791 if (op == OP_NE && br == 1) 792 return 1; 793 } 794 795 return br_u >= 0 ? br_u : br_s; 796 } 797 return range_branch_taken_op(t, x->r[t], y->r[t], op); 798 } 799 800 /* ===================================== 801 * BPF PROGS GENERATION AND VERIFICATION 802 * ===================================== 803 */ 804 struct case_spec { 805 /* whether to init full register (r1) or sub-register (w1) */ 806 bool init_subregs; 807 /* whether to establish initial value range on full register (r1) or 808 * sub-register (w1) 809 */ 810 bool setup_subregs; 811 /* whether to establish initial value range using signed or unsigned 812 * comparisons (i.e., initialize umin/umax or smin/smax directly) 813 */ 814 bool setup_signed; 815 /* whether to perform comparison on full registers or sub-registers */ 816 bool compare_subregs; 817 /* whether to perform comparison using signed or unsigned operations */ 818 bool compare_signed; 819 }; 820 821 /* Generate test BPF program based on provided test ranges, operation, and 822 * specifications about register bitness and signedness. 823 */ 824 static int load_range_cmp_prog(struct range x, struct range y, enum op op, 825 int branch_taken, struct case_spec spec, 826 char *log_buf, size_t log_sz, 827 int *false_pos, int *true_pos) 828 { 829 #define emit(insn) ({ \ 830 struct bpf_insn __insns[] = { insn }; \ 831 int __i; \ 832 for (__i = 0; __i < ARRAY_SIZE(__insns); __i++) \ 833 insns[cur_pos + __i] = __insns[__i]; \ 834 cur_pos += __i; \ 835 }) 836 #define JMP_TO(target) (target - cur_pos - 1) 837 int cur_pos = 0, exit_pos, fd, op_code; 838 struct bpf_insn insns[64]; 839 LIBBPF_OPTS(bpf_prog_load_opts, opts, 840 .log_level = 2, 841 .log_buf = log_buf, 842 .log_size = log_sz, 843 .prog_flags = BPF_F_TEST_REG_INVARIANTS, 844 ); 845 846 /* ; skip exit block below 847 * goto +2; 848 */ 849 emit(BPF_JMP_A(2)); 850 exit_pos = cur_pos; 851 /* ; exit block for all the preparatory conditionals 852 * out: 853 * r0 = 0; 854 * exit; 855 */ 856 emit(BPF_MOV64_IMM(BPF_REG_0, 0)); 857 emit(BPF_EXIT_INSN()); 858 /* 859 * ; assign r6/w6 and r7/w7 unpredictable u64/u32 value 860 * call bpf_get_current_pid_tgid; 861 * r6 = r0; | w6 = w0; 862 * call bpf_get_current_pid_tgid; 863 * r7 = r0; | w7 = w0; 864 */ 865 emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid)); 866 if (spec.init_subregs) 867 emit(BPF_MOV32_REG(BPF_REG_6, BPF_REG_0)); 868 else 869 emit(BPF_MOV64_REG(BPF_REG_6, BPF_REG_0)); 870 emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid)); 871 if (spec.init_subregs) 872 emit(BPF_MOV32_REG(BPF_REG_7, BPF_REG_0)); 873 else 874 emit(BPF_MOV64_REG(BPF_REG_7, BPF_REG_0)); 875 /* ; setup initial r6/w6 possible value range ([x.a, x.b]) 876 * r1 = %[x.a] ll; | w1 = %[x.a]; 877 * r2 = %[x.b] ll; | w2 = %[x.b]; 878 * if r6 < r1 goto out; | if w6 < w1 goto out; 879 * if r6 > r2 goto out; | if w6 > w2 goto out; 880 */ 881 if (spec.setup_subregs) { 882 emit(BPF_MOV32_IMM(BPF_REG_1, (s32)x.a)); 883 emit(BPF_MOV32_IMM(BPF_REG_2, (s32)x.b)); 884 emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, 885 BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos))); 886 emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, 887 BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos))); 888 } else { 889 emit(BPF_LD_IMM64(BPF_REG_1, x.a)); 890 emit(BPF_LD_IMM64(BPF_REG_2, x.b)); 891 emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, 892 BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos))); 893 emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, 894 BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos))); 895 } 896 /* ; setup initial r7/w7 possible value range ([y.a, y.b]) 897 * r1 = %[y.a] ll; | w1 = %[y.a]; 898 * r2 = %[y.b] ll; | w2 = %[y.b]; 899 * if r7 < r1 goto out; | if w7 < w1 goto out; 900 * if r7 > r2 goto out; | if w7 > w2 goto out; 901 */ 902 if (spec.setup_subregs) { 903 emit(BPF_MOV32_IMM(BPF_REG_1, (s32)y.a)); 904 emit(BPF_MOV32_IMM(BPF_REG_2, (s32)y.b)); 905 emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, 906 BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos))); 907 emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, 908 BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos))); 909 } else { 910 emit(BPF_LD_IMM64(BPF_REG_1, y.a)); 911 emit(BPF_LD_IMM64(BPF_REG_2, y.b)); 912 emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT, 913 BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos))); 914 emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT, 915 BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos))); 916 } 917 /* ; range test instruction 918 * if r6 <op> r7 goto +3; | if w6 <op> w7 goto +3; 919 */ 920 switch (op) { 921 case OP_LT: op_code = spec.compare_signed ? BPF_JSLT : BPF_JLT; break; 922 case OP_LE: op_code = spec.compare_signed ? BPF_JSLE : BPF_JLE; break; 923 case OP_GT: op_code = spec.compare_signed ? BPF_JSGT : BPF_JGT; break; 924 case OP_GE: op_code = spec.compare_signed ? BPF_JSGE : BPF_JGE; break; 925 case OP_EQ: op_code = BPF_JEQ; break; 926 case OP_NE: op_code = BPF_JNE; break; 927 default: 928 printf("unrecognized op %d\n", op); 929 return -ENOTSUP; 930 } 931 /* ; BEFORE conditional, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably 932 * ; this is used for debugging, as verifier doesn't always print 933 * ; registers states as of condition jump instruction (e.g., when 934 * ; precision marking happens) 935 * r0 = r6; | w0 = w6; 936 * r0 = r7; | w0 = w7; 937 */ 938 if (spec.compare_subregs) { 939 emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); 940 emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); 941 } else { 942 emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); 943 emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); 944 } 945 if (spec.compare_subregs) 946 emit(BPF_JMP32_REG(op_code, BPF_REG_6, BPF_REG_7, 3)); 947 else 948 emit(BPF_JMP_REG(op_code, BPF_REG_6, BPF_REG_7, 3)); 949 /* ; FALSE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably 950 * r0 = r6; | w0 = w6; 951 * r0 = r7; | w0 = w7; 952 * exit; 953 */ 954 *false_pos = cur_pos; 955 if (spec.compare_subregs) { 956 emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); 957 emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); 958 } else { 959 emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); 960 emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); 961 } 962 if (branch_taken == 1) /* false branch is never taken */ 963 emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */ 964 else 965 emit(BPF_EXIT_INSN()); 966 /* ; TRUE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably 967 * r0 = r6; | w0 = w6; 968 * r0 = r7; | w0 = w7; 969 * exit; 970 */ 971 *true_pos = cur_pos; 972 if (spec.compare_subregs) { 973 emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6)); 974 emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7)); 975 } else { 976 emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6)); 977 emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); 978 } 979 if (branch_taken == 0) /* true branch is never taken */ 980 emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */ 981 emit(BPF_EXIT_INSN()); /* last instruction has to be exit */ 982 983 fd = bpf_prog_load(BPF_PROG_TYPE_RAW_TRACEPOINT, "reg_bounds_test", 984 "GPL", insns, cur_pos, &opts); 985 if (fd < 0) 986 return fd; 987 988 close(fd); 989 return 0; 990 #undef emit 991 #undef JMP_TO 992 } 993 994 #define str_has_pfx(str, pfx) (strncmp(str, pfx, strlen(pfx)) == 0) 995 996 /* Parse register state from verifier log. 997 * `s` should point to the start of "Rx = ..." substring in the verifier log. 998 */ 999 static int parse_reg_state(const char *s, struct reg_state *reg) 1000 { 1001 /* There are two generic forms for SCALAR register: 1002 * - known constant: R6_rwD=P%lld 1003 * - range: R6_rwD=scalar(id=1,...), where "..." is a comma-separated 1004 * list of optional range specifiers: 1005 * - umin=%llu, if missing, assumed 0; 1006 * - umax=%llu, if missing, assumed U64_MAX; 1007 * - smin=%lld, if missing, assumed S64_MIN; 1008 * - smax=%lld, if missing, assummed S64_MAX; 1009 * - umin32=%d, if missing, assumed 0; 1010 * - umax32=%d, if missing, assumed U32_MAX; 1011 * - smin32=%d, if missing, assumed S32_MIN; 1012 * - smax32=%d, if missing, assummed S32_MAX; 1013 * - var_off=(%#llx; %#llx), tnum part, we don't care about it. 1014 * 1015 * If some of the values are equal, they will be grouped (but min/max 1016 * are not mixed together, and similarly negative values are not 1017 * grouped with non-negative ones). E.g.: 1018 * 1019 * R6_w=Pscalar(smin=smin32=0, smax=umax=umax32=1000) 1020 * 1021 * _rwD part is optional (and any of the letters can be missing). 1022 * P (precision mark) is optional as well. 1023 * 1024 * Anything inside scalar() is optional, including id, of course. 1025 */ 1026 struct { 1027 const char *pfx; 1028 u64 *dst, def; 1029 bool is_32, is_set; 1030 } *f, fields[8] = { 1031 {"smin=", ®->r[S64].a, S64_MIN}, 1032 {"smax=", ®->r[S64].b, S64_MAX}, 1033 {"umin=", ®->r[U64].a, 0}, 1034 {"umax=", ®->r[U64].b, U64_MAX}, 1035 {"smin32=", ®->r[S32].a, (u32)S32_MIN, true}, 1036 {"smax32=", ®->r[S32].b, (u32)S32_MAX, true}, 1037 {"umin32=", ®->r[U32].a, 0, true}, 1038 {"umax32=", ®->r[U32].b, U32_MAX, true}, 1039 }; 1040 const char *p; 1041 int i; 1042 1043 p = strchr(s, '='); 1044 if (!p) 1045 return -EINVAL; 1046 p++; 1047 if (*p == 'P') 1048 p++; 1049 1050 if (!str_has_pfx(p, "scalar(")) { 1051 long long sval; 1052 enum num_t t; 1053 1054 if (p[0] == '0' && p[1] == 'x') { 1055 if (sscanf(p, "%llx", &sval) != 1) 1056 return -EINVAL; 1057 } else { 1058 if (sscanf(p, "%lld", &sval) != 1) 1059 return -EINVAL; 1060 } 1061 1062 reg->valid = true; 1063 for (t = first_t; t <= last_t; t++) { 1064 reg->r[t] = range(t, sval, sval); 1065 } 1066 return 0; 1067 } 1068 1069 p += sizeof("scalar"); 1070 while (p) { 1071 int midxs[ARRAY_SIZE(fields)], mcnt = 0; 1072 u64 val; 1073 1074 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1075 f = &fields[i]; 1076 if (!str_has_pfx(p, f->pfx)) 1077 continue; 1078 midxs[mcnt++] = i; 1079 p += strlen(f->pfx); 1080 } 1081 1082 if (mcnt) { 1083 /* populate all matched fields */ 1084 if (p[0] == '0' && p[1] == 'x') { 1085 if (sscanf(p, "%llx", &val) != 1) 1086 return -EINVAL; 1087 } else { 1088 if (sscanf(p, "%lld", &val) != 1) 1089 return -EINVAL; 1090 } 1091 1092 for (i = 0; i < mcnt; i++) { 1093 f = &fields[midxs[i]]; 1094 f->is_set = true; 1095 *f->dst = f->is_32 ? (u64)(u32)val : val; 1096 } 1097 } else if (str_has_pfx(p, "var_off")) { 1098 /* skip "var_off=(0x0; 0x3f)" part completely */ 1099 p = strchr(p, ')'); 1100 if (!p) 1101 return -EINVAL; 1102 p++; 1103 } 1104 1105 p = strpbrk(p, ",)"); 1106 if (*p == ')') 1107 break; 1108 if (p) 1109 p++; 1110 } 1111 1112 reg->valid = true; 1113 1114 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1115 f = &fields[i]; 1116 if (!f->is_set) 1117 *f->dst = f->def; 1118 } 1119 1120 return 0; 1121 } 1122 1123 1124 /* Parse all register states (TRUE/FALSE branches and DST/SRC registers) 1125 * out of the verifier log for a corresponding test case BPF program. 1126 */ 1127 static int parse_range_cmp_log(const char *log_buf, struct case_spec spec, 1128 int false_pos, int true_pos, 1129 struct reg_state *false1_reg, struct reg_state *false2_reg, 1130 struct reg_state *true1_reg, struct reg_state *true2_reg) 1131 { 1132 struct { 1133 int insn_idx; 1134 int reg_idx; 1135 const char *reg_upper; 1136 struct reg_state *state; 1137 } specs[] = { 1138 {false_pos, 6, "R6=", false1_reg}, 1139 {false_pos + 1, 7, "R7=", false2_reg}, 1140 {true_pos, 6, "R6=", true1_reg}, 1141 {true_pos + 1, 7, "R7=", true2_reg}, 1142 }; 1143 char buf[32]; 1144 const char *p = log_buf, *q; 1145 int i, err; 1146 1147 for (i = 0; i < 4; i++) { 1148 sprintf(buf, "%d: (%s) %s = %s%d", specs[i].insn_idx, 1149 spec.compare_subregs ? "bc" : "bf", 1150 spec.compare_subregs ? "w0" : "r0", 1151 spec.compare_subregs ? "w" : "r", specs[i].reg_idx); 1152 1153 q = strstr(p, buf); 1154 if (!q) { 1155 *specs[i].state = (struct reg_state){.valid = false}; 1156 continue; 1157 } 1158 p = strstr(q, specs[i].reg_upper); 1159 if (!p) 1160 return -EINVAL; 1161 err = parse_reg_state(p, specs[i].state); 1162 if (err) 1163 return -EINVAL; 1164 } 1165 return 0; 1166 } 1167 1168 /* Validate ranges match, and print details if they don't */ 1169 static bool assert_range_eq(enum num_t t, struct range x, struct range y, 1170 const char *ctx1, const char *ctx2) 1171 { 1172 DEFINE_STRBUF(sb, 512); 1173 1174 if (range_eq(x, y)) 1175 return true; 1176 1177 snappendf(sb, "MISMATCH %s.%s: ", ctx1, ctx2); 1178 snprintf_range(t, sb, x); 1179 snappendf(sb, " != "); 1180 snprintf_range(t, sb, y); 1181 1182 printf("%s\n", sb->buf); 1183 1184 return false; 1185 } 1186 1187 /* Validate that register states match, and print details if they don't */ 1188 static bool assert_reg_state_eq(struct reg_state *r, struct reg_state *e, const char *ctx) 1189 { 1190 bool ok = true; 1191 enum num_t t; 1192 1193 if (r->valid != e->valid) { 1194 printf("MISMATCH %s: actual %s != expected %s\n", ctx, 1195 r->valid ? "<valid>" : "<invalid>", 1196 e->valid ? "<valid>" : "<invalid>"); 1197 return false; 1198 } 1199 1200 if (!r->valid) 1201 return true; 1202 1203 for (t = first_t; t <= last_t; t++) { 1204 if (!assert_range_eq(t, r->r[t], e->r[t], ctx, t_str(t))) 1205 ok = false; 1206 } 1207 1208 return ok; 1209 } 1210 1211 /* Printf verifier log, filtering out irrelevant noise */ 1212 static void print_verifier_log(const char *buf) 1213 { 1214 const char *p; 1215 1216 while (buf[0]) { 1217 p = strchrnul(buf, '\n'); 1218 1219 /* filter out irrelevant precision backtracking logs */ 1220 if (str_has_pfx(buf, "mark_precise: ")) 1221 goto skip_line; 1222 1223 printf("%.*s\n", (int)(p - buf), buf); 1224 1225 skip_line: 1226 buf = *p == '\0' ? p : p + 1; 1227 } 1228 } 1229 1230 /* Simulate provided test case purely with our own range-based logic. 1231 * This is done to set up expectations for verifier's branch_taken logic and 1232 * verifier's register states in the verifier log. 1233 */ 1234 static void sim_case(enum num_t init_t, enum num_t cond_t, 1235 struct range x, struct range y, enum op op, 1236 struct reg_state *fr1, struct reg_state *fr2, 1237 struct reg_state *tr1, struct reg_state *tr2, 1238 int *branch_taken) 1239 { 1240 const u64 A = x.a; 1241 const u64 B = x.b; 1242 const u64 C = y.a; 1243 const u64 D = y.b; 1244 struct reg_state rc; 1245 enum op rev_op = complement_op(op); 1246 enum num_t t; 1247 1248 fr1->valid = fr2->valid = true; 1249 tr1->valid = tr2->valid = true; 1250 for (t = first_t; t <= last_t; t++) { 1251 /* if we are initializing using 32-bit subregisters, 1252 * full registers get upper 32 bits zeroed automatically 1253 */ 1254 struct range z = t_is_32(init_t) ? unkn_subreg(t) : unkn[t]; 1255 1256 fr1->r[t] = fr2->r[t] = tr1->r[t] = tr2->r[t] = z; 1257 } 1258 1259 /* step 1: r1 >= A, r2 >= C */ 1260 reg_state_set_const(&rc, init_t, A); 1261 reg_state_cond(init_t, fr1, &rc, OP_GE, fr1, NULL, "r1>=A"); 1262 reg_state_set_const(&rc, init_t, C); 1263 reg_state_cond(init_t, fr2, &rc, OP_GE, fr2, NULL, "r2>=C"); 1264 *tr1 = *fr1; 1265 *tr2 = *fr2; 1266 if (env.verbosity >= VERBOSE_VERY) { 1267 printf("STEP1 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n"); 1268 printf("STEP1 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n"); 1269 } 1270 1271 /* step 2: r1 <= B, r2 <= D */ 1272 reg_state_set_const(&rc, init_t, B); 1273 reg_state_cond(init_t, fr1, &rc, OP_LE, fr1, NULL, "r1<=B"); 1274 reg_state_set_const(&rc, init_t, D); 1275 reg_state_cond(init_t, fr2, &rc, OP_LE, fr2, NULL, "r2<=D"); 1276 *tr1 = *fr1; 1277 *tr2 = *fr2; 1278 if (env.verbosity >= VERBOSE_VERY) { 1279 printf("STEP2 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n"); 1280 printf("STEP2 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n"); 1281 } 1282 1283 /* step 3: r1 <op> r2 */ 1284 *branch_taken = reg_state_branch_taken_op(cond_t, fr1, fr2, op); 1285 fr1->valid = fr2->valid = false; 1286 tr1->valid = tr2->valid = false; 1287 if (*branch_taken != 1) { /* FALSE is possible */ 1288 fr1->valid = fr2->valid = true; 1289 reg_state_cond(cond_t, fr1, fr2, rev_op, fr1, fr2, "FALSE"); 1290 } 1291 if (*branch_taken != 0) { /* TRUE is possible */ 1292 tr1->valid = tr2->valid = true; 1293 reg_state_cond(cond_t, tr1, tr2, op, tr1, tr2, "TRUE"); 1294 } 1295 if (env.verbosity >= VERBOSE_VERY) { 1296 printf("STEP3 (%s) FALSE R1:", t_str(cond_t)); print_reg_state(fr1, "\n"); 1297 printf("STEP3 (%s) FALSE R2:", t_str(cond_t)); print_reg_state(fr2, "\n"); 1298 printf("STEP3 (%s) TRUE R1:", t_str(cond_t)); print_reg_state(tr1, "\n"); 1299 printf("STEP3 (%s) TRUE R2:", t_str(cond_t)); print_reg_state(tr2, "\n"); 1300 } 1301 } 1302 1303 /* =============================== 1304 * HIGH-LEVEL TEST CASE VALIDATION 1305 * =============================== 1306 */ 1307 static u32 upper_seeds[] = { 1308 0, 1309 1, 1310 U32_MAX, 1311 U32_MAX - 1, 1312 S32_MAX, 1313 (u32)S32_MIN, 1314 }; 1315 1316 static u32 lower_seeds[] = { 1317 0, 1318 1, 1319 2, (u32)-2, 1320 255, (u32)-255, 1321 UINT_MAX, 1322 UINT_MAX - 1, 1323 INT_MAX, 1324 (u32)INT_MIN, 1325 }; 1326 1327 struct ctx { 1328 int val_cnt, subval_cnt, range_cnt, subrange_cnt; 1329 u64 uvals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)]; 1330 s64 svals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)]; 1331 u32 usubvals[ARRAY_SIZE(lower_seeds)]; 1332 s32 ssubvals[ARRAY_SIZE(lower_seeds)]; 1333 struct range *uranges, *sranges; 1334 struct range *usubranges, *ssubranges; 1335 int max_failure_cnt, cur_failure_cnt; 1336 int total_case_cnt, case_cnt; 1337 int rand_case_cnt; 1338 unsigned rand_seed; 1339 __u64 start_ns; 1340 char progress_ctx[64]; 1341 }; 1342 1343 static void cleanup_ctx(struct ctx *ctx) 1344 { 1345 free(ctx->uranges); 1346 free(ctx->sranges); 1347 free(ctx->usubranges); 1348 free(ctx->ssubranges); 1349 } 1350 1351 struct subtest_case { 1352 enum num_t init_t; 1353 enum num_t cond_t; 1354 struct range x; 1355 struct range y; 1356 enum op op; 1357 }; 1358 1359 static void subtest_case_str(struct strbuf *sb, struct subtest_case *t, bool use_op) 1360 { 1361 snappendf(sb, "(%s)", t_str(t->init_t)); 1362 snprintf_range(t->init_t, sb, t->x); 1363 snappendf(sb, " (%s)%s ", t_str(t->cond_t), use_op ? op_str(t->op) : "<op>"); 1364 snprintf_range(t->init_t, sb, t->y); 1365 } 1366 1367 /* Generate and validate test case based on specific combination of setup 1368 * register ranges (including their expected num_t domain), and conditional 1369 * operation to perform (including num_t domain in which it has to be 1370 * performed) 1371 */ 1372 static int verify_case_op(enum num_t init_t, enum num_t cond_t, 1373 struct range x, struct range y, enum op op) 1374 { 1375 char log_buf[256 * 1024]; 1376 size_t log_sz = sizeof(log_buf); 1377 int err, false_pos = 0, true_pos = 0, branch_taken; 1378 struct reg_state fr1, fr2, tr1, tr2; 1379 struct reg_state fe1, fe2, te1, te2; 1380 bool failed = false; 1381 struct case_spec spec = { 1382 .init_subregs = (init_t == U32 || init_t == S32), 1383 .setup_subregs = (init_t == U32 || init_t == S32), 1384 .setup_signed = (init_t == S64 || init_t == S32), 1385 .compare_subregs = (cond_t == U32 || cond_t == S32), 1386 .compare_signed = (cond_t == S64 || cond_t == S32), 1387 }; 1388 1389 log_buf[0] = '\0'; 1390 1391 sim_case(init_t, cond_t, x, y, op, &fe1, &fe2, &te1, &te2, &branch_taken); 1392 1393 err = load_range_cmp_prog(x, y, op, branch_taken, spec, 1394 log_buf, log_sz, &false_pos, &true_pos); 1395 if (err) { 1396 ASSERT_OK(err, "load_range_cmp_prog"); 1397 failed = true; 1398 } 1399 1400 err = parse_range_cmp_log(log_buf, spec, false_pos, true_pos, 1401 &fr1, &fr2, &tr1, &tr2); 1402 if (err) { 1403 ASSERT_OK(err, "parse_range_cmp_log"); 1404 failed = true; 1405 } 1406 1407 if (!assert_reg_state_eq(&fr1, &fe1, "false_reg1") || 1408 !assert_reg_state_eq(&fr2, &fe2, "false_reg2") || 1409 !assert_reg_state_eq(&tr1, &te1, "true_reg1") || 1410 !assert_reg_state_eq(&tr2, &te2, "true_reg2")) { 1411 failed = true; 1412 } 1413 1414 if (failed || env.verbosity >= VERBOSE_NORMAL) { 1415 if (failed || env.verbosity >= VERBOSE_VERY) { 1416 printf("VERIFIER LOG:\n========================\n"); 1417 print_verifier_log(log_buf); 1418 printf("=====================\n"); 1419 } 1420 printf("ACTUAL FALSE1: "); print_reg_state(&fr1, "\n"); 1421 printf("EXPECTED FALSE1: "); print_reg_state(&fe1, "\n"); 1422 printf("ACTUAL FALSE2: "); print_reg_state(&fr2, "\n"); 1423 printf("EXPECTED FALSE2: "); print_reg_state(&fe2, "\n"); 1424 printf("ACTUAL TRUE1: "); print_reg_state(&tr1, "\n"); 1425 printf("EXPECTED TRUE1: "); print_reg_state(&te1, "\n"); 1426 printf("ACTUAL TRUE2: "); print_reg_state(&tr2, "\n"); 1427 printf("EXPECTED TRUE2: "); print_reg_state(&te2, "\n"); 1428 1429 return failed ? -EINVAL : 0; 1430 } 1431 1432 return 0; 1433 } 1434 1435 /* Given setup ranges and number types, go over all supported operations, 1436 * generating individual subtest for each allowed combination 1437 */ 1438 static int verify_case_opt(struct ctx *ctx, enum num_t init_t, enum num_t cond_t, 1439 struct range x, struct range y, bool is_subtest) 1440 { 1441 DEFINE_STRBUF(sb, 256); 1442 int err; 1443 struct subtest_case sub = { 1444 .init_t = init_t, 1445 .cond_t = cond_t, 1446 .x = x, 1447 .y = y, 1448 }; 1449 1450 sb->pos = 0; /* reset position in strbuf */ 1451 subtest_case_str(sb, &sub, false /* ignore op */); 1452 if (is_subtest && !test__start_subtest(sb->buf)) 1453 return 0; 1454 1455 for (sub.op = first_op; sub.op <= last_op; sub.op++) { 1456 sb->pos = 0; /* reset position in strbuf */ 1457 subtest_case_str(sb, &sub, true /* print op */); 1458 1459 if (env.verbosity >= VERBOSE_NORMAL) /* this speeds up debugging */ 1460 printf("TEST CASE: %s\n", sb->buf); 1461 1462 err = verify_case_op(init_t, cond_t, x, y, sub.op); 1463 if (err || env.verbosity >= VERBOSE_NORMAL) 1464 ASSERT_OK(err, sb->buf); 1465 if (err) { 1466 ctx->cur_failure_cnt++; 1467 if (ctx->cur_failure_cnt > ctx->max_failure_cnt) 1468 return err; 1469 return 0; /* keep testing other cases */ 1470 } 1471 ctx->case_cnt++; 1472 if ((ctx->case_cnt % 10000) == 0) { 1473 double progress = (ctx->case_cnt + 0.0) / ctx->total_case_cnt; 1474 u64 elapsed_ns = get_time_ns() - ctx->start_ns; 1475 double remain_ns = elapsed_ns / progress * (1 - progress); 1476 1477 fprintf(env.stderr, "PROGRESS (%s): %d/%d (%.2lf%%), " 1478 "elapsed %llu mins (%.2lf hrs), " 1479 "ETA %.0lf mins (%.2lf hrs)\n", 1480 ctx->progress_ctx, 1481 ctx->case_cnt, ctx->total_case_cnt, 100.0 * progress, 1482 elapsed_ns / 1000000000 / 60, 1483 elapsed_ns / 1000000000.0 / 3600, 1484 remain_ns / 1000000000.0 / 60, 1485 remain_ns / 1000000000.0 / 3600); 1486 } 1487 } 1488 1489 return 0; 1490 } 1491 1492 static int verify_case(struct ctx *ctx, enum num_t init_t, enum num_t cond_t, 1493 struct range x, struct range y) 1494 { 1495 return verify_case_opt(ctx, init_t, cond_t, x, y, true /* is_subtest */); 1496 } 1497 1498 /* ================================ 1499 * GENERATED CASES FROM SEED VALUES 1500 * ================================ 1501 */ 1502 static int u64_cmp(const void *p1, const void *p2) 1503 { 1504 u64 x1 = *(const u64 *)p1, x2 = *(const u64 *)p2; 1505 1506 return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; 1507 } 1508 1509 static int u32_cmp(const void *p1, const void *p2) 1510 { 1511 u32 x1 = *(const u32 *)p1, x2 = *(const u32 *)p2; 1512 1513 return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; 1514 } 1515 1516 static int s64_cmp(const void *p1, const void *p2) 1517 { 1518 s64 x1 = *(const s64 *)p1, x2 = *(const s64 *)p2; 1519 1520 return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; 1521 } 1522 1523 static int s32_cmp(const void *p1, const void *p2) 1524 { 1525 s32 x1 = *(const s32 *)p1, x2 = *(const s32 *)p2; 1526 1527 return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0; 1528 } 1529 1530 /* Generate valid unique constants from seeds, both signed and unsigned */ 1531 static void gen_vals(struct ctx *ctx) 1532 { 1533 int i, j, cnt = 0; 1534 1535 for (i = 0; i < ARRAY_SIZE(upper_seeds); i++) { 1536 for (j = 0; j < ARRAY_SIZE(lower_seeds); j++) { 1537 ctx->uvals[cnt++] = (((u64)upper_seeds[i]) << 32) | lower_seeds[j]; 1538 } 1539 } 1540 1541 /* sort and compact uvals (i.e., it's `sort | uniq`) */ 1542 qsort(ctx->uvals, cnt, sizeof(*ctx->uvals), u64_cmp); 1543 for (i = 1, j = 0; i < cnt; i++) { 1544 if (ctx->uvals[j] == ctx->uvals[i]) 1545 continue; 1546 j++; 1547 ctx->uvals[j] = ctx->uvals[i]; 1548 } 1549 ctx->val_cnt = j + 1; 1550 1551 /* we have exactly the same number of s64 values, they are just in 1552 * a different order than u64s, so just sort them differently 1553 */ 1554 for (i = 0; i < ctx->val_cnt; i++) 1555 ctx->svals[i] = ctx->uvals[i]; 1556 qsort(ctx->svals, ctx->val_cnt, sizeof(*ctx->svals), s64_cmp); 1557 1558 if (env.verbosity >= VERBOSE_SUPER) { 1559 DEFINE_STRBUF(sb1, 256); 1560 DEFINE_STRBUF(sb2, 256); 1561 1562 for (i = 0; i < ctx->val_cnt; i++) { 1563 sb1->pos = sb2->pos = 0; 1564 snprintf_num(U64, sb1, ctx->uvals[i]); 1565 snprintf_num(S64, sb2, ctx->svals[i]); 1566 printf("SEED #%d: u64=%-20s s64=%-20s\n", i, sb1->buf, sb2->buf); 1567 } 1568 } 1569 1570 /* 32-bit values are generated separately */ 1571 cnt = 0; 1572 for (i = 0; i < ARRAY_SIZE(lower_seeds); i++) { 1573 ctx->usubvals[cnt++] = lower_seeds[i]; 1574 } 1575 1576 /* sort and compact usubvals (i.e., it's `sort | uniq`) */ 1577 qsort(ctx->usubvals, cnt, sizeof(*ctx->usubvals), u32_cmp); 1578 for (i = 1, j = 0; i < cnt; i++) { 1579 if (ctx->usubvals[j] == ctx->usubvals[i]) 1580 continue; 1581 j++; 1582 ctx->usubvals[j] = ctx->usubvals[i]; 1583 } 1584 ctx->subval_cnt = j + 1; 1585 1586 for (i = 0; i < ctx->subval_cnt; i++) 1587 ctx->ssubvals[i] = ctx->usubvals[i]; 1588 qsort(ctx->ssubvals, ctx->subval_cnt, sizeof(*ctx->ssubvals), s32_cmp); 1589 1590 if (env.verbosity >= VERBOSE_SUPER) { 1591 DEFINE_STRBUF(sb1, 256); 1592 DEFINE_STRBUF(sb2, 256); 1593 1594 for (i = 0; i < ctx->subval_cnt; i++) { 1595 sb1->pos = sb2->pos = 0; 1596 snprintf_num(U32, sb1, ctx->usubvals[i]); 1597 snprintf_num(S32, sb2, ctx->ssubvals[i]); 1598 printf("SUBSEED #%d: u32=%-10s s32=%-10s\n", i, sb1->buf, sb2->buf); 1599 } 1600 } 1601 } 1602 1603 /* Generate valid ranges from upper/lower seeds */ 1604 static int gen_ranges(struct ctx *ctx) 1605 { 1606 int i, j, cnt = 0; 1607 1608 for (i = 0; i < ctx->val_cnt; i++) { 1609 for (j = i; j < ctx->val_cnt; j++) { 1610 if (env.verbosity >= VERBOSE_SUPER) { 1611 DEFINE_STRBUF(sb1, 256); 1612 DEFINE_STRBUF(sb2, 256); 1613 1614 sb1->pos = sb2->pos = 0; 1615 snprintf_range(U64, sb1, range(U64, ctx->uvals[i], ctx->uvals[j])); 1616 snprintf_range(S64, sb2, range(S64, ctx->svals[i], ctx->svals[j])); 1617 printf("RANGE #%d: u64=%-40s s64=%-40s\n", cnt, sb1->buf, sb2->buf); 1618 } 1619 cnt++; 1620 } 1621 } 1622 ctx->range_cnt = cnt; 1623 1624 ctx->uranges = calloc(ctx->range_cnt, sizeof(*ctx->uranges)); 1625 if (!ASSERT_OK_PTR(ctx->uranges, "uranges_calloc")) 1626 return -EINVAL; 1627 ctx->sranges = calloc(ctx->range_cnt, sizeof(*ctx->sranges)); 1628 if (!ASSERT_OK_PTR(ctx->sranges, "sranges_calloc")) 1629 return -EINVAL; 1630 1631 cnt = 0; 1632 for (i = 0; i < ctx->val_cnt; i++) { 1633 for (j = i; j < ctx->val_cnt; j++) { 1634 ctx->uranges[cnt] = range(U64, ctx->uvals[i], ctx->uvals[j]); 1635 ctx->sranges[cnt] = range(S64, ctx->svals[i], ctx->svals[j]); 1636 cnt++; 1637 } 1638 } 1639 1640 cnt = 0; 1641 for (i = 0; i < ctx->subval_cnt; i++) { 1642 for (j = i; j < ctx->subval_cnt; j++) { 1643 if (env.verbosity >= VERBOSE_SUPER) { 1644 DEFINE_STRBUF(sb1, 256); 1645 DEFINE_STRBUF(sb2, 256); 1646 1647 sb1->pos = sb2->pos = 0; 1648 snprintf_range(U32, sb1, range(U32, ctx->usubvals[i], ctx->usubvals[j])); 1649 snprintf_range(S32, sb2, range(S32, ctx->ssubvals[i], ctx->ssubvals[j])); 1650 printf("SUBRANGE #%d: u32=%-20s s32=%-20s\n", cnt, sb1->buf, sb2->buf); 1651 } 1652 cnt++; 1653 } 1654 } 1655 ctx->subrange_cnt = cnt; 1656 1657 ctx->usubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->usubranges)); 1658 if (!ASSERT_OK_PTR(ctx->usubranges, "usubranges_calloc")) 1659 return -EINVAL; 1660 ctx->ssubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->ssubranges)); 1661 if (!ASSERT_OK_PTR(ctx->ssubranges, "ssubranges_calloc")) 1662 return -EINVAL; 1663 1664 cnt = 0; 1665 for (i = 0; i < ctx->subval_cnt; i++) { 1666 for (j = i; j < ctx->subval_cnt; j++) { 1667 ctx->usubranges[cnt] = range(U32, ctx->usubvals[i], ctx->usubvals[j]); 1668 ctx->ssubranges[cnt] = range(S32, ctx->ssubvals[i], ctx->ssubvals[j]); 1669 cnt++; 1670 } 1671 } 1672 1673 return 0; 1674 } 1675 1676 static int parse_env_vars(struct ctx *ctx) 1677 { 1678 const char *s; 1679 1680 if ((s = getenv("REG_BOUNDS_MAX_FAILURE_CNT"))) { 1681 errno = 0; 1682 ctx->max_failure_cnt = strtol(s, NULL, 10); 1683 if (errno || ctx->max_failure_cnt < 0) { 1684 ASSERT_OK(-errno, "REG_BOUNDS_MAX_FAILURE_CNT"); 1685 return -EINVAL; 1686 } 1687 } 1688 1689 if ((s = getenv("REG_BOUNDS_RAND_CASE_CNT"))) { 1690 errno = 0; 1691 ctx->rand_case_cnt = strtol(s, NULL, 10); 1692 if (errno || ctx->rand_case_cnt < 0) { 1693 ASSERT_OK(-errno, "REG_BOUNDS_RAND_CASE_CNT"); 1694 return -EINVAL; 1695 } 1696 } 1697 1698 if ((s = getenv("REG_BOUNDS_RAND_SEED"))) { 1699 errno = 0; 1700 ctx->rand_seed = strtoul(s, NULL, 10); 1701 if (errno) { 1702 ASSERT_OK(-errno, "REG_BOUNDS_RAND_SEED"); 1703 return -EINVAL; 1704 } 1705 } 1706 1707 return 0; 1708 } 1709 1710 static int prepare_gen_tests(struct ctx *ctx) 1711 { 1712 const char *s; 1713 int err; 1714 1715 if (!(s = getenv("SLOW_TESTS")) || strcmp(s, "1") != 0) { 1716 test__skip(); 1717 return -ENOTSUP; 1718 } 1719 1720 err = parse_env_vars(ctx); 1721 if (err) 1722 return err; 1723 1724 gen_vals(ctx); 1725 err = gen_ranges(ctx); 1726 if (err) { 1727 ASSERT_OK(err, "gen_ranges"); 1728 return err; 1729 } 1730 1731 return 0; 1732 } 1733 1734 /* Go over generated constants and ranges and validate various supported 1735 * combinations of them 1736 */ 1737 static void validate_gen_range_vs_const_64(enum num_t init_t, enum num_t cond_t) 1738 { 1739 struct ctx ctx; 1740 struct range rconst; 1741 const struct range *ranges; 1742 const u64 *vals; 1743 int i, j; 1744 1745 memset(&ctx, 0, sizeof(ctx)); 1746 1747 if (prepare_gen_tests(&ctx)) 1748 goto cleanup; 1749 1750 ranges = init_t == U64 ? ctx.uranges : ctx.sranges; 1751 vals = init_t == U64 ? ctx.uvals : (const u64 *)ctx.svals; 1752 1753 ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.range_cnt * ctx.val_cnt); 1754 ctx.start_ns = get_time_ns(); 1755 snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), 1756 "RANGE x CONST, %s -> %s", 1757 t_str(init_t), t_str(cond_t)); 1758 1759 for (i = 0; i < ctx.val_cnt; i++) { 1760 for (j = 0; j < ctx.range_cnt; j++) { 1761 rconst = range(init_t, vals[i], vals[i]); 1762 1763 /* (u64|s64)(<range> x <const>) */ 1764 if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst)) 1765 goto cleanup; 1766 /* (u64|s64)(<const> x <range>) */ 1767 if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j])) 1768 goto cleanup; 1769 } 1770 } 1771 1772 cleanup: 1773 cleanup_ctx(&ctx); 1774 } 1775 1776 static void validate_gen_range_vs_const_32(enum num_t init_t, enum num_t cond_t) 1777 { 1778 struct ctx ctx; 1779 struct range rconst; 1780 const struct range *ranges; 1781 const u32 *vals; 1782 int i, j; 1783 1784 memset(&ctx, 0, sizeof(ctx)); 1785 1786 if (prepare_gen_tests(&ctx)) 1787 goto cleanup; 1788 1789 ranges = init_t == U32 ? ctx.usubranges : ctx.ssubranges; 1790 vals = init_t == U32 ? ctx.usubvals : (const u32 *)ctx.ssubvals; 1791 1792 ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.subrange_cnt * ctx.subval_cnt); 1793 ctx.start_ns = get_time_ns(); 1794 snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), 1795 "RANGE x CONST, %s -> %s", 1796 t_str(init_t), t_str(cond_t)); 1797 1798 for (i = 0; i < ctx.subval_cnt; i++) { 1799 for (j = 0; j < ctx.subrange_cnt; j++) { 1800 rconst = range(init_t, vals[i], vals[i]); 1801 1802 /* (u32|s32)(<range> x <const>) */ 1803 if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst)) 1804 goto cleanup; 1805 /* (u32|s32)(<const> x <range>) */ 1806 if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j])) 1807 goto cleanup; 1808 } 1809 } 1810 1811 cleanup: 1812 cleanup_ctx(&ctx); 1813 } 1814 1815 static void validate_gen_range_vs_range(enum num_t init_t, enum num_t cond_t) 1816 { 1817 struct ctx ctx; 1818 const struct range *ranges; 1819 int i, j, rcnt; 1820 1821 memset(&ctx, 0, sizeof(ctx)); 1822 1823 if (prepare_gen_tests(&ctx)) 1824 goto cleanup; 1825 1826 switch (init_t) 1827 { 1828 case U64: 1829 ranges = ctx.uranges; 1830 rcnt = ctx.range_cnt; 1831 break; 1832 case U32: 1833 ranges = ctx.usubranges; 1834 rcnt = ctx.subrange_cnt; 1835 break; 1836 case S64: 1837 ranges = ctx.sranges; 1838 rcnt = ctx.range_cnt; 1839 break; 1840 case S32: 1841 ranges = ctx.ssubranges; 1842 rcnt = ctx.subrange_cnt; 1843 break; 1844 default: 1845 printf("validate_gen_range_vs_range!\n"); 1846 exit(1); 1847 } 1848 1849 ctx.total_case_cnt = (last_op - first_op + 1) * (2 * rcnt * (rcnt + 1) / 2); 1850 ctx.start_ns = get_time_ns(); 1851 snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), 1852 "RANGE x RANGE, %s -> %s", 1853 t_str(init_t), t_str(cond_t)); 1854 1855 for (i = 0; i < rcnt; i++) { 1856 for (j = i; j < rcnt; j++) { 1857 /* (<range> x <range>) */ 1858 if (verify_case(&ctx, init_t, cond_t, ranges[i], ranges[j])) 1859 goto cleanup; 1860 if (verify_case(&ctx, init_t, cond_t, ranges[j], ranges[i])) 1861 goto cleanup; 1862 } 1863 } 1864 1865 cleanup: 1866 cleanup_ctx(&ctx); 1867 } 1868 1869 /* Go over thousands of test cases generated from initial seed values. 1870 * Given this take a long time, guard this begind SLOW_TESTS=1 envvar. If 1871 * envvar is not set, this test is skipped during test_progs testing. 1872 * 1873 * We split this up into smaller subsets based on initialization and 1874 * conditiona numeric domains to get an easy parallelization with test_progs' 1875 * -j argument. 1876 */ 1877 1878 /* RANGE x CONST, U64 initial range */ 1879 void test_reg_bounds_gen_consts_u64_u64(void) { validate_gen_range_vs_const_64(U64, U64); } 1880 void test_reg_bounds_gen_consts_u64_s64(void) { validate_gen_range_vs_const_64(U64, S64); } 1881 void test_reg_bounds_gen_consts_u64_u32(void) { validate_gen_range_vs_const_64(U64, U32); } 1882 void test_reg_bounds_gen_consts_u64_s32(void) { validate_gen_range_vs_const_64(U64, S32); } 1883 /* RANGE x CONST, S64 initial range */ 1884 void test_reg_bounds_gen_consts_s64_u64(void) { validate_gen_range_vs_const_64(S64, U64); } 1885 void test_reg_bounds_gen_consts_s64_s64(void) { validate_gen_range_vs_const_64(S64, S64); } 1886 void test_reg_bounds_gen_consts_s64_u32(void) { validate_gen_range_vs_const_64(S64, U32); } 1887 void test_reg_bounds_gen_consts_s64_s32(void) { validate_gen_range_vs_const_64(S64, S32); } 1888 /* RANGE x CONST, U32 initial range */ 1889 void test_reg_bounds_gen_consts_u32_u64(void) { validate_gen_range_vs_const_32(U32, U64); } 1890 void test_reg_bounds_gen_consts_u32_s64(void) { validate_gen_range_vs_const_32(U32, S64); } 1891 void test_reg_bounds_gen_consts_u32_u32(void) { validate_gen_range_vs_const_32(U32, U32); } 1892 void test_reg_bounds_gen_consts_u32_s32(void) { validate_gen_range_vs_const_32(U32, S32); } 1893 /* RANGE x CONST, S32 initial range */ 1894 void test_reg_bounds_gen_consts_s32_u64(void) { validate_gen_range_vs_const_32(S32, U64); } 1895 void test_reg_bounds_gen_consts_s32_s64(void) { validate_gen_range_vs_const_32(S32, S64); } 1896 void test_reg_bounds_gen_consts_s32_u32(void) { validate_gen_range_vs_const_32(S32, U32); } 1897 void test_reg_bounds_gen_consts_s32_s32(void) { validate_gen_range_vs_const_32(S32, S32); } 1898 1899 /* RANGE x RANGE, U64 initial range */ 1900 void test_reg_bounds_gen_ranges_u64_u64(void) { validate_gen_range_vs_range(U64, U64); } 1901 void test_reg_bounds_gen_ranges_u64_s64(void) { validate_gen_range_vs_range(U64, S64); } 1902 void test_reg_bounds_gen_ranges_u64_u32(void) { validate_gen_range_vs_range(U64, U32); } 1903 void test_reg_bounds_gen_ranges_u64_s32(void) { validate_gen_range_vs_range(U64, S32); } 1904 /* RANGE x RANGE, S64 initial range */ 1905 void test_reg_bounds_gen_ranges_s64_u64(void) { validate_gen_range_vs_range(S64, U64); } 1906 void test_reg_bounds_gen_ranges_s64_s64(void) { validate_gen_range_vs_range(S64, S64); } 1907 void test_reg_bounds_gen_ranges_s64_u32(void) { validate_gen_range_vs_range(S64, U32); } 1908 void test_reg_bounds_gen_ranges_s64_s32(void) { validate_gen_range_vs_range(S64, S32); } 1909 /* RANGE x RANGE, U32 initial range */ 1910 void test_reg_bounds_gen_ranges_u32_u64(void) { validate_gen_range_vs_range(U32, U64); } 1911 void test_reg_bounds_gen_ranges_u32_s64(void) { validate_gen_range_vs_range(U32, S64); } 1912 void test_reg_bounds_gen_ranges_u32_u32(void) { validate_gen_range_vs_range(U32, U32); } 1913 void test_reg_bounds_gen_ranges_u32_s32(void) { validate_gen_range_vs_range(U32, S32); } 1914 /* RANGE x RANGE, S32 initial range */ 1915 void test_reg_bounds_gen_ranges_s32_u64(void) { validate_gen_range_vs_range(S32, U64); } 1916 void test_reg_bounds_gen_ranges_s32_s64(void) { validate_gen_range_vs_range(S32, S64); } 1917 void test_reg_bounds_gen_ranges_s32_u32(void) { validate_gen_range_vs_range(S32, U32); } 1918 void test_reg_bounds_gen_ranges_s32_s32(void) { validate_gen_range_vs_range(S32, S32); } 1919 1920 #define DEFAULT_RAND_CASE_CNT 100 1921 1922 #define RAND_21BIT_MASK ((1 << 22) - 1) 1923 1924 static u64 rand_u64() 1925 { 1926 /* RAND_MAX is guaranteed to be at least 1<<15, but in practice it 1927 * seems to be 1<<31, so we need to call it thrice to get full u64; 1928 * we'll use rougly equal split: 22 + 21 + 21 bits 1929 */ 1930 return ((u64)random() << 42) | 1931 (((u64)random() & RAND_21BIT_MASK) << 21) | 1932 (random() & RAND_21BIT_MASK); 1933 } 1934 1935 static u64 rand_const(enum num_t t) 1936 { 1937 return cast_t(t, rand_u64()); 1938 } 1939 1940 static struct range rand_range(enum num_t t) 1941 { 1942 u64 x = rand_const(t), y = rand_const(t); 1943 1944 return range(t, min_t(t, x, y), max_t(t, x, y)); 1945 } 1946 1947 static void validate_rand_ranges(enum num_t init_t, enum num_t cond_t, bool const_range) 1948 { 1949 struct ctx ctx; 1950 struct range range1, range2; 1951 int err, i; 1952 u64 t; 1953 1954 memset(&ctx, 0, sizeof(ctx)); 1955 1956 err = parse_env_vars(&ctx); 1957 if (err) { 1958 ASSERT_OK(err, "parse_env_vars"); 1959 return; 1960 } 1961 1962 if (ctx.rand_case_cnt == 0) 1963 ctx.rand_case_cnt = DEFAULT_RAND_CASE_CNT; 1964 if (ctx.rand_seed == 0) 1965 ctx.rand_seed = (unsigned)get_time_ns(); 1966 1967 srandom(ctx.rand_seed); 1968 1969 ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.rand_case_cnt); 1970 ctx.start_ns = get_time_ns(); 1971 snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx), 1972 "[RANDOM SEED %u] RANGE x %s, %s -> %s", 1973 ctx.rand_seed, const_range ? "CONST" : "RANGE", 1974 t_str(init_t), t_str(cond_t)); 1975 1976 for (i = 0; i < ctx.rand_case_cnt; i++) { 1977 range1 = rand_range(init_t); 1978 if (const_range) { 1979 t = rand_const(init_t); 1980 range2 = range(init_t, t, t); 1981 } else { 1982 range2 = rand_range(init_t); 1983 } 1984 1985 /* <range1> x <range2> */ 1986 if (verify_case_opt(&ctx, init_t, cond_t, range1, range2, false /* !is_subtest */)) 1987 goto cleanup; 1988 /* <range2> x <range1> */ 1989 if (verify_case_opt(&ctx, init_t, cond_t, range2, range1, false /* !is_subtest */)) 1990 goto cleanup; 1991 } 1992 1993 cleanup: 1994 /* make sure we report random seed for reproducing */ 1995 ASSERT_TRUE(true, ctx.progress_ctx); 1996 cleanup_ctx(&ctx); 1997 } 1998 1999 /* [RANDOM] RANGE x CONST, U64 initial range */ 2000 void test_reg_bounds_rand_consts_u64_u64(void) { validate_rand_ranges(U64, U64, true /* const */); } 2001 void test_reg_bounds_rand_consts_u64_s64(void) { validate_rand_ranges(U64, S64, true /* const */); } 2002 void test_reg_bounds_rand_consts_u64_u32(void) { validate_rand_ranges(U64, U32, true /* const */); } 2003 void test_reg_bounds_rand_consts_u64_s32(void) { validate_rand_ranges(U64, S32, true /* const */); } 2004 /* [RANDOM] RANGE x CONST, S64 initial range */ 2005 void test_reg_bounds_rand_consts_s64_u64(void) { validate_rand_ranges(S64, U64, true /* const */); } 2006 void test_reg_bounds_rand_consts_s64_s64(void) { validate_rand_ranges(S64, S64, true /* const */); } 2007 void test_reg_bounds_rand_consts_s64_u32(void) { validate_rand_ranges(S64, U32, true /* const */); } 2008 void test_reg_bounds_rand_consts_s64_s32(void) { validate_rand_ranges(S64, S32, true /* const */); } 2009 /* [RANDOM] RANGE x CONST, U32 initial range */ 2010 void test_reg_bounds_rand_consts_u32_u64(void) { validate_rand_ranges(U32, U64, true /* const */); } 2011 void test_reg_bounds_rand_consts_u32_s64(void) { validate_rand_ranges(U32, S64, true /* const */); } 2012 void test_reg_bounds_rand_consts_u32_u32(void) { validate_rand_ranges(U32, U32, true /* const */); } 2013 void test_reg_bounds_rand_consts_u32_s32(void) { validate_rand_ranges(U32, S32, true /* const */); } 2014 /* [RANDOM] RANGE x CONST, S32 initial range */ 2015 void test_reg_bounds_rand_consts_s32_u64(void) { validate_rand_ranges(S32, U64, true /* const */); } 2016 void test_reg_bounds_rand_consts_s32_s64(void) { validate_rand_ranges(S32, S64, true /* const */); } 2017 void test_reg_bounds_rand_consts_s32_u32(void) { validate_rand_ranges(S32, U32, true /* const */); } 2018 void test_reg_bounds_rand_consts_s32_s32(void) { validate_rand_ranges(S32, S32, true /* const */); } 2019 2020 /* [RANDOM] RANGE x RANGE, U64 initial range */ 2021 void test_reg_bounds_rand_ranges_u64_u64(void) { validate_rand_ranges(U64, U64, false /* range */); } 2022 void test_reg_bounds_rand_ranges_u64_s64(void) { validate_rand_ranges(U64, S64, false /* range */); } 2023 void test_reg_bounds_rand_ranges_u64_u32(void) { validate_rand_ranges(U64, U32, false /* range */); } 2024 void test_reg_bounds_rand_ranges_u64_s32(void) { validate_rand_ranges(U64, S32, false /* range */); } 2025 /* [RANDOM] RANGE x RANGE, S64 initial range */ 2026 void test_reg_bounds_rand_ranges_s64_u64(void) { validate_rand_ranges(S64, U64, false /* range */); } 2027 void test_reg_bounds_rand_ranges_s64_s64(void) { validate_rand_ranges(S64, S64, false /* range */); } 2028 void test_reg_bounds_rand_ranges_s64_u32(void) { validate_rand_ranges(S64, U32, false /* range */); } 2029 void test_reg_bounds_rand_ranges_s64_s32(void) { validate_rand_ranges(S64, S32, false /* range */); } 2030 /* [RANDOM] RANGE x RANGE, U32 initial range */ 2031 void test_reg_bounds_rand_ranges_u32_u64(void) { validate_rand_ranges(U32, U64, false /* range */); } 2032 void test_reg_bounds_rand_ranges_u32_s64(void) { validate_rand_ranges(U32, S64, false /* range */); } 2033 void test_reg_bounds_rand_ranges_u32_u32(void) { validate_rand_ranges(U32, U32, false /* range */); } 2034 void test_reg_bounds_rand_ranges_u32_s32(void) { validate_rand_ranges(U32, S32, false /* range */); } 2035 /* [RANDOM] RANGE x RANGE, S32 initial range */ 2036 void test_reg_bounds_rand_ranges_s32_u64(void) { validate_rand_ranges(S32, U64, false /* range */); } 2037 void test_reg_bounds_rand_ranges_s32_s64(void) { validate_rand_ranges(S32, S64, false /* range */); } 2038 void test_reg_bounds_rand_ranges_s32_u32(void) { validate_rand_ranges(S32, U32, false /* range */); } 2039 void test_reg_bounds_rand_ranges_s32_s32(void) { validate_rand_ranges(S32, S32, false /* range */); } 2040 2041 /* A set of hard-coded "interesting" cases to validate as part of normal 2042 * test_progs test runs 2043 */ 2044 static struct subtest_case crafted_cases[] = { 2045 {U64, U64, {0, 0xffffffff}, {0, 0}}, 2046 {U64, U64, {0, 0x80000000}, {0, 0}}, 2047 {U64, U64, {0x100000000ULL, 0x100000100ULL}, {0, 0}}, 2048 {U64, U64, {0x100000000ULL, 0x180000000ULL}, {0, 0}}, 2049 {U64, U64, {0x100000000ULL, 0x1ffffff00ULL}, {0, 0}}, 2050 {U64, U64, {0x100000000ULL, 0x1ffffff01ULL}, {0, 0}}, 2051 {U64, U64, {0x100000000ULL, 0x1fffffffeULL}, {0, 0}}, 2052 {U64, U64, {0x100000001ULL, 0x1000000ffULL}, {0, 0}}, 2053 2054 /* single point overlap, interesting BPF_EQ and BPF_NE interactions */ 2055 {U64, U64, {0, 1}, {1, 0x80000000}}, 2056 {U64, S64, {0, 1}, {1, 0x80000000}}, 2057 {U64, U32, {0, 1}, {1, 0x80000000}}, 2058 {U64, S32, {0, 1}, {1, 0x80000000}}, 2059 2060 {U64, S64, {0, 0xffffffff00000000ULL}, {0, 0}}, 2061 {U64, S64, {0x7fffffffffffffffULL, 0xffffffff00000000ULL}, {0, 0}}, 2062 {U64, S64, {0x7fffffff00000001ULL, 0xffffffff00000000ULL}, {0, 0}}, 2063 {U64, S64, {0, 0xffffffffULL}, {1, 1}}, 2064 {U64, S64, {0, 0xffffffffULL}, {0x7fffffff, 0x7fffffff}}, 2065 2066 {U64, U32, {0, 0x100000000}, {0, 0}}, 2067 {U64, U32, {0xfffffffe, 0x100000000}, {0x80000000, 0x80000000}}, 2068 2069 {U64, S32, {0, 0xffffffff00000000ULL}, {0, 0}}, 2070 /* these are tricky cases where lower 32 bits allow to tighten 64 2071 * bit boundaries based on tightened lower 32 bit boundaries 2072 */ 2073 {U64, S32, {0, 0x0ffffffffULL}, {0, 0}}, 2074 {U64, S32, {0, 0x100000000ULL}, {0, 0}}, 2075 {U64, S32, {0, 0x100000001ULL}, {0, 0}}, 2076 {U64, S32, {0, 0x180000000ULL}, {0, 0}}, 2077 {U64, S32, {0, 0x17fffffffULL}, {0, 0}}, 2078 {U64, S32, {0, 0x180000001ULL}, {0, 0}}, 2079 2080 /* verifier knows about [-1, 0] range for s32 for this case already */ 2081 {S64, S64, {0xffffffffffffffffULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}}, 2082 /* but didn't know about these cases initially */ 2083 {U64, U64, {0xffffffff, 0x100000000ULL}, {0, 0}}, /* s32: [-1, 0] */ 2084 {U64, U64, {0xffffffff, 0x100000001ULL}, {0, 0}}, /* s32: [-1, 1] */ 2085 2086 /* longer convergence case: learning from u64 -> s64 -> u64 -> u32, 2087 * arriving at u32: [1, U32_MAX] (instead of more pessimistic [0, U32_MAX]) 2088 */ 2089 {S64, U64, {0xffffffff00000001ULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}}, 2090 2091 {U32, U32, {1, U32_MAX}, {0, 0}}, 2092 2093 {U32, S32, {0, U32_MAX}, {U32_MAX, U32_MAX}}, 2094 2095 {S32, U64, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)(s32)-255, 0}}, 2096 {S32, S64, {(u32)S32_MIN, (u32)(s32)-255}, {(u32)(s32)-2, 0}}, 2097 {S32, S64, {0, 1}, {(u32)S32_MIN, (u32)S32_MIN}}, 2098 {S32, U32, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)S32_MIN, (u32)S32_MIN}}, 2099 2100 /* edge overlap testings for BPF_NE */ 2101 {U64, U64, {0, U64_MAX}, {U64_MAX, U64_MAX}}, 2102 {U64, U64, {0, U64_MAX}, {0, 0}}, 2103 {S64, U64, {S64_MIN, 0}, {S64_MIN, S64_MIN}}, 2104 {S64, U64, {S64_MIN, 0}, {0, 0}}, 2105 {S64, U64, {S64_MIN, S64_MAX}, {S64_MAX, S64_MAX}}, 2106 {U32, U32, {0, U32_MAX}, {0, 0}}, 2107 {U32, U32, {0, U32_MAX}, {U32_MAX, U32_MAX}}, 2108 {S32, U32, {(u32)S32_MIN, 0}, {0, 0}}, 2109 {S32, U32, {(u32)S32_MIN, 0}, {(u32)S32_MIN, (u32)S32_MIN}}, 2110 {S32, U32, {(u32)S32_MIN, S32_MAX}, {S32_MAX, S32_MAX}}, 2111 }; 2112 2113 /* Go over crafted hard-coded cases. This is fast, so we do it as part of 2114 * normal test_progs run. 2115 */ 2116 void test_reg_bounds_crafted(void) 2117 { 2118 struct ctx ctx; 2119 int i; 2120 2121 memset(&ctx, 0, sizeof(ctx)); 2122 2123 for (i = 0; i < ARRAY_SIZE(crafted_cases); i++) { 2124 struct subtest_case *c = &crafted_cases[i]; 2125 2126 verify_case(&ctx, c->init_t, c->cond_t, c->x, c->y); 2127 verify_case(&ctx, c->init_t, c->cond_t, c->y, c->x); 2128 } 2129 2130 cleanup_ctx(&ctx); 2131 } 2132